首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although oil cracking has been documented as one of the important sources of gas in many overmature marine sedimentary basins, the chemical and carbon isotopic signatures of gases of this origin are still open to question. In this study a Cambrian crude oil from the central Tarim basin, along with its main separated fractions (saturates, aromatics and asphaltenes), were pyrolyzed in sealed gold tubes to investigate how generated gases vary in chemical and carbon isotopic composition and how this variation would influence the genetic interpretation of oil cracking gas. The results indicate that the gases from cracking of aromatics and asphaltenes are much drier and more enriched in 13C than the gases from the cracking of saturates and crude oil at the same level of thermal maturity. In the experimental run of 20 °C/h, the dryness index of the gases (defined as the volume percentage of C1 in C1–5) from the cracking of saturates ranges from 26.2–90.6% with the methane carbon isotope change ranging from −54.8‰ to −35.5‰, whereas the dryness index is never lower than 60.6% for the gases from the cracking of aromatics with methane carbon isotope ranging from −39.9‰ to −32.2‰. Correspondingly, experimental data for the four samples plot in different areas in diagrams designed to distinguish oil cracking gas from kerogen cracking gas, such as ln(C2/C3) vs. δ13C2δ13C3 and δ13C1 vs. δ13C2δ13C3, indicating compositional variability of crude oil could assert an important influence in these diagrams. Therefore it is prudent to bring other geological constraints into consideration to avoid misinterpretation.The kinetic parameters for the bulk generation of C1–5 gas and the methane carbon isotope fractionation extrapolated to geological conditions of 2 °C/Ma and an initial temperature of 50 °C show that the temperatures of C1–5 gas generation from the aromatics and asphaltenes are lower than those from the saturates and crude oil due to their lower activation energies and frequency factors. Generation of C1–5 gases from the aromatics is modeled to be initiated about 122 °C whereas the initiation temperature for the saturates sample is 176 °C. Below 189 °C (EasyRo = 1.8%), the yields of C1–5 gases follow the order: aromatics > asphaltenes > crude oil > saturates. At similar thermal maturity levels, the methane carbon isotopic compositions are significantly different for the four samples, with an order of 13C enrichment: aromatics > asphaltenes > crude oil > saturates, however the difference in methane carbon isotopes becomes smaller with increasing temperature. This indicates that methane carbon isotopic values can be significantly different for gases cracked from oils that are compositionally diverse, especially in the early stage of methane generation.  相似文献   

2.
A combined geochemical, geological and microbiological analysis of an actively biodegrading 24.5 m thick oil column in a Canadian heavy oil reservoir has been carried out. The reservoir properties associated with the cored vertical well are characterised by a 15.75 m thick oil column and an 8.75 m zone of steadily decreasing oil saturation below the oil column, referred to as the oil–water transition zone (OWTZ), grading down into a thin water leg. The oil column exhibits systematic gradients in oil physical properties and hydrocarbon composition and shows variations in biodegradation level throughout the reservoir consistent with the notion that the biodegradation of oil is focussed in a bioreactor zone at the base of the oil column. Through the oil column, the dead oil viscosity measured at 20 °C ranged from 50,000 cP (0.05 McP) at the top of the oil column to 1.4 McP at the oil–OWTZ contact, and continued to increase to 10.5 McP within the OWTZ. The saturated and aromatic hydrocarbons are characterised by systematically decreasing bulk fraction and component concentrations down through the oil column. Different compound classes decreased to levels below their detection limit at different depths within the OWTZ, defining a likely bioreactor extent of over 5 m in depth with, for example, n-alkanes being reduced to their detection limit concentration at the bottom of the oil column/top of the OWTZ, while branched isoprenoid alkanes were not completely degraded until well into the OWTZ.Core samples from the oil column and the lower part of the OWTZ were estimated to contain ca. 104–105 bacterial cells/g, based on qPCR of bacterial 16S rRNA genes, while samples from a narrow interval in the OWTZ immediately below the oil column contained on the order of 106–107 cells/g of sediment. Interestingly, these latter numbers are typical of those observed in active deep subsurface biosphere systems with the notion that microbial activity and abundance in the deep subsurface is elevated at geochemical interfaces. The numbers of organisms are not constant throughout the OWTZ. The highest bacterial abundance and geochemical gradients of, for example, methylphenanthrene biodegradation define a zone near the oil–water contact as likely the most active in terms of biodegradation. The largest bacterial abundances in the upper part of the OWTZ are in line with the trend of bacterial abundance with depth that has emerged from extensive analysis of microbial cells in deep subsurface sediments, implying that in terms of deep biosphere cell abundance, oil reservoirs are similar to other deep subsurface microbial environments. This is puzzling, given the atypical abundance of organic carbon in petroleum reservoirs and may imply a common large scale control on microbial abundance and activity in the deep biosphere, including in oilfields.  相似文献   

