首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rate coefficients for the reactions of difunctional nitrates with atmospherically important OH radicals are not currently available in the literature. This study represents the first determination of rate coefficients for a number of C(3) and C(4) carbonyl nitrates and dinitrates with OH radicals in a 38 l glass reaction chamber at 1000 mbar total pressure of synthetic air by 298±2 K using a relative kinetic technique.The following rate coefficients (in units of 10-12 cm3 molecule-1 s-1) were obtained: 1,2-propandiol dinitrate, <0.31; 1,2-butandiol dinitrate, 1.70±0.32; 2,3-butandiol dinitrate, 1.07±0.26; -nitrooxyacetone, <0.43; 1-nitrooxy-2-butanone, 0.91±0.16; 3-nitrooxy-2-butanone, 1.27±0.14; 1,4-dinitrooxy-2-butene, 15.10±1.45; 3,4-dinitrooxy-1-butene, 10.10±0.50.The possible importance of reaction of OH as an atmospheric sink for the compounds compared to other loss processes is considered.  相似文献   

2.
We have employed a pulsed laser photolysis-pulsed laser induced fluorescence technique to study the kinetics and mechanism of the reaction of OH with dimethylsulfoxide and its deuterated analogue. A rate coefficient of (1.0±0.3)×10-10 cm3 molecule-1 s-1 was obtained ar room temperature. The rate coefficient was independent of pressure over the range 25–700 Torr, showed no dependence on the nature of the buffer gas and showed no kinetic isotope effect. A limited study of the temperature dependence indicated that the reaction displays a negative activation energy. The gas phase ultraviolet absorption spectrum was obtained at room temperature and showed a strong absorption feature in the far ultraviolet. The absolute absorption cross-section at 205 nm, the absorption peak, is (1.0±0.3)×10-17 cm2, where the large uncertainty results from experimental difficulties associated with the low vapor pressure and stickiness of DMSO.  相似文献   

3.
We present a new account of the kinetic energy budget within an unstable atmospheric surface layer (ASL) beneath a convective outer layer. It is based on the structural model of turbulence introduced by McNaughton (Boundary-Layer Meteorology, 112: 199–221, 2004). In this model the turbulence is described as a self-organizing system with a highly organized structure that resists change by instability. This system is driven from above, with both the mean motion and the large-scale convective motions of the outer layer creating shear across the surface layer. The outer convective motions thus modulate the turbulence processes in the surface layer, causing variable downwards fluxes of momentum and kinetic energy. The variable components of the momentum flux sum to zero, but the associated energy divergence is cumulative, increasing both the average kinetic energy of the turbulence in the surface layer and the rate at which that energy is dissipated. The tendency of buoyancy to preferentially enhance the vertical motions is opposed by pressure reaction forces, so pressure production, which is the work done against these reaction forces, exactly equals buoyant production of kinetic energy. The pressure potential energy that is produced is then redistributed throughout the layer through many conversions, back and forth, between pressure potential and kinetic energy with zero sums. These exchanges generally increase the kinetic energy of the turbulence, the rate at which turbulence transfers momentum and the rate at which it dissipates energy, but does not alter its overall structure. In this model the velocity scale for turbulent transport processes in the surface layer is (kzɛ)1/3 rather than the friction velocity, u*. Here k is the von Kármán constant, z is observation height, ɛ is the dissipation rate. The model agrees very well with published experimental results, and provides the foundation for the new similarity model of the unstable ASL, replacing the older Monin–Obukhov similarity theory, whose assumptions are no longer tenable.  相似文献   

4.
The Arrhenius expressions and the data plotted in Figure 2 of Rodriguez et al. 2008 give rate coefficients of approximately 2?×?10-8 cm3 molecule-1 s-1 at 255 K. Such values are approximately two orders of magnitude larger than expected from simple collision theory (Finlayson-Pitts and Pitts 1986). The rate coefficients reported at sub-ambient temperatures are substantially greater than the gas kinetic limit and are not physically plausible. The rate coefficients reported by Rodriguez et al. imply a long range attraction between the reactants which is not reasonable for reaction of neutral species such as chlorine atoms and unsaturated alcohols. We also note that the pre-exponential A factors (10-23-10-20) and activation energies (?15 kcal mol-1) are not physically plausible. We conclude that there are large systematic errors in the study by Rodriguez et al. (Atmos Chem 59:187–197, 2008).  相似文献   

