首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present new absorbance spectra of the 3-, 6- and 12-μm features of amorphous and crystalline H2O ice obtained between 10 and 140 K. Three sets of measurements have been made. In series I, the ice film was initially deposited on to a CsI substrate at 10 K and successive spectra were then obtained at intermediate temperatures as the ice was warmed up to 140 K. The second set, series II, comprises spectra for ice films deposited and measured at temperatures between 10 and 140 K. In the third set of measurements, series III, spectra were obtained for an ice film deposited at 140 K and then at intermediate temperatures as the film was cooled down to 10 K. The series I and II results show that the ice undergoes an amorphous-to-crystalline phase transition in the 110–120 K range. The 3- and 12-μm bands have similar trends in full width at half-maximum (FWHM) and opposite peak wavelength shifts. The temperature behaviour of the 6-μm band is different, as no clear phase transition temperature can be discerned from its FWHM and peak wavelength position data. In the series III spectra the peak wavelength positions and FWHM of the three bands remain relatively constant, thus demonstrating the stability of the crystalline phase against thermal cycling. A comparison between the laboratory results and astronomical spectra suggests that the identification of the librational band of H2O ice in OH 231.8 + 4.2 may be incorrect.  相似文献   

2.
Water (H2O) ice is an important solid constituent of many astrophysical environments. To comprehend the role of such ices in the chemistry and evolution of dense molecular clouds and comets, it is necessary to understand the freeze-out, potential surface reactivity and desorption mechanisms of such molecular systems. Consequently, there is a real need from within the astronomical modelling community for accurate empirical molecular data pertaining to these processes. Here we give the first results of a laboratory programme to provide such data. Measurements of the thermal desorption of H2O ice, under interstellar conditions, are presented. For ice deposited under conditions that realistically mimic those in a dense molecular cloud, the thermal desorption of thin films (≪50 molecular layers) is found to occur with zeroth-order kinetics characterized by a surface binding energy, E des, of 5773 ± 60 K, and a pre-exponential factor, A , of 1030 ± 2 molecules cm−2 s−1. These results imply that, in the dense interstellar medium, thermal desorption of H2O ice will occur at significantly higher temperatures than has previously been assumed.  相似文献   

3.
The distinct patterns, relatively low intensities and peak positions of overtone-combination bands of silicates and oxides suggest that the 5–8 μm spectral region can provide clues for the dust composition when near optically thick conditions exist for the 10-μm silicate feature. We present 1000–2500 cm−1 room-temperature laboratory spectra obtained from powders of silicate, aluminate and nitride minerals and silicate glasses. The spectra exhibit overtone absorption bands with mass absorption coefficients ∼100 times weaker than the fundamentals. These data are compared with the 5–8 μm spectra of deeply embedded young stellar objects observed with the Short Wavelength Spectrometer on the Infrared Space Observatory . Fits of the laboratory data to the observations, after subtraction of the 6.0-μm H2O ice feature and the 6.0-μm feature identified with organic refractory material, indicate that crystalline melilite (a silicate) or metamict hibonite (a radiation-damaged crystalline aluminate) may be responsible for much of the 6.9-μm absorption feature in the observations, with melilite providing the best match. A weaker 6.2-μm absorption in the young stellar object spectra is well matched by the spectra of hydrous crystalline amphibole silicates (actinolite and tremolite). Relative abundances of Si–O in room-temperature amphiboles to low-temperature H2O ice are in the range 0.46–3.9 and in melilite are in the range 2.5–8.6. No astronomical feature was matched by the overtones of amorphous silicates because these bands are too broad and peak at the wrong wavelength. Hence, this analysis is consistent with the 10-μm features of these objects being due to a mixture of crystalline and amorphous silicates, rather than only amorphous silicates.  相似文献   

4.
The 2.2–200 μm spectrum of OH32.8–0.3 has been modelled. Mie theory and radiative transfer models of the 3-μm band of H2O ice are consistent with a strongly crystalline structural phase. This is also confirmed by the presence of a 44/62-μm band complex analogous to that of laboratory crystalline H2O ice analogues. The highly ordered phase may be the result of direct crystallization upon deposition as has been theorized by Kouchi et al. At the large total optical depths typical of the radiative transfer models for this object (τ9.7∼ 40), we find no significant difference between the Mie theory and radiative transfer models of the 3-μm band. On the other hand, large differences are found for the 9.7-μm silicate band. In contrast to Mie theory extinction profiles, those computed via radiative transfer modelling indicate that the 12-μm H2O ice band (the so-called librational band) is substantially attenuated. This, in addition to the inherent broadness and weakness of the 12-μm ice band, may explain why this band has not been clearly identified in observational spectra of oxygen–rich evolved objects.  相似文献   