3.
The Jurassic–Lower Cretaceous aged carbonate sequence is widely exposed in the southern zone of Eastern Pontides. Aptian black bituminous limestone is found in the upper part of this sequence in the Kale area (Gümüşhane). This limestone contains faunal remains (e.g., gastropod, ostracod, characean stems and miliolid type benthic foraminifera) that indicate a freshwater, lacustrine depositional environment.The total organic carbon (TOC) values of the bituminous limestone samples range from 0.11–1.30% with an average TOC value of 0.54%. The hydrogen index (HI) varies from 119–448 mg HC/g TOC (average HI 298 mg HC/g TOC) indicating that the limestone contains gas prone as well as oil prone organic matter. Pyrolysis data prove that the organic matter content in the bituminous limestone consists of Type II kerogen. The average Tmax value for bituminous limestone samples is 438 °C (434–448 °C). Bitumen/TOC ratios for bituminous limestone are 0.05 and 0.04. The Tmax values and the ratios indicate that the bituminous limestone samples contain early mature to mature organic matter.Analysis of solvent extracts from the two richest bituminous limestones show a predominance of high carbon number (C26–C30) n-alkanes. The Pr/Ph ratio and CPI value are 1.34 and 0.96, respectively. C29 is the dominant sterane, with C29 > C27 > C28. The bituminous limestone samples have low C22/C21 ratios, high C24/C23 tricyclic terpane ratios and very low C31R/C30 hopane ratios (<0.25). These data are consistent with the bituminous limestones being deposited in a lacustrine environment.  相似文献   

4.
Previously studied thermosequences of wood (chestnut) and grass (rice straw) biochar were subjected to hydrogen pyrolysis (hypy) to evaluate the efficacy of the technique for determining pyrogenic carbon (CP) abundance. As expected, biochar from both wood and grass produced at higher temperature had higher CP amount. However, the trend was not linear, but more sigmoidal. CP/CT ratio values (CT = total organic carbon) for the wood thermosequence were ⩽0.03 at biochar production temperature (TCHAR)  300 °C. They increased dramatically until 600 °C and remained relatively constant and near unity at higher biochar production temperature. Grass biochar was similar in profile, but CP/CT values rose dramatically after 400 °C. The findings are consistent with the hypothesis that hypy residues contain polycyclic aromatic hydrocarbons (PAHs) with a degree of condensation above at least 7–14 fused rings, with labile organic matter and pyrogenic PAHs below this degree of condensation removed by hypy.Both wood and grass thermosequences displayed δ13CP values that decreased with increased TCHAR, indicating that recalcitrant carbon compounds (pyrogenic aromatic PAHs with a relatively high degree of condensation) were first formed from structural components with relatively high δ13C values (e.g. cellulose). Relatively constant δ13C values at TCHAR  500 °C suggested the dominant pyrolysis reaction was condensation of PAHs with no additional fractionation. Comparison of hypy with benzene polycarboxylic acid (BPCA), ‘ring current’ NMR and pyrolysis gas chromatography–mass spectrometry (GC–MS) results from the same suite of samples indicated a consistent overview of the structure of CP, but provided unique and complimentary information.  相似文献   

5.
Although the effects of biodegradation on the composition and physical properties of crude oil have been well studied, effects of in-reservoir petroleum biodegradation on molecular and isotopic compositions of crude oils are not yet clearly understood. The Alberta Basin, in western Canada, is one of the world’s largest petroleum accumulations and constitutes an ideal example of a natural suite of sequentially biodegraded oils. The basin hosts moderately to severely biodegraded petroleum, regionally distributed and in single, more or less continuous, oil columns. In this study, a series of oil samples from the Alberta heavy oil and oil sands provinces, with varying degrees of biodegradation, were analyzed to assess the impact of progressive biodegradation on the molecular and C, H, N, and S isotopic compositions of oils. The results of the molecular characterization of the hydrocarbon fraction of the studied oils show that the oils have suffered biodegradation levels from 2 to 10+ (toward the Alberta–Saskatchewan border) on the Peters and Moldowan scale of biodegradation (abbreviated PM 2 to PM 10) and from tens to hundreds on the Manco scale. Within single reservoirs, increasing biodegradation was observed from top to bottom of the oil columns at all sites studied. The whole oil stable isotopic compositions of the samples varied in the ranges δ13C = −31.2‰ to −29.0‰, δ2H = −147‰ to −133‰, δ15N = 0.3–4.7‰ and δ34S = 0.4–6.4‰. The maximum differences between δ values of samples (Δ) within single oil columns were Δ13C = 1.4‰, Δ2H = 7‰, Δ15N = 1.7‰ and Δ34S = 1.0‰. Regional variations in the isotopic compositions of oil samples from different wells (averaged values from top to bottom) were 1.2‰ for δ13C, 12‰ for δ2H, 4.1‰ for δ15N and 5.5‰ for δ34S and hence generally significantly larger variations were seen than variations observed within single oil columns, especially for N and S. It appears that even severe levels of biodegradation do not cause observable systematic variations in carbon, nitrogen or sulfur isotope composition of whole oils. This indicates that sulfur and nitrogen isotopic compositions may be used in very degraded oils as indicators for oil charge from different source rock facies.  相似文献   

