首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The regional climate model (RegCM3) from the Abdus Salam International Centre for Theoretical Physics has been used to simulate the Indian summer monsoon for three different monsoon seasons such as deficit (1987), excess (1988) and normal (1989). Sensitivity to various cumulus parameterization and closure schemes of RegCM3 driven by the National Centre for Medium Range Weather Forecasting global spectral model products has been tested. The model integration of the nested RegCM3 is conducted using 90 and 30-km horizontal resolutions for outer and inner domains, respectively. The India Meteorological Department gridded rainfall (1° × 1°) and National Centre for Environment Prediction (NCEP)–Department of Energy (DOE) reanalysis-2 of 2.5° × 2.5° horizontal resolution data has been used for verification. The RegCM3 forced by NCEP–DOE reanalysis-2 data simulates monsoon seasons of 1987 and 1988 reasonably well, but the monsoon season of 1989 is not represented well in the model simulations. The RegCM3 runs driven by the global model are able to bring out seasonal mean rainfall and circulations well with the use of the Grell and Anthes–Kuo cumulus scheme at 90-km resolution. While the rainfall intensity and distribution is brought out well with the Anthes–Kuo scheme, upper air circulation features are brought out better by the Grell scheme. The simulated rainfall distribution is better with RegCM3 using the MIT-Emanuel cumulus scheme for 30-km resolution. Several statistical analyses, such as correlation coefficient, root mean square error, equitable threat score, confirm that the performance of MIT-Emanuel scheme at 30-km resolution is better in simulating all-India summer monsoon rainfall. The RegCM3 simulated rainfall amount is more and closer to observations than that from the global model. The RegCM3 has corrected its driven GCM in terms of rainfall distribution and magnitude over some parts of India during extreme years. This study brings out several weaknesses of the RegCM model which are documented in this paper.  相似文献   

2.
Summary The relationship of summer monsoon over India with the Indian Ocean Dipole Mode has been investigated applying simple statistical techniques. While a long time series of 132 years based on 1871–2002 for both summer monsoon rainfall as well as dipole mode index has been used in this study, the NCEP–NCAR reanalysis data (1948–2002) are used to examine the circulation features associated with the extreme dipole and monsoon phases. These flow patterns bring out the dynamics of the dipole – monsoon relationship. Lead/lag correlations between the dipole mode index and the Indian monsoon rainfall are computed. Results reveal that numerically the relationship is stronger following the monsoon. The lower troposphere flow patterns at 850 hPa associated with the extreme phases of the dipole and monsoon are consistent with the correlation analysis. Further a strong (weak) summer monsoon favours the development of the negative (positive) dipole event in autumn. The sliding correlations between Indian monsoon rainfall and the dipole mode index suggest that the impact of monsoon over dipole is weakening after 1960s. This weakening relationship has been evidenced by the composites of sea-surface temperature anomalies and circulation patterns. All the above analysis suggests that the summer monsoon has more influence on the dipole mode than vice-a-versa.  相似文献   

3.
印度季风的年际变化与高原夏季旱涝   总被引:11,自引:6,他引:5  
周顺武  假拉 《高原气象》2003,22(4):410-415
根据NCEP/NCAR再分析资料和海表面温度距平资料,分析了西藏高原夏季降水5个多、少雨年春、夏季印度洋850hPa、200hPa合成风场和合成海温场,发现多、少雨年前期与同期印度洋高、低空风场和海温场均存在明显差异,主要表现为高原夏季降水偏多(少)年印度夏季风偏强(弱),在850hPa合成风场上印度半岛维持西(东)风距平,西印度洋—东非沿岸为南(北)风距平,夏季阿拉伯海区和孟加拉湾出现反气旋(气旋)距平环流;200hPa合成风场上印度半岛维持东(西)风距平,南亚高压偏强(弱),索马里沿岸为南(北)风距平。印度夏季风异常与夏季印度洋海温距平的纬向分布型有密切联系。当夏季海温场出现西冷(暖)东暖(冷)的分布型时,季风偏强(弱),高原降水普遍偏多(少)。相关分析指出,索马里赤道海区的风场异常与高原夏季降水的关系最为密切,在此基础上我们定义了一个索马里急流越赤道气流指数,用它识别高原夏季旱涝的能力较之目前普遍使用的印度季风指数有了明显的提高。  相似文献   