5.
High-resolution spectra of comet 8P/Tuttle were obtained in the frequency range 3449.0–3462.2 cm−1 on 2008 January 3 ut using CGS4 with echelle grating on United Kingdom Infrared Telescope. In addition to observing solar pumped fluorescent lines of H2O, the long integration time (152 min on target) enabled eight weaker H2O features to be assigned, most of which had not previously been identified in cometary spectra. These transitions, which are from higher energy upper states, are similar in character to the so-called SH lines recorded in the post Deep Impact spectrum of comet Tempel 1. We have identified certain characteristics that these lines have in common, and which in addition to helping to define this new class of cometary line give some clues to the physical processes involved in their production. Finally, we derive an H2O rotational temperature of     and a water production rate of  (1.4 ± 0.3) × 1028  molecules s−1.  相似文献   

6.
The chemical desorption of an adsorbed CO molecule in the vicinity of H2-forming sites on cosmic dust grains in cold dense clouds is investigated theoretically, mainly using a model based on a classical molecular dynamics computational simulation. As a model surface for icy mantles of dust grains, an amorphous water ice slab is generated at 10 K, and the first and the second H atoms are thrown on to the model surface to reproduce the recombination process of the two H atoms, H+H→H2. Then, the time and space dependence of the local temperature increase of icy mantles caused by the release of H2 formation energy in the vicinity of H2-forming sites is examined. It is found that icy mantles are heated locally up to about 30 K in the surface region at R 4 Å and about 20 K at 4 R 6 Å, where R is the distance from the H2-forming site. The critical temperature of CO desorption is estimated to be about 20–30 K under conditions in typical dense clouds, which might be seen to be comparable to the above result. However, the lifetime of local heating of icy mantles is found to be too short, compared with the time-scale of CO desorption (1013 s) and that for H2 forming in the vicinity of an adsorbed CO molecule (more than 2×1013 s). Thus, it is found that the efficiency of chemical desorption of CO on a large dust grain is negligible. On the other hand, chemical desorption can occur on a small dust grain with size less than 20 Å.  相似文献   

7.
Positions with subarcsecond accuracy have been measured for seven 22-GHz H2O masers associated with H  ii regions in the Large Magellanic Cloud (LMC); two of the masers are new detections. Initial position measurements were obtained with the 70-m antenna of the Canberra NASA Deep Space Network during a period of more than two years in which the antenna was used to monitor the maser emission. The positions were further improved using 22-GHz observations involving three antennas of the Australia Telescope Compact Array.
The positions have been compared with those of 1.6-GHz continuum emission and other LMC masers (of OH and CH3OH). The H2O maser positions range from within 1 arcsec (270 mpc) of the centre of a compact H  ii component to beyond the boundary of significant continuum emission. Three of the four masers located near continuum peaks are close to OH masers. In two cases the positional agreement is better than 0.2 arcsec (53 mpc); in the third case the agreement is worse (0.9 arcsec) but the positions of the individual H2O features appear to be spread over more than 1 arcsec. The velocities of the OH masers are within the spread of the H2O velocities. The three H2O masers offset from continuum centres are located  3–7 arcsec  from optical or infrared phenomena probably associated with very early stages of star formation; no other molecular masers are known in these directions.  相似文献   

8.
We have found a bar of shocked molecular hydrogen (H2) towards the OH(1720 MHz) maser located at the projected intersection of supernova remnant (SNR)  G359.1–0.5  and the non-thermal radio filament known as the Snake. The H2 bar is well aligned with the SNR shell and almost perpendicular to the Snake. The OH(1720 MHz) maser is located inside the sharp western edge of the H2 emission, which is consistent with the scenario in which the SNR drives a shock into a molecular cloud at that location. The spectral line profiles of 12CO, HCO+ and CS towards the maser show broad-line absorption, which is absent in the 13CO spectra and most probably originates from the pre-shock gas. A density gradient is present across the region and is consistent with the passage of the SNR shock, while the H2 filament is located at the boundary between the pre-shock and post-shock regions.  相似文献   