6.
An unusual series of C22–C27 monounsaturated sterenes and C24–C30 tetracyclic terpanes (17,21-secohopanes) were detected in relatively high concentrations in an immature evaporitic marl sediment of the Jinxian Sag, Bohai Bay Basin, North China. The site of unsaturation in these novel sterenes is assigned tentatively to the D ring on the basis of mass spectral interpretation, which also distinguishes them from reported unsaturated sterenes. Other hydrocarbon biomarker or stable isotope characteristics are indicative of microbial (e.g. methyl hopanes), phytoplankton or higher plant (depleted δ13C values of isoprenoids and hopanes) inputs and an anoxic carbonate depositional environment (hexacyclic hopanes; tetracyclic terpanes). The hydrocarbon composition showed no obvious biodegradation and the relatively high concentration of unsaturated terpenoids (e.g. gammacerene) and low values of other established maturity parameters (Ts/Tm = 0.23; Ro = 0.44%; Tmax = 417 °C), are consistent with sediments of low maturity. The novel, low molecular weight sterenes and the tetracyclic terpanes may be early diagenetic products of microbial sources in a carbonate environment.  相似文献   

7.
The large (>180 Kt WO3 and at least 10–15 t Au) Vostok-2 deposit is situated in a metallogenic belt of W, Sn-W, Au, and Au-W deposits formed in late to post-collisional tectonic environment after cessation of active subduction. The deposit is related to an ilmenite-series high-K calc-alkaline plutonic suite that, by its petrologic signatures, is transitional between those at W-dominant and Au-dominant reduced intrusion-related deposits. Consistently, besides large W-Cu skarns of the reduced type, the deposit incorporates quartz stockworks with significant Au-W-Bi mineralization also formed in a reduced environment. The hydrothermal stages include prograde and retrograde, essentially pyroxene skarns, hydrosilicate (amphibole, chlorite, quartz) alteration, and phyllic (quartz, sericite, albite, apatite, and carbonate) alteration assemblages. These assemblages contain abundant scheelite associated with pyrrhotite, chalcopyrite and, at the phyllic stage, also with Bi minerals, As-Bi-Sb-Te-Pb-Zn sulfides and sulfosalts, as well as Au mineralization. The fluid evolution included hot, high-pressure (420–460 °C, 1.1–1.2 kbar), low-salinity (5.4–6.0 wt% NaCl-equiv.) aqueous fluids at the retrograde skarn stage, followed by lower temperature cyclic releases of high-carbonic, low salinity to non-carbonic moderate-salinity aqueous fluids. At the hydrosilicate stage, a high-carbonic, CH4-dominated, hot (350–380 °C) low salinity fluid was followed by cooler (300–350 °C) non-carbonic moderate-salinity (5.7–14.9 wt% NaCl-equiv.) fluid. At the phyllic stage, a high-carbonic, CO2-dominated, moderately-hot (330–355 °C, 0.9 kbar) low salinity fluid was followed by cooler (230–265 °C) non-carbonic moderate-salinity (6.6–12.0 wt% NaCl-equiv.) fluid. A homogenized magmatic source of water (δ18OH2O = +8.3 to +8.7‰), and a sedimentary source of sulfur (δ34S = −6.9 to −6.2‰) and carbon (δ13Cfluid = −20.1 to −14.9‰) at the hydrosilicate stage are suggested. A magmatic source of water (δ18O = +8.6 to +9.2‰) and a sedimentary source of sulfur (δ34S = −9.3 to −4.1‰) but a magmatic (mantle- to crustal-derived) source of carbon (δ13Cfluid = −6.9 to −5.2‰) are envisaged for fluids that formed the early mineral assemblage of the phyllic stage. Then, the role of sedimentary carbon again increased toward the intermediate (δ13Cfluid = −16.4 to −14.5‰) and late (δ13Cfluid = −16.3 to −14.7‰) phyllic mineral assemblages. The magmatic differentiation was responsible for the fluid enrichment in W, whereas Au and Bi could also have been sourced from mafic magma. The decreasing temperatures, together with elevated Ca content in non-boiling fluids, promoted scheelite deposition at the early hydrothermal stages. The most intense scheelite deposition at the phyllic stage was caused by CO2 removal due to boiling of CO2-rich fluids; further cooling of non-boiling fluids favoured joint deposition of scheelite, Bi and Au.  相似文献   