4.
In this study, a smaller domain over India alone and a larger South Asia (SA) domain have been used in the Regional Climate Model version 4.2 (RegCM4.2) to examine the effect of the domain size on the Indian summer monsoon simulations. These simulations were carried out over a period of 36 years at 50 km horizontal resolution with the lateral boundary forcings of the UK Met Office Hadley Centre Global Circulation Model Version 2.0. Results show that the Indian summer monsoon rainfall is significantly reduced when the domain size for the model integration is reduced from SA to the Indian domain. In case of SA domain simulation, the Equitable Threat Scores have higher values in case of very light, light and moderate rainfall events than those in case of the Indian domain simulation. It is also found that the domain size of model integration has dominant impact on the simulated convective precipitation. The cross-equatorial flow and the Somali Jet are better represented in the SA simulation than those in the Indian domain simulation. The vertically integrated moisture flux over the Arabian Sea in the SA domain simulation is close to that in the NCEP/NCAR reanalysis while it is underestimated in the Indian domain simulation. It is important to note that when RegCM4.2 is integrated over the smaller Indian domain, the effects of the Himalayas and the moisture advection from the Indian seas are not properly represented in the model simulation and hence the monsoon circulation and associated rainfall are underestimated over India.  相似文献   

5.
Summary ?This study presents the monthly climatology and variability of the INSAT (Indian National Satellite) derived snow cover estimates over the western Himalayan region. The winter/spring snow estimates over the region are related to the subsequent summer monsoon rainfall over India. The NCEP/NCAR data are used to understand the physical mechanism of the snow-monsoon links. 15 years (1986–2000) of recent data are utilized to investigate these features in the present global warming environment. Results reveal that the spring snow cover area has been declining and snow has been melting faster from winter to spring after 1993. Connections between snow cover estimates and Indian monsoon rainfall (IMR) show that spring snow cover area is negatively related with maximum during May, while snow melt during the February–May period is positively related with subsequent IMR, implying that smaller snow cover area during May and faster snow melt from winter to spring is conducive for good monsoon activity over India. NCEP/NCAR data further shows that the heat low over northwest India and the monsoon circulation over the Indian subcontinent, in particular the cross-equatorial flow, during May are intensified (weakened) when the snow cover area during May is smaller (extensive) and snow melts faster (slower) during the February–May period. The well-documented negative relationship between winter snow and summer rainfall seems to have altered recently and changed to a positive relationship. The changes observed in snow cover extent and snow depth due to global warming may be a possible cause for the weakening winter snow–IMR relationship. Received January 15, 2002; revised May 5, 2002; accepted June 23, 2002  相似文献   

6.
青藏高原积雪与亚洲季风环流年代际变化的关系   总被引:12,自引:1,他引:12  
利用高原测站的月平均雪深资料和NCEP/NCAR再分析资料,分析了20世纪70年代末以来,青藏高原积雪的显著增多与亚洲季风环流转变的联系。研究表明,高原南侧冬春季西风的增强及西风扰动的活跃是造成青藏高原冬春积雪显著增多的主要原因,高原积雪的增多与亚洲夏季风的减弱均是亚洲季风环流转变的结果;20世纪70年代末以来,夏季华东降水的增多、华南降水的减少及华北的干旱化与青藏高原冬春积雪增多及东亚夏季风的减弱是基本同步的,高原冬春积雪与华东夏季降水的正相关、与华北及华南夏季降水的负相关主要是建立在年代际时间尺度上,因此,高原积雪与我国夏季降水关系的研究应以亚洲季风环流的年代际变化为背景。  相似文献   