9.
To better understand the conditions under which ice mantles form on grains in molecular clouds, three globules in the Southern Coalsack have been searched for the presence of H2O ice. Given the total lack of star formation in the Coalsack, it is an ideal site for studying unprocessed icy molecular mantles. In our sample of eight field stars lying behind the Coalsack we detect strong H2O ice absorption in the lines of sight to two stars and possible weak absorption in four others. We estimate H2O ice column densities or upper limits for these lines of sight. Compared to dark clouds such as Taurus, the Coalsack H2O ice column densities are lower than expected given the quiescent nature of the Coalsack region. It is possible that the chemical evolution of the Coalsack may simply be at too early a stage for significant ice mantles to appear on the grains, except perhaps in the densest parts of some of the globules. Alternatively, the presence or absence of ice absorption may be related to the distribution of dust along each line of sight, specifically, the relative contributions of dense globules and a more extended diffuse component. For example, our observations are consistent with an ice threshold extinction similar to that observed in the Taurus dark cloud if extinction amounting to   A V∼5  towards Globules 2 and 3 arises in the extended component. Globule 1 appears to have no extended component.  相似文献   

10.
Long-slit spectra of the molecular outflow Herbig–Haro (HH) 46/47 have been taken in the J and K near-infrared bands. The observed H2 line emission confirms the existence of a bright and extended redshifted counter-jet outflow south-west of HH 46. In contrast with the optical appearance of this object, we show that this outflow seems to be composed of two different emission regions characterized by distinct heliocentric velocities. This implies an acceleration of the counter-jet.
The observed [Fe  ii ] emission suggests an average extinction of 7–9 visual magnitudes for the region associated with the counter-jet.
Through position–velocity diagrams, we show the existence of different morphologies for the H2 and [Fe  ii ] emission regions in the northern part of the HH 46/47 outflow. We have detected for the first time high-velocity (−250 km s−1) [Fe  ii ] emission in the region bridging HH 46 to HH 47A. The two strong peaks detected can be identified with the optical positions B8 and HH 47B.
The H2 excitation diagrams for the counter-jet shock suggest an excitation temperature for the gas of T ex≈2600 K . The lack of emission from the higher energy H2 lines, such as the 4–3 S(3) transition, suggests a thermal excitation scenario for the origin of the observed emission. Comparison of the H2 line ratios with various shock models yielded useful constraints about the geometry and type of these shocks. Planar shocks can be ruled out whereas curved or bow shocks (both J- and C-type) can be parametrized to fit our data.  相似文献   

11.
Models of brown dwarf atmospheres suggest they exhibit complex physical behaviour. Observations have shown that they are indeed dynamic, displaying small photometric variations over time-scales of hours. Here, I report results of infrared (0.95–1.64 μm) spectrophotometric monitoring of four field L and T dwarfs spanning time-scales of 0.1–5.5 h, the goal being to learn more about the physical nature of this variability. Spectra are analysed differentially with respect to a simultaneously observed reference source in order to remove Earth-atmospheric variations. The variability amplitude detected is typically 2–10 per cent, depending on the source and wavelength. I analyse the data for correlated variations between spectral indices. This approach is more robust than single band or  χ2  analyses, because it does not assume an amplitude for the (often uncertain) noise level (although the significance test still assumes a shape for the noise power spectrum). Three of the four targets show significant evidence for correlated variability. Some of this can be associated with specific features including Fe, FeH, VO and K  i , and there is good evidence for intrinsic variability in H2O and possibly also CH4. Yet some of this variability covers a broader spectral range which would be consistent with dust opacity variations. The underlying common cause is plausibly localized temperature or composition fluctuations caused by convection. Looking at the high signal-to-noise ratio stacked spectra, we see many previously identified spectral features of L and T dwarfs, such as K  i , Na  i , FeH, H2O and CH4. In particular, we may have detected methane absorption at 1.3–1.4 μm in the L5 dwarf SDSS 0539−0059.  相似文献   

12.
A solid-state feature was detected at around 2175 cm−1 towards 30 embedded young stellar objects in spectra obtained using the Infrared Spectrometer and Array Camera at the European Southern Observatory Very Large Telescope. We present results from laboratory studies of CO adsorbed at the surface of zeolite wafers, where absorption bands were detected at 2177 and 2168 cm−1 (corresponding to CO chemisorbed at the zeolite surface) and 2130 cm−1 (corresponding to CO physisorbed at the zeolite surface), providing an excellent match to the observational data. We propose that the main carrier of the 2175-band is CO chemisorbed at bare surfaces of dust grains in the interstellar medium. This result provides the first direct evidence that gas–surface interactions do not have to result in the formation of ice mantles on interstellar dust. The strength of the 2175-band is estimated to be  ∼4 × 10−19 cm  molecule−1. The abundance of CO adsorbed at bare grain surfaces ranges from 0.06 to 0.16 relative to H2O ice, which is, at most, half of the abundance (relative to H2O ice) of CO residing in H2O-dominated ice environments. These findings imply that interstellar grains have a large (catalytically active) surface area, providing a refuge for interstellar species. Consequently, the potential exists for heterogeneous chemistry to occur involving CO molecules in unique surface chemistry pathways not currently considered in gas grain models of the interstellar medium.  相似文献   