8.
Future climatic conditions may coincide with an increased potential for wildfires in grassland and forest ecosystems, whereby charred biomass would be incorporated into soils. Molecular changes in biomass upon charring have been frequently analysed with a focus on black carbon. Aliphatic and aromatic hydrocarbons, known to be liberated during incomplete combustion of biomass have been preferentially analysed in soot particles, whereas determinations of these compounds in charred biomass residues are scarce. We discuss the influence of increasing charring temperature on the aliphatic and aromatic hydrocarbon composition of crop grass combustion residues. Straw from rye, representing C3 grasses and maize, representing C4 grasses, was charred in the presence of limited oxygen at 300, 400 and 500 °C. Typical n-alkane distribution patterns with a strong predominance of long chain odd-numbered n-alkanes maximising at C31 were observed in raw straw. Upon combustion at 300 °C aliphatic hydrocarbons in char were dominated by sterenes, whereas at 400 °C sterenes disappeared and medium chain length n-alkanes, maximising around n-C20, with a balanced odd/even distribution were present. At a charring temperature of 500 °C n-alkane chain length shifted to short chain homologues, maximising at C18 with a pronounced predominance of even homologues. Even numbered, short chain n-alkanes in soils may thus serve as a marker for residues of charred biomass. Aromatic hydrocarbons indicate an onset of aromatization of biomass already at 300 °C, followed by severe aromatization upon incomplete combustion at 400–500 °C. The diagnostic composition of aliphatic and aromatic hydrocarbons from charred biomass affords potential for identifying residues from burned vegetation in recent and fossil soils and sediments.  相似文献   

9.
Four crude oil samples from the Sergipe–Alagoas Basin, northeastern Brazil, were analyzed using full scan gas chromatography–quadrupole mass spectrometry (GC–qMS) for biomarkers, in order to correlate them using aromatic carotenoids thereby enhancing knowledge about the depositional environment of their source rocks. The geochemical parameters derived from saturated fractions of the oils show evidence of little or no biodegradation and similar thermal maturation (Ts/(Ts + Tm) for terpanes, C29 αββ/(αββ + ααα), C27, and C29 20S/(20S + 20R) for steranes). Low pristane/phytane ratios and the abundance of gammacerane and β-carotane are indicative of an anoxic and saline depositional environment for the source rocks. Moreover, we identified a large range of diagenetic and catagenetic products of the aromatic carotenoid isorenieratene, including C40, C33, and C32 diaryl isoprenoids and aryl isoprenoid derivatives with short side chains and/or additional rings. These results indicate anoxia in the photic zone during the deposition of the source rocks.  相似文献   

10.
11.
The oxidation of surface functional groups on biochar increases its reactivity and may contribute to the cation exchange capacity of soil. In this study, two Eucalyptus wood biochars, produced at 450 °C (B450) and 550 °C (B550), were incubated separately in each of the four contrasting soils for up to 2 years at 20 °C, 40 °C and 60 °C. Carbon functional groups of the light fraction (< 1.8 g/cm3) of the control and biochar amended soils (fresh and aged for 1 and 2 years at 20 °C, 40 °C and 60 °C) were investigated using near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and X-ray photoelectron spectroscopy (XPS). The spectra of biochar and light fractions of the control and biochar amended soils showed two distinct peaks at ∼285.1 eV and 288.5 eV, which were attributed to the C1s-π1CC transitions of aromatic C and C1s-π1CO transitions of carboxylic C, carboxyamide C and carbonyl C. The proportion of aromatic C was substantially greater in the light fraction of the biochar amended soils than the corresponding light fraction of the control soils. Also, the proportion of aromatic C was much higher in the light fraction of the B550 amended soils than in the corresponding B450 amended soils. Neither NEXAFS nor XPS results show any consistent change in the proportion of aromatic C of biochar amended soils after 1 year ageing. However, XPS analysis of hand-picked biochar samples showed an increase in the proportion of carboxyl groups after ageing for 2 years, with an average value of 8.9% in the 2 year aged samples compared with 3.0% in the original biochar and 6.4% in the control soil. Our data suggest that much longer ageing time will be needed for the development of a significant amount of carboxyl groups on biochar surfaces.  相似文献   