7.
Summary Climatological characteristics associated with summer monsoon onset over the eastern Bay of Bengal (BOB) are examined in terms of the westerly-easterly boundary surface (WEB). The vertical tilt of the WEB depends on the horizontal meridional temperature gradient (MTG) near the WEB, under the constraint of the thermal wind balance. The switch in the WEB tilt firstly occurs between 90 and 100°E during the first pentad of May. At this time the 850 hPa ridgeline splits over the BOB and heavy rainfall commences over the eastern BOB, indicating the onset of the BOB summer monsoon (BOBSM). The area-averaged MTG (200–500 hPa) is proposed as an index to define the BOBSM onset. A comparison of the onset determined by the MTG, 850 hPa zonal wind, and outgoing longwave radiation (OLR) shows that the MTG index is the most effective in characterizing the interannual variability of the BOBSM onset. Strong precursor signals are found prior to an anomalous BOBSM onset. Composite results show that early (late) BOBSM onset follows excessive (deficient) rainfall over the western Pacific and anomalous lower tropospheric cyclonic circulation which extends zonally from the northern Indian Ocean into the western Pacific, and strong (weak) equatorial westerly anomalies in the preceding winter and spring. Prior to an early (late) BOBSM onset, significant positive (negative) thickness anomalies exist around the Tibetan Plateau, accompanied by anomalous upper tropospheric anticyclonic (cyclonic) circulation. The interannual variations of the BOBSM onset are significantly correlated with anomalous sea surface temperature related to ENSO. These occurs through changes in the Walker circulation and local Hadley circulation, leading to middle and upper tropospheric temperature anomalies over the Asian sector. The strong precursor signals around the Tibetan Plateau may be partly caused by local snow cover anomalies, and an early (late) BOBSM onset is preceded by less (more) snow accumulation over the Tibetan Plateau during the preceding winter.  相似文献   

8.
利用1961~ 2007年NCEP/NCAR的再分析逐日资料,分析高原主体上空大气环流的季节变化和受到高原影响的东亚大型环流系统的季节变化,以此证明本文得到的“高原普适性划分方法”的合理性.得到的初步结论概括如下:高原主体上空的位势高度、风场、高空温度、降水的季节变化和高原普适性季节划分方法划分的高原四季变化一致,高原南亚高压、副热带高压、副热带西风急流的三个特征指数季节变化和高原普适性季节划分方法划分的高原四季变化一致,这些结论都说明高原普适性季节划分方法划分的高原四季是合理的;风场季节率(500hPa、100hPa)显著区随高度升高向赤道靠近,风场季节率的变化主要和东亚季风的变化有关,大气环流系统季节率的显著说明了大气环流的季节变化,同时也证明了高原普适性季节划分方法的合理性.  相似文献   

9.
Summary Based on observed rainfall data of India Meteorological Department (IMD), correlation coefficients (CCs) have been computed between Indian summer monsoon rainfall (ISMR) and sea surface temperature (SST) anomalies over different Nino regions and standardised pressure difference between Tahiti and Darwin. Significant positive CCs are found between the Southern Oscillation Index (SOI) in winter and subsequent June rainfall over India. Concurrent with and subsequent to Indian summer monsoon, SOI shows significant positive CC with the mean rainfall of July to September (JAS). Significant negative CCs are found between JAS mean rain and the concurrent and following SST anomalies over Nino-3.4 region. On the basis of these correlations, it is proposed that the entire period of summer monsoon from June to September could be divided into two sub-periods such as: early summer (June) and mid-late summer (July to September) monsoon for prediction of ISMR in the extended range.In order to examine the characteristics of atmospheric circulation during some El-Nino years, divergent flow at 200hPa and omega field at 500hPa based on NCEP/NCAR reanalysis have been studied in detail. Major significant southward shift of upper level divergent field from India are related to El-Nino and this shift may be responsible for causing droughts during several El-Nino years over India. Also vertical wind fields at 500hPa show sinking motion over large parts of India and west Pacific and ascending motion over southern Indian Ocean, central and eastern Pacific during major drought years.  相似文献   

10.
Summary  The interannual variability of the Indian summer monsoon (June–September) rainfall is examined in relation to the stratospheric zonal wind and temperature fluctuations at three stations, widely spaced apart. The data analyzed are for Balboa, Ascension and Singapore, equatorial stations using recent period (1964–1994) data, at each of the 10, 30 and 50 hPa levels. The 10 hPa zonal wind for Balboa and Ascension during January and the 30 hPa zonal wind for Balboa during April are found to be positively correlated with the subsequent Indian summer monsoon rainfall, whereas the temperature at 10 hPa for Ascension during May is negatively correlated with Indian summer monsoon rainfall. The relationship with stratospheric temperatures appears to be the best, and is found to be stable over the period of analysis. Stratospheric temperature is also significantly correlated with the summer monsoon rainfall over a large and coherent region, in the north-west of India. Thus, the 10 hPa temperature for Ascension in May appears to be useful for forecasting summer monsoon rainfall for not only the whole of India, but also for a smaller region lying to the north-west of India. Received July 30, 1999 Revised March 17, 2000  相似文献   