13.
The formation of H2 on a pristine olivine surface [forsterite (010)] is investigated computationally. Calculations show that the forsterite surface catalyzes H2 formation by providing chemisorption sites for H atoms. The chemisorption route allows for stepwise release of the reaction exothermicity and stronger coupling to the surface, which increases the efficiency of energy dissipation. This suggests that H2 formed on a pristine olivine surface should be much less rovibrationally excited than H2 formed on a graphite surface. Gas-phase H atoms impinging on the surface will first physisorb relatively strongly  ( E phys= 1240 K)  . The H atom can then migrate via desorption and re-adsorption, with a barrier equal to the adsorption energy. The barrier for a physisorbed H atom to become chemisorbed is equal to the physisorption energy, therefore there is almost no gas-phase barrier to chemisorption. An impinging gas-phase H atom can easily chemisorb  ( E chem= 12 200 K)  , creating a defect where a silicate O atom is protonated and a single electron resides on the surface above the adjacent magnesium ion. This defect directs any subsequent impinging H atoms to chemisorb strongly (39 800 K) on the surface electron site. The two adjacent chemisorbed atoms can subsequently recombine to form H2 via a barrier (5610 K) that is lower than the chemisorption energy of the second H atom. Alternatively, the adsorbed surface species can react with another incoming H atom to yield H2 and regenerate the surface electron site. This double chemisorption 'relay mechanism' catalyzes H2 formation on the olivine surface and is expected to attenuate the rovibrational excitation of H2 thus formed.  相似文献   

14.
The origin of rovibrational H2 emission in the central galaxies of cooling flow clusters is poorly understood. Here we address this issue using data from our near-infrared spectroscopic survey of 32 of the most line-luminous such systems, presented in the companion paper by Edge et al.
We consider excitation by X-rays from the surrounding intracluster medium (ICM), ultra-violet (UV) radiation from young stars, and shocks. The   v = 1–0  K -band lines with upper levels within  104 K  of the ground state appear to be mostly thermalized (implying gas densities  ≳105 cm−3  ), with the excitation temperature typically exceeding 2000 K, as found earlier by Jaffe, Bremer & van der Werf. Together with the lack of strong   v = 2–0  lines in the H -band, this rules out UV radiative fluorescence.
Using the cloudy photoionization code, we deduce that the H2 lines can originate in a population of dense clouds, exposed to the same hot  ( T ∼ 50 000 K)  stellar continuum as the lower density gas which produces the bulk of the forbidden optical line emission in the Hα-luminous systems. This dense gas may be in the form of self-gravitating clouds deposited directly by the cooling flow, or may instead be produced in the high-pressure zones behind strong shocks. Furthermore, the shocked gas is likely to be gravitationally unstable, so collisions between the larger clouds may lead to the formation of globular clusters.  相似文献   

15.
We discuss wide-field near-infrared (near-IR) imaging of the NGC 1333, L1448, L1455 and B1 star-forming regions in Perseus. The observations have been extracted from a much larger narrow-band imaging survey of the Taurus–Auriga–Perseus complex. These H2 2.122-μm observations are complemented by broad-band K imaging, mid-IR imaging and photometry from the Spitzer Space Telescope , and published submillimetre CO   J = 3–2  maps of high-velocity molecular outflows. We detect and label 85 H2 features and associate these with 26 molecular outflows. Three are parsec-scale flows, with a mean flow lobe length exceeding 11.5 arcmin. 37 (44 per cent) of the detected H2 features are associated with a known Herbig–Haro object, while 72 (46 per cent) of catalogued HH objects are detected in H2 emission. Embedded Spitzer sources are identified for all but two of the 26 molecular outflows. These candidate outflow sources all have high near-to-mid-IR spectral indices (mean value of  α∼ 1.4  ) as well as red IRAC 3.6–4.5 μm and IRAC/MIPS 4.5–24.0 μm colours: 80 per cent have [3.6]–[4.5] > 1.0 and [4.5]–[24] > 1.5. These criteria – high α and red [4.5]–[24] and [3.6]–[4.5] colours – are powerful discriminants when searching for molecular outflow sources. However, we find no correlation between α and flow length or opening angle, and the outflows appear randomly orientated in each region. The more massive clouds are associated with a greater number of outflows, which suggests that the star formation efficiency is roughly the same in each region.  相似文献   