12.
The age and composition of the 14 × 106 km2 of Antarctica's surface obscured by ice is unknown except for some dated detrital minerals and erratics. In remedy, we present four new analyses (U–Pb age, TDMC, εHf, and rock type) of detrital zircons from Neogene turbidites as proxies of Antarctic bedrock, and review published proxies: detrital hornblendes analysed for Ar–Ar age and bulk Sm–Nd isotopes; Pb isotope compositions of detrital K-feldspars; erratics and dropstones that reflect age and composition; and recycled microfossils that reflect age and facies. This work deals with the 240°E–0°–015°E sector, and complements Veevers and Saeed's (2011) analysis of the 70°E–240°E sector. Each sample is located in its ice-drainage basin for backtracking to the potential provenance. Gaps in age between sample and upslope exposure are specifically attributable to the provenance. The major provenance of detritus west of the Antarctic Peninsula (AP) is West Antarctica, and of detritus east of the AP East Antarctica. We confirm that the Central Antarctic provenance about a core of the Gamburtsev Subglacial Mountains (GSM) and the Vostok Subglacial Highlands (VSH) contains a basement that includes igneous (mafic granitoids) and metamorphic rocks with peak U–Pb ages of 0.65–0.50, 1.20–0.9, 2.1–1.9, 2.8–2.6, and 3.35–3.30 Ga, TDMC of 3.6–1.3 Ga, and mainly negative εHf. The potential provenance of zircons of 650–500 Ma age with TDMC ages of 1.55 Ga, and of zircons of 1200–900 Ma age with positive εHf lies beneath the ice in East Antarctica south and southeast of Dronning Maud Land within the Antarctic part of the East African–Antarctic Orogen. Zircons with the additional ages of 1.7–1.4 Ga, 2.1–1.9 Ga, and 3.35–3.00 Ga have a potential provenance in the GSM.  相似文献   

13.
Increased seismicity and occurrences of hot springs having surface temperature of 36–58 °C are observed in the central part of India (74–81° E, 20–25° N), where the NE trending Middle Proterozoic Aravalli Mobile Belt meets the ENE trending Satpura Mobile Belt. Earlier Deep Seismic Sounding (DSS) studies along Thuadara-Sendhwa-Sindad profile in the area has showed Mesozoic Sediments up to around 4 km depth covered by Deccan Trap and the Moho depth with a boundary velocity (Pn) of 8.2 km/s. In the present study, surface heat flow of 48 ± 4 mW m?2 has been estimated based on Pn velocity, which agrees with the value of heat flow of 52 ± 4 mW m?2 based on Curie point isotherms estimates. The calculated temperature-depth profile shows temperature of 80–120 °C at the basement, which is equivalent to oil window temperature in Mesozoic sediments and around 570–635 °C at Moho depth of 38–43 km and the thermal lithosphere is about 110 km thick, which is comparatively higher than those of adjoining regions. The present study reveals the brittle–ductile transition zone at 14–41 km depth (temperature around 250–600 °C) where earthquake nucleation takes place.  相似文献   

14.
The Shilu deposit is a world-class Fe–Co–Cu orebody located in the Changjiang area of the western part of Hainan Island, South China. The distribution of Fe, Co, and Cu orebodies is controlled by strata of the No. 6 Formation in the Shilu Group and the Beiyi synclinorium. Based on a petrological study of the host rocks and their alteration assemblages, and textural and structural features of the ores, four mineralization stages have been identified: (1) the sedimentary ore-forming period; (2) the metamorphic ore-forming period; (3) the hydrothermal mineralization comprising the skarn and quartz–sulfide stage; and (4) the supergene period. The fluid inclusions in sedimentary quartz and/or chert indicate low temperatures (ca. 160 °C) and low salinities from 0.7 to 3.1 wt.% NaCleq, which corresponds to densities of 0.77 to 0.93 g/cm3. CO2-bearing or carbonic inclusions have been interpreted to result from regional metamorphism. Homogenization temperatures of fluid inclusions for the skarn stage have a wide range from 148 °C to 497 °C and the salinities of the fluid inclusions range from 1.2 to 22.3 wt.% NaCleq, which corresponds to densities from 0.56 to 0.94 g/cm3. Fluid inclusions of the quartz–sulfide stage yield homogenization temperatures of 151–356 °C and salinities from 0.9 to 8.1 wt.% NaCleq, which equates to fluid densities from 0.63 to 0.96 g/cm3.Sulfur isotopic compositions indicate that sulfur of the sedimentary anhydrite and Co-bearing pyrite, and the quartz–sulfide stage, was derived from seawater sulfate and thermochemical sulfate reduction of dissolved anhydrite at temperatures of 200 °C and 300 °C, respectively. H and O isotopic compositions of the skarn and quartz–sulfide stage demonstrate that the ore-forming fluids were largely derived from magmatic water, with minor inputs from metamorphic or meteoric water. The Shilu iron ore deposit has an exhalative sedimentary origin, but has been overprinted by regional deformation and metamorphism. The Shilu Co–Cu deposit has a hydrothermal origin and is temporally and genetically associated with Indosinian granitoid rocks.  相似文献   