11.
Summary  The role of the cross equatorial flow from the southern Indian Ocean on the Indian Summer monsoon is examined using the National Centre for Environmental Prediction (NCEP)/National Centre for Atmospheric Research (NCAR) data for the period January 1982 to December 1994. A comparison of NCEP/NCAR data with the satellite data retrieved from the Special Sensor Microwave Imager (SSM/I) sensor onboard the Defense Meteorological Satellite Program (DMSP) exhibited a negative bias for the wind speeds greater than 4 m/s. whereas in the case of specific humidity, SSMI values exhibited a positive bias and the precipitable water derived from the satellite data exhibited a negative bias. The NCEP reanalysis is able to depict the mean annual cycle of both the cross equatorial flow and moisture flow into the Indian subcontinent during the monsoon season, but it fails to depict these differences during excess (1983, 1988, 1994) and deficit monsoon (1982, 1986, 1987) composites. Further, it is seen that inter hemispheric flow far exceeds the excess moisture available over the Arabian Sea indicating that it is the cross equatorial flow which decides the fate of the Indian summer monsoon. Received September 29, 1998 Revised May 20, 1999  相似文献   

12.
影响长江中下游夏季降水的前期潜在预报因子评估   总被引:8,自引:1,他引:7  
郭玲  何金海  祝从文 《大气科学》2012,36(2):337-349
利用1951~2006年美国NOAA海温资料、NCEP/NCAR再分析资料和青藏高原雪深等资料,根据前期海—陆—气因子对夏季长江流域降水的影响,本文搜集并整理了影响长江中下游夏季降水的40个预报因子,并讨论了前期因子与夏季降水在不同阶段的相关稳定性.通过相关和历史回报方法,讨论了前期关键因子与东亚夏季大气环流之间的关系...  相似文献   

13.
The influence of outgoing longwave radiation anomalies on precipitation rates is studied based on the NCEP/NCAR reanalysis during the period of the summer monsoon circulation in the Indian region. The outgoing longwave radiation data are analyzed for 1987 (dry monsoon) and 1988 (wet monsoon) separately for the Arabian Sea, India, and the Bay of Bengal. It is shown that negative outgoing longwave radiation anomalies correspond to a wet Indian monsoon, and positive anomalies are associated with a dry monsoon. Calculations using the reanalysis enable the construction of a numerical algorithm of the interaction of outgoing longwave radiation, convection, and precipitation rates in the monsoon regions. The results obtained in this work are important in the verification of corresponding parameterizations of numerical atmospheric models.  相似文献   

14.
Summary  The fluctuations of intensity of the Tropical Easterly Jet (TEJ) and its association with the Indian summer monsoon rainfall have been examined using the diagnostics from NCEP/NCAR (National Centre for Environmental Prediction/National Centre for Atmospheric Research) reanalyses project for the period 1986 to 1994. The intensity of TEJ is found to be well correlated with India summer monsoon rainfall. The TEJ is weaker/stronger during the El Ni?o/La Ni?a year of 1987/1988 and is associated with deficient (excess) summer monsoon rainfall over India. A numerical study was carried out for the same period using the Centre for Ocean-Land-Atmosphere studies General Circulation Model (COLA GCM, T30L18) with observed Sea-Surface Temperature (SST). The GCM simulates the TEJ with reasonable accuracy. The strong interannual variability of TEJ during the El Ni?o/La Ni?a years of 1987/1988 are well simulated in the GCM. Like observations, the intensity of the TEJ is positively correlated with the summer monsoon rainfall over India in the model simulation. The intensity of Tibetan anticyclone and diabatic heating over the Tibetan Plateau diminished during the El Ni?o-year of 1987. The divergence centre in the upper troposphere associated with Asian monsoon becomes weaker and shifts eastward during the weak monsoon season of 1987. However, the opposite happens for the strong monsoon season of 1988. Also the middle and upper tropospheric meridional temperature gradient between the Tibetan High and Indian Ocean region decreased (increased) during the weak(strong) monsoon season of 1987 (1988). Received May 27, 1999/Revised March 20, 2000  相似文献   