16.
We demonstrate that a wide range of molecular hydrogen excitation can be observed in protostellar outflows at wavelengths in excess of 5 μm. Cold H2 in DR 21 is detected through the pure rotational transitions in the ground vibrational level (0–0). Hot H2 is detected in pure rotational transitions within higher vibrational levels (1–1, 1–2, etc.). Although this emission is relatively weak, we have detected two 1–1 lines in the DR 21 outflow with the ISO SWS instrument. We thus investigate molecular excitation over energy levels corresponding to the temperature range 1015–15 722 K, without the uncertainty introduced by differential extinction when employing near-infrared data.
This gas is thermally excited. We uncover a rather low H2 excitation in the DR 21 West Peak. The line emission cannot be produced from single C-shocks or J-shocks; a range of shock strengths is required. This suggests that bow shocks and/or bow-generated supersonic turbulence is responsible. We are able to distinguish this shock-excited gas from the fluoresced gas detected in the K band, providing support for the dual-excitation model of Fernandes, Brand & Burton.  相似文献   

17.
We consider sulphur depletion in dense molecular clouds, and suggest hydrated sulphuric acid, H2SO4 ·  n H2O, as a component of interstellar dust in icy mantles. We discuss the formation of hydrated sulphuric acid in collapsing clouds and its instability in heated regions in terms of the existing hot core models and observations. We also show that some features of the infrared spectrum of hydrated sulphuric acid have correspondence in the observed spectra of young stellar objects.  相似文献   

18.
We report the first detection of CO in the bulge of M31. The 12CO (1–0) and (2–1) lines are both detected in the dust complex D395A/393/384, at 1.3 arcmin (∼0.35 kpc) from the centre. From these data and from visual extinction data, we derive a CO luminosity to reddening ratio (and a CO luminosity to H2 column density ratio) quite similar to that observed in the local Galactic clouds. The (2–1) to (1–0) line intensity ratio points to a CO rotational temperature and a gas kinetic temperature of >10 K. The molecular mass of the complex, inside a 25-arcsec (100 pc) region, is 1.5×104 M.  相似文献   

19.
A recent theoretical investigation by Terzieva & Herbst of linear carbon chains, C n where n  ≥ 6, in the interstellar medium has shown that these species can undergo efficient radiative association to form the corresponding anions. An experimental study by Barckholtz, Snow & Bierbaum of these anions has demonstrated that they do not react efficiently with molecular hydrogen, leading to the possibility of detectable abundances of cumulene-type anions in dense interstellar and circumstellar environments. Here we present a series of electronic structure calculations which examine possible anionic candidates for detection in these media, namely the anion analogues of the previously identified interstellar cumulenes C n H and C n −1CH2 and heterocumulenes C n O (where n  = 2–10). The extraordinary electron affinities calculated for these molecules suggest that efficient radiative electron attachment could occur, and the large dipole moments of these simple (generally) linear molecules point to the possibility of detection by radio astronomy.  相似文献   

20.
We have detected the   v = 1 → 0 S(1) (λ= 2.1218 μm)  and   v = 2 → 1 S(1) (λ= 2.2477 μm)  lines of H2 in the Galactic Centre, in a  90 × 27 arcsec2  region between the north-eastern boundary of the non-thermal source Sgr A East, and the giant molecular cloud (GMC)  M−0.02 − 0.07  . The detected  H2 v = 1 → 0  S(1) emission has an intensity of  1.6–21 × 10−18 W m−2 arcsec−2  and is present over most of the region. Along with the high intensity, the large linewidths  (FWHM = 40–70 km s−1)  and the  H2 v = 2 → 1 S(1)  to   v = 1 → 0 S(1)  line ratios (0.3–0.5) can be best explained by a combination of C-type shocks and fluorescence. The detection of shocked H2 is clear evidence that Sgr A East is driving material into the surrounding adjacent cool molecular gas. The H2 emission lines have two velocity components at ∼+50 and  ∼0 km s−1  , which are also present in the NH3(3, 3) emission mapped by McGary, Coil & Ho. This two-velocity structure can be explained if Sgr A East is driving C-type shocks into both the  GMC M−0.02 − 0.07  and the northern ridge of McGary et al.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号