15.
The Late Cretaceous location of the Lhasa Terrane is important for constraining the onset of India-Eurasia collision. However, the Late Cretaceous paleolatitude of the Lhasa Terrane is controversial. A primary magnetic component was isolated between 580 °C and 695 °C from Upper Cretaceous Jingzhushan Formation red-beds in the Dingqing area, in the northeastern edge of the Lhasa Terrane, Tibetan Plateau. The tilt-corrected site-mean direction is Ds/Is = 0.9°/24.3°, k = 46.8, α95 = 5.6°, corresponding to a pole of Plat./Plon. = 71.4°/273.1°, with A95 = 5.2°. The anisotropy-based inclination shallowing test of Hodych and Buchan (1994) demonstrates that inclination bias is not present in the Jingzhushan Formation. The Cretaceous and Paleogene poles of the Lhasa Terrane were filtered strictly based on the inclination shallowing test of red-beds and potential remagnetization of volcanic rocks. The summarized poles show that the Lhasa Terrane was situated at a paleolatitude of 13.2° ± 8.6°N in the Early Cretaceous, 10.8° ± 6.7°N in the Late Cretaceous and 15.2° ± 5.0°N in the Paleogene (reference point: 29.0°N, 87.5°E). The Late Cretaceous paleolatitude of the Lhasa Terrane (10.8° ± 6.7°N) represented the southern margin of Eurasia prior to the collision of India-Eurasia. Comparisons with the Late Cretaceous to Paleogene poles of the Tethyan Himalaya, and the 60 Ma reference pole of East Asia indicate that the initial collision of India-Eurasia occurred at the paleolatitude of 10.8° ± 6.7°N, since 60.5 ± 1.5 Ma (reference point: 29.0°N, 87.5°E), and subsequently ~ 1300 ± 910 km post-collision latitudinal crustal convergence occurred across the Tibet. The vast majority of post-collision crustal convergence was accommodated by the Cenozoic folding and thrust faulting across south Eurasia.  相似文献   

16.
《Gondwana Research》2014,25(3-4):969-983
The Ediacaran–Cambrian Petermann Orogeny, central Australia, is an exceptional example of intraplate orogenesis. It involved sub-eclogite facies metamorphism and extreme basin inversion during the exhumation of Musgrave Province basement from beneath the formerly contiguous Centralian Superbasin. Sensitive High Resolution Ion Microprobe (SHRIMP) U–Pb geochronology of zircon, titanite and rutile, along with Ti-in-zircon thermometry from meta-igneous samples, have been used to determine the timing and duration of high-pressure metamorphism and subsequent cooling associated with this orogenic event. Peak metamorphic temperatures of 720–760 °C were attained at 544 ± 7 Ma (U–Pb zircon). Subsequent cooling to 600–660 °C by ~ 521 Ma occurred at a rate of ~ 2.6–7.0 °C Myr 1, as recorded by the closure of Pb diffusion in titanite. Further cooling to 585–560 °C by 498–472 Ma occurred at a rate of 0.9–4.8 °C Myr 1, as recorded by Pb closure in rutile. The duration of tectonism was long-lived (> 40 Myr) across the central and western parts of the orogenic system, and deformation occurred in a comparatively warm and weak portion of crust, characterised by regional thermal gradients of 17–26 °C km 1. This proposed duration of tectonism is much longer than that permitted by a shear heating mechanism, which requires an exceptionally short duration of tectonism, and additionally, an overall cold lithosphere characterised by geothermal gradients of ~ 9 °C km 1.  相似文献   