15.
南亚夏季风典型强弱年与阿拉伯海海温   总被引:3,自引:0,他引:3  
利用NCEP/NCAR 1958~1997年全球SST、850hPa与200hPa风场再分析资料,以及1958-1997年全印度降水指数资料,从环流与降水两方面定义出南亚夏季风典型强年为1961、1970年,典型弱年为1965、1979、1987年。并针对所定义的强弱年采用合成分析与相关分析方法,分析了南亚夏季风强弱年前期与同期的阿拉伯海海温变化特征,发现:4月阿拉伯海海温越高(低),南亚夏季风越强(弱),而7月相反,海温越高(低),季风越弱(强);在南亚夏季风典型强年,阿拉伯海海温年变幅较大;沿赤道的Yoshida-Wyrtki Jet较强,并且在南亚夏季风强年的前期4月,南北半球哈德莱环流较弱,而弱年较强。7月,不论强弱年,热带印度洋上空的经圈环流以南亚夏季风经圈环流为主。  相似文献   

16.
利用1983-2012年NCEP/NCAR、NCEP/DOE、ECMWF再分析月平均资料,及中国160站月平均气温和降水量资料,利用统计学方法从大气环流、降水及温度等方面对高原夏季风与南海夏季风的关系进行了探讨。结果表明:高原夏季风与南海夏季风呈负相关关系,且大气环流及对流活动存在显著性差异。高原夏季风偏强(弱)同时南海夏季风偏弱(强)时,同期中国大部分地区的500hPa高度场偏低(高),南海地区500hPa高度场偏高(低);欧亚大陆低纬地区大部为偏东(西)风,南海地区处于反气旋(气旋)环流中。青藏高原主体地区上升运动较弱(强),南海中心区域上升运动均较弱(强),长江中下游地区降水增加(减少),华南降水减少(增加)。中国大部分地区气温较低(高),华南地区气温较高(低)。  相似文献   

17.
The regional climate model (RegCM4) is customized for 10-year climate simulation over Indian region through sensitivity studies on cumulus convection and land surface parameterization schemes. The model is configured over 30° E–120° E and 15° S–45° N at 30-km horizontal resolution with 23 vertical levels. Six 10-year (1991–2000) simulations are conducted with the combinations of two land surface schemes (BATS, CLM3.5) and three cumulus convection schemes (Kuo, Grell, MIT). The simulated annual and seasonal climatology of surface temperature and precipitation are compared with CRU observations. The interannual variability of these two parameters is also analyzed. The results indicate that the model simulated climatology is sensitive to the convection as well as land surface parameterization. The analysis of surface temperature (precipitation) climatology indicates that the model with CLM produces warmer (dryer) climatology, particularly over India. The warmer (dryer) climatology is due to the higher sensible heat flux (lower evapotranspiration) in CLM. The model with MIT convection scheme simulated wetter and warmer climatology (higher precipitation and temperature) with smaller Bowen ratio over southern India compared to that with the Grell and Kuo schemes. This indicates that a land surface scheme produces warmer but drier climatology with sensible heating contributing to warming where as a convection scheme warmer but wetter climatology with latent heat contributing to warming. The climatology of surface temperature over India is better simulated by the model with BATS land surface model in combination with MIT convection scheme while the precipitation climatology is better simulated with BATS land surface model in combination with Grell convection scheme. Overall, the modeling system with the combination of Grell convection and BATS land surface scheme provides better climate simulation over the Indian region.  相似文献   