5.
Second-order closure models for the canopy sublayer (CSL) employ aset of closure schemes developed for `free-air' flow equations andthen add extra terms to account for canopy related processes. Muchof the current research thrust in CSL closure has focused on thesecanopy modifications. Instead of offering new closure formulationshere, we propose a new mixing length model that accounts for basicenergetic modes within the CSL. Detailed flume experiments withcylindrical rods in dense arrays to represent a rigid canopy areconducted to test the closure model. We show that when this lengthscale model is combined with standard second-order closureschemes, first and second moments, triple velocity correlations,the mean turbulent kinetic energy dissipation rate, and the wakeproduction are all well reproduced within the CSL provided thedrag coefficient (CD) is well parameterized. The maintheoretical novelty here is the analytical linkage betweengradient-diffusion closure schemes for the triple velocitycorrelation and non-local momentum transfer via cumulant expansionmethods. We showed that second-order closure models reproducereasonably well the relative importance of ejections and sweeps onmomentum transfer despite their local closure approximations.Hence, it is demonstrated that for simple canopy morphology (e.g.,cylindrical rods) with well-defined length scales, standard closureschemes can reproduce key flow statistics without much revision.When all these results are taken together, it appears that thepredictive skills of second-order closure models are not limitedby closure formulations; rather, they are limited by our abilityto independently connect the drag coefficient and the effectivemixing length to the canopy roughness density. With rapidadvancements in laser altimetry, the canopy roughness densitydistribution will become available for many terrestrialecosystems. Quantifying the sheltering effect, the homogeneity andisotropy of the drag coefficient, and more importantly, thecanonical mixing length, for such variable roughness density isstill lacking.  相似文献   

6.
The database for volatile organic compounds (VOC data base) was created with the aim of providing an overview of tropospheric hydrocarbon measurements. The data base contains 202 substances, for which atmospheric and useful kinetic data such as rate coefficients, photolysis frequencies, mixing ratios, emission data and ozone formation potentials are compiled from available literature. The database file can be downloaded without charge from http://www.physchem.uni-wuppertal.de/voc-database. Registered users will be informed about the appearance of updates.  相似文献   

7.
The Gaussian distribution is a good approximation for transient (instantaneously released) puff concentration distributions within a short period of time after release. Artificial neural network (ANN) models for puff dispersion coefficients were developed, based on observations from field experiments covering a wide range of meteorological conditions (in March, May, August and November). Their average predictions were in very good agreement with measurements, having high correlation coefficients (r > 0.99). A non-linear multi-variable regression model for dispersion coefficients was also developed, under the assumption that puff dispersion coefficients increase with time, and follow power laws. Both ANN-based and multi-regression non-linear models were able to use easily measured atmospheric parameters directly, without the necessity of predefining the Pasquill stability category. Predictions of ANN-based and multi-regression-based Gaussian puff models were compared with those of Gaussian puff models using Slade’s dispersion coefficients and COMBIC, a sophisticated model based on Gaussian distributions. Predictions from our two new models showed better agreement with concentration measurements than the other Gaussian puff models, by having a much higher fraction within a factor of two of measured values, and lower normalized mean square errors.  相似文献   

8.
一次入海气旋快速发展的动力和热力学特征分析   总被引:3,自引:0,他引:3  
利用扩展Zwack-Okossi方程(扩展Z-O方程)对2007年3月3-5日黄、渤海海上快速发展的温带气旋进行了诊断分析。结果表明,潜热释放和暖平流在气旋发展初期起主要作用,潜热释放是气旋接近爆发性发展的最主要强迫项,这与以往研究的主要受涡度平流强迫的中国沿海温带气旋不同,说明在中国近海快速发展的一部分温带气旋主要是由潜热释放项强迫的。绝对涡度平流在气旋发展后期才成为主要强迫项。进一步利用MM5模式模拟了潜热释放的作用以及其他一些影响气旋发展的因素,海表面热通量、水汽通量以及气旋路径上的地形对这次气旋的发展有积极贡献,但作用相对潜热释放较小。由于这种在中国近海接近爆发性发展的温带气旋容易造成风暴潮,因此利用动能方程对气旋发展中期的渤海大风进行了诊断分析。结果表明,动能水平平流是动能增加的主要作用项,但动能达到最大值后渤海海域的动能主要由有效位能转换和动量下传提供。  相似文献   