17.
The role of sulfur in two hydrothermal vent systems, the Logatchev hydrothermal field at 14°45′N/44°58′W and several different vent sites along the southern Mid-Atlantic Ridge (SMAR) between 4°48′S and 9°33′S and between 12°22′W and 13°12′W, is examined by utilizing multiple sulfur isotope and sulfur concentration data. Isotope compositions for sulfide minerals and vent H2S from different SMAR sites range from + 1.5 to + 8.9‰ in δ34S and from + 0.001 to + 0.051‰ in Δ33S. These data indicate mixing of mantle sulfur with sulfur from seawater sulfate. Combined δ34S and Δ33S systematics reveal that vent sulfide from SMAR is characterized by a sulfur contribution from seawater sulfate between 25 and 33%. This higher contribution, compared with EPR sulfide, indicates increased seawater sulfate reduction at MAR, because of a deeper seated magma chamber and longer fluid upflow path length, and points to fundamental differences with respect to subsurface structures and fluid evolution at slow and fast spreading mid-ocean ridges.Additionally, isotope data uncover non-equilibrium isotopic exchange between dissolved sulfide and sulfate in an anhydrite bearing zone below the vent systems at fluid temperatures between 335 and 400 °C. δ34S values between + 0.2 to + 8.8‰ for dissolved and precipitated sulfide from Logatchev point to the same mixing process between mantle sulfur and sulfur from seawater sulfate as at SMAR. δ34S values between ? 24.5 and + 6.5‰ and Δ33S values between + 0.001 and + 0.125‰ for sulfide-bearing sediments and mafic/ultramafic host rocks from drill cores taken in the region of Logatchev indicate a clear contribution of biogenic sulfides formed via bacterial sulfate reduction. Basalts and basaltic glass from SMAR sites with Δ33S = ? 0.008‰ reveal lower Δ33S lower values than suggested on the basis of previously published isotopic measurements of terrestrial materials.We conclude that the combined use of both δ34S and Δ33S provides a more detailed picture of the sulfur cycling in hydrothermal systems at the Mid-Atlantic Ridge and uncovers systematic differences to hydrothermal sites at different mid-ocean ridge sites. Multiple sulfur isotope measurements allow identification of incomplete isotope exchange in addition to isotope mixing as a second important factor influencing the isotopic composition of dissolved sulfide during fluid upflow. Furthermore, based on Δ33S we are able to clearly distinguish biogenic from hydrothermal sulfides in sediments even when δ34S were identical.  相似文献   

18.
A gas condensate from well ND1 in the Jizhong Depression of the Bohai Bay Basin, China is characterized by two-dimensional gas chromatography with flame ionization detector (GC × GC–FID) and time-of-flight mass spectrometry (GC × GC–TOFMS). This condensate is sourced from the fourth member of the Shahejie Formation (Es4) but reservoired in the Mesoproterozoic Wumishan Formation carbonate at a depth of 5641–6027 m and the reservoir temperature is 190–201 °C. It is the deepest and the highest temperature discovery in the basin to date. The API gravity of the condensate is 51° and the sulfur content is < 0.04%. A total of 4955 compounds were detected and quantified. Saturated hydrocarbons, aromatic hydrocarbons and non-hydrocarbon account for 94.8%, 5.1% and 0.02% of the condensate mass, respectively. Some long chain alkylated cyclic alkanes, decahydronaphthalenes and diamondoids are tentatively identified in this condensate. The C6–C9 light hydrocarbon parameters show that the gas condensate was generated at relatively high maturity but its generation temperature derived from the dimethylpentane isomer ratio seems far lower than the current reservoir temperature. Some light hydrocarbon parameters indicate evaporative fractionation may also be involved due to multiple-charging and mixing. The diamondoid concentrations and gas oil ratio (GOR) suggest that the ND1 condensate results from 53.3–55% cracking. Since significant liquids remain, the exploration potential of ultra-deep buried hill fields in the Bohai Bay Basin remains high.  相似文献   