18.
The Webster and Yang monsoon index (WYI)-the zonal wind shear between 850 and 200 hPa was calculated and modified on the basis of NCEP/NCAR reanalysis data. After analyzing the circulation and divergence fields of 150-100 and 200 hPa, however, we found that the 200-hPa level could not reflect the real change of the upper-tropospheric circulation of Asian summer monsoon, especially the characteristics and variation of the tropical easterly jet which is the most important feature of the upper-tropospheric circulation. The zonal wind shear U850-U(150 100) is much larger than U850-U200, and thus it can reflect the strength of monsoon more appropriately. In addition, divergence is the largest at 150 hPa rather than 200 hPa, so 150 hPa in the upper-troposphere can reflect the coupling of the monsoon system. Therefore, WYI is redefined as DHI, i.e., IDH=U850* - U(150 100)*, which is able to characterize the variability of not only the intensity of the center of zonal wind shear in Asia, but also the monsoon system in the upper and lower troposphere. DHI is superior to WYI in featuring the long-term variation of Asian summer monsoon as it indicates there is obvious interdecadal variation in the Asian summer monsoon and the climate abrupt change occurred in 1980. The Asian summer monsoon was stronger before 1980 and it weakened after then due to the weakening of the easterly in the layer of 150-100 hPa, while easterly at 200 hPa did not weaken significantly. After the climate jump year in general, easterly in the upper troposphere weakened in Asia, indicating the weakening of summer monsoon; the land-sea pressure difference and thermal difference reduced, resulting in the weakening of monsoon; the corresponding upper divergence as well as the water vapor transport decreased in Indian Peninsula, central Indo-China Peninsula, North China, and Northeast China, indicating the weakening of summer monsoon as well. The difference between NCEP/NCAR and ERA-40 reanalysis data in studying the intensity and long-term variation of Asian summer monsoon is also compared in the end for reference.  相似文献   

19.
Summary By analyzing 12-year (1979–1990) 200 hPa wind data from National Centers for Environmental Prediction-National Center for Atmospheric Research reanalysis, we demonstrate that the intraseasonal time scale (30–60 days) variability of the Tropical Easterly Jet (TEJ) reported in individual case studies occurs during most years. In the entrance region (east of ∼70° E), axis of the TEJ at 200 hPa is found along the near equatorial latitudes during monsoon onset/monsoon revivals and propagates northward as the monsoon advances over India. This axis is found along ∼5° N and ∼15° N during active monsoon and break monsoon conditions respectively. Examination of the European Centre for Medium Range Weather Forecasts reanalysis wind data also confirms the northward propagation of the TEJ on intraseasonal time scales. During the intraseasonal northward propagations, axis of the TEJ is found about 10°–15° latitudes south of the well-known intraseasonally northward propagating monsoon convective belts. Because of this 10°–15° displacement, axis of the TEJ arrives over a location about two weeks after the arrival of the monsoon convection. Systematic shifting of the locations by convection, low level monsoon flow and TEJ in a collective way during different phases of the monsoon suggests that they all may be related.  相似文献   

20.
应用1979—2010年MRI-CGCM模式回报、NCEP/NCAR再分析数据和中国东部降水观测资料检验了模式对东亚夏季风的模拟能力,并利用模式500 hPa高度场回报资料建立了中国东部夏季降水的奇异值分解(SVD)降尺度模型。模式较好地模拟了亚洲季风区夏季降水的气候态,但模拟的季风环流偏弱、偏南,导致降水偏弱。模拟降水的方差明显偏小,且模拟降水的外部、内部方差比值低,模拟降水受模式初值影响较大。模式对长江雨型的模拟能力最高,华南雨型次之,华北雨型最低。模式对东亚夏季风第1模态的模拟能力明显高于第2模态。对于东亚夏季风第1模态,模式模拟出了西太平洋异常反气旋,但强度偏弱,且未模拟出中高纬度的日本海气旋、鄂霍次克海反气旋,导致长江中下游至日本南部降水偏弱。各时次模拟环流均能反映但低估了ENSO衰减、印度洋偏暖对西太平洋反气旋的增强作用。对于东亚夏季风第2模态,模式对西太平洋的“气旋-反气旋”结构有一定的模拟能力,但未模拟出贝加尔湖异常反气旋和东亚沿海异常气旋,导致中国东部“北少南多”雨型在模拟中完全遗漏。仅超前时间小于4个月的模拟降水能够反映ENSO发展对降水分布的作用。通过交叉检验选取左场时间系数可以提高降尺度模型的预测技巧,SVD降尺度模型在华南、江南、淮河、华北4个区域平均距平相关系数分别为0.20、0.23、0.18、0.02,明显高于模式直接输出。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号