9.
中国与印度夏季风降水的比较研究   总被引:37,自引:0,他引:37  
本文用1951—1980年中国和印度的降水资料研究了两个地区在西南季风时期(6—9月)总雨量变化的关系。发现印度的雨量变化与中国各地雨量的相关关系有正、有负,最明显的是印度中西部与我国华北地区有较高的正相关。进一步对两个地区降水存在遥相关的原因进行了分析,发现南亚次大陆低压是联系两个季风区雨量变化的重要环节。中国季风雨量与印度季风雨量的相关趋势,主要决定于中国各地雨量与东亚夏季风强度的关系。   相似文献   

10.
Some important diagnostic characteristics for a model’s physical background are reflected in the model’s energy transport, conversion, and cycle. Diagnosing the atmospheric energy cycle is a suitable way towards understanding and improving numerical models. In this study, formulations of the “Mixed Space-Time Domain”energy cycle are calculated and the roles of stationary and transient waves within the atmospheric energy cycle of the Global-Regional Assimilation and Prediction System (GRAPES) model are diagnosed and compared with the NCEP analysis data for July 2011. Contributions of the zonal-mean components of the energy cycle are investigated to explain the performance of numerical models. The results show that the GRAPES model has the capability to reproduce the main features of the global energy cycle as compared with the NCEP analysis. Zonal available potential energy (AZ) is converted into stationary eddy available potential energy (ASE) and transient eddy available potential energy (ATE), and ASE and ATE have similar values. The nonlinear conversion between the two eddy energy terms is directed from the stationary to the transient. AZ becomes larger with increased forecast lead time, reflecting an enhancement of the meridional temperature gradient, which strengthens the zonal baroclinic processes and makes the conversion from AZ to eddy potential energy larger, especially for CAT (conversion from AZ to ATE). The zonal kinetic energy (KZ) has a similar value to the sum of the stationary and transient eddy kinetic energy. Barotropic conversions are directed from eddy to zonal kinetic energy. The zonal conversion from AZ to KZ in GRAPES is around 1.5 times larger than in the NCEP analysis. The contributions of zonal energy cycle components show that transient eddy kinetic energy (KTE) is associated with the Southern Hemisphere subtropical jet and the conversion from KZ to KTE reduces in the upper tropopause near 30?S. The nonlinear barotropic conversion between stationary  相似文献   

11.
The reaction coefficients of nitrogen dioxide and nitrous acid with monodisperse sodium chloride and ammonium sulphate aerosols have been measured in a flow reactor at atmospheric pressure. These experiments were performed at relative humidities above and below the deliquescence points of both aerosols (r.h. 50 and 85%) at 279 K. The results for NO2 afford a reaction coefficient in the range (2.8–10) × 10-4 and for HONO, (2.8–4.6) × 10-3. For both species, there appears to be an enhancement of the reaction coefficient on sodium chloride aerosol at 50% r.h. The results are compared with reaction coefficients determined by other experimental methods. A good agreement is found for both gases between this method and the coated denuder method previously developed in our research laboratories (Msibi et al., 1993) and with the majority of other published data for NO2. In the case of HONO, our estimate of reaction coefficient is smaller than, or at the lower limits of the ranges reported by other published studies.  相似文献   

12.
梅雨期间次天气尺度扰动的动能平衡   总被引:1,自引:3,他引:1  
谢安  肖文俊  陈受钧 《气象学报》1980,38(4):351-359
计算了梅雨期间产生暴雨的次天气尺度扰动的动能分布及其乎衡。结果表明:1)在动能计算中不能略去风的散度部分;2)暴雨期间,扰动向周围大气输送动能;3)旋转风的动能产生率为负值,散度风在对流层下层和上层产生动能,两者之和仍是消耗动能。这样,次网格尺度对流在动能平衡中起着重要的作用。即在条件性不稳定的大气中,发展起来的温对流是湿斜压大气中重要的一种过程。上述结果有助于了解扰动的机制和改进数值模式的设计。  相似文献   