19.
The Kozbudaklar scheelite skarn deposit in the Tavşanlı Zone, located approximately 22 km southeast of Bursa, is hosted by the Triassic calcic İnönü Marble and Eocene Topuk Pluton. At least four stages have been recognized through skarn evolution. Scheelite skarn distributed close to the Topuk Pluton occurred during the early (stage 1) and late (stage 2) prograde substages. The early prograde endo and exoskarn are composed of hedenbergite (Hd96Joh4)–plagioclase (An55–64) and hedenbergite (Hd61–94Joh4–7), accompanied by calcic garnet (Grs38–94Sps1–5Alm0) and scheelite (Pow1–6). The second stage represents a relatively oxidized mineralogy dominated by diopside (Hd16–48Joh0–9), subcalcic garnet (Grs24–92Sps0–11Alm0–31) and scheelite (Pow7–32). The stage 3 and 4 mineral assemblages are characterized by few hydrous minerals in the retrograde stage and intense fracturing.Fluid inclusions from skarn rocks are indicative of multiple fluid events: (1) low-moderate salinity (5–16 wt.%NaCl equiv.) inclusions homogenized dominantly by a high-temperature (308 °C to > 600 °C) liquid phase in stage 1. Fluid inclusions in an early garnet homogenized over a similar temperature range (440 °C and 459 °C) into both liquid and vapor phases. Eutectic temperatures ranging from − 61.7 °C to − 35.0 °C that indicate the presence of H2O–NaCl–(± MgCl2 ± CaCl2)–CO2 solutions; (2) coexisting daughter mineral-bearing high salinity (29.5  70 wt.%NaCl equiv.) and vapor-rich moderate salinity (11.5–16.7 wt.%NaCl equiv.) inclusions that homogenized in the liquid phase by the disappearance of the vapor phase at a similar temperature range (308 °C to > 600 °C) in stage 2. Eutectic temperatures range from − 67.9°C to − 51.8°C that shows the presence of H2O–NaCl–CO2–(± CH4/N2) solutions; (3) low-moderate salinity (12.5–7.6 wt.%NaCl equiv.) and temperature (320 °C to 215 °C) inclusions homogenized by the liquid phase in stage 3. Eutectic temperatures range from − 59.5 °C to − 44.2 °C indicating the presence of H2O–NaCl–(± MgCl2 ± CaCl2)–CO2 solutions; (4) inclusions of low salinity (9.9–0.9 wt.%NaCl equiv.) and homogenization temperature (183 °C to 101 °C) in stage 4.These data show that the Kozbudaklar skarn deposit was formed in a magmatic–hydrothermal system. In this model, carbonaceous fluids may have been exsolved from the plutonic rock during its emplacement and crystallization. Fluid inclusion data indicate that fluid boiling and immiscibility occurred at temperatures between 440 °C and 459 °C and pressures ranging from 50 MPa to 60 MPa based on hydrostatic considerations. Early scheelite was precipitated with relatively reduced mineral compositions. As a result of depressurization, Mo-rich scheelite with oxidized minerals formed via high salinity and vapor-rich inclusions. The second scheelite mineralization occurred in a normal hydrothermal system by an infiltration mechanism at pressures between approximately 40 and 1.5 MPa. At shallow depths (< 1.5 MPa) with increasing permeability, sulfide and oxide minerals were deposited in the retrograde stage, greatly assisted by meteoric water. Finally, as a result of the diminishing of ore-forming fluids, post-depositional barren quartz and calcite veins were formed.  相似文献   

20.
A combined paleomagnetic and geochronological investigation has been performed on Cretaceous rocks in southern Qiangtang terrane (32.5°N, 84.3°E), near Gerze, central Tibetan Plateau. A total of 14 sites of volcanic rocks and 22 sites of red beds have been sampled. Our new U–Pb geochronologic study of zircons dates the volcanic rocks at 103.8 ± 0.46 Ma (Early Cretaceous) while the red beds belong to the Late Cretaceous. Rock magnetic experiments suggest that magnetite and hematite are the main magnetic carriers. After removing a low temperature component of viscous magnetic remanence, stable characteristic remanent magnetization (ChRM) was isolated successfully from all the sites by stepwise thermal demagnetization. The tilt-corrected mean direction from the 14 lava sites is D = 348.0°, I = 47.3°, k = 51.0, α95 = 5.6°, corresponding to a paleopole at 79.3°N, 339.8°E, A95 = 5.7° and yielding a paleolatitude of 29.3° ± 5.7°N for the study area. The ChRM directions isolated from the volcanic rocks pass a fold test at 95% confidence, suggesting a primary origin. The volcanic data appear to have effectively averaged out secular variation as indicated by both geological evidence and results from analyzing the virtual geomagnetic pole (VGP) scatter. The mean inclination from the Late Cretaceous red beds, however, is 13.1° shallower than that of the ~ 100 Ma volcanic rocks. After performing an elongation/inclination analysis on 174 samples of the red beds, a mean inclination of 47.9° with 95% confidence limits between 41.9° and 54.3° is obtained, which is consistent with the mean inclination of the volcanic rocks. The site-mean direction of the Late Cretaceous red beds after tilt-correction and inclination shallowing correction is D = 312.6°, I = 47.7°, k = 109.7, α95 = 3.0°, N = 22 sites, corresponding to a paleopole at 49.2°N, 1.9°E, A95 = 3.2° (yielding a paleolatitude of 28.7° ± 3.2°N for the study area). The ChRM of the red beds also passes a fold test at 99% confidence, indicating a primary origin. Comparing the paleolatitude of the Qiangtang terrane with the stable Asia, there is no significant difference between our sampling location in the southern Qiangtang terrane and the stable Asia during ~ 100 Ma and Late Cretaceous. Our results together with the high quality data previously published suggest that an ~ 550 km N–S convergence between the Qiangtang and Lhasa terranes happened after ~ 100 Ma. Comparison of the mean directions with expected directions from the stable Asia indicates that the Gerze area had experienced a significant counterclockwise rotation after ~ 100 Ma, which is most likely caused by the India–Asia collision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号