13.
The representation of alkene degradation in version 3 of the Master Chemical Mechanism (MCM v3) has been evaluated, using environmental chamber data on the photo-oxidation of ethene, propene, 1-butene and 1-hexene in the presence of NOx, from up to five chambers at the Statewide Air Pollution Research Center (SAPRC) at the University of California. As part of this evaluation, it was necessary to include a representation of the reactions of the alkenes with O(3P), which are significant under chamber conditions but generally insignificant under atmospheric conditions. The simulations for the ethene and propene systems, in particular, were found to be sensitive to the branching ratios assigned to molecular and free radical forming pathways of the O(3P) reactions, with the extent of radical formation required for proper fitting of the model to the chamber data being substantially lower than the reported consensus. With this constraint, the MCM v3 mechanisms for ethene and propene generally performed well. The sensitivity of the simulations to the parameters applied to a series of other radical sources and sink reactions (radical formation from the alkene ozonolysis reactions and product carbonyl photolysis; radical removal from the reaction of OH with NO2 and β-hydroxynitrate formation) were also considered, and the implications of these results are discussed. Evaluation of the MCM v3 1-butene and 1-hexene degradation mechanisms, using a more limited dataset from only one chamber, was found to be inconclusive. The results of sensitivity studies demonstrate that it is impossible to reconcile the simulated and observed formation of ozone in these systems for ranges of parameter values which can currently be justified on the basis of the literature. As a result of this work, gaps and uncertainties in the kinetic, mechanistic and chamber database are identified and discussed, in relation to both tropospheric chemistry and chemistry important under chamber conditions which may compromise the evaluation procedure, and recommendations are made for future experimental studies. Throughout the study, the performance of the MCM v3 chemistry was also simultaneously compared with that of the corresponding chemistry in the SAPRC-99 mechanism, which was developed and optimized in conjunction with the chamber datasets.  相似文献   

14.
东北低压爆发性发展过程的诊断分析   总被引:1,自引:1,他引:0  
孙力  廉毅  李东平 《气象学报》1992,50(3):301-309
本文对一次东北低压的快速强烈发展过程做了扰动动能、扰动有效位能及涡度收支平衡分析。结果表明:1.气旋爆发性发展前后,扰动动能的产生项变化剧烈,是主要的扰动动能源。气旋爆发性发展前期,以斜压过程为主,而在爆发期,由正压过程制造的扰动动能也有大量增加,同样是不可忽视的,且这时扰动动能通过系统边界与外界的交换很小。2.扰动有效位能在气旋强烈发展前有大幅度增长,由潜热释放造成的扰动有效位能的产生数值很小,平均有效位能向扰动有效位能的转换是扰动有效位能的主要来源。3.在气旋的爆发期,对流层中层及上层的涡度变化最为显著,涡度平衡中,散度项对对流层中下层正涡度的增长贡献最大,而网格尺度及次网格尺度的垂直输送项和涡度平流项对中上层正涡度的迅速增加有着重要意义。  相似文献   

15.
In this study, an automated mechanism generation framework was applied to atmospheric chemistry of volatile organic compounds (VOCs) and nitrogen oxides (NO x ). The framework generates reactions with minimal input based on a small set of reaction operators and includes a hierarchy for specifying rate constants for every reaction created. Mechanisms were generated for formaldehyde-air-NO x , acetaldehyde-formaldehyde-n-octane-air-NO x , and acetone-air-NO x , and the model results were compared to experimental data obtained from smog chambers and to the SAPRC-99 lumped models. The models generated captured the experimental data very well, and their mechanistic formulation provided new insights into the controlling reaction pathways to pollutant formation. The approach applied here is sufficiently general that it can be applied to a wide range of alkane and oxygenate mixtures.  相似文献   

16.
The laser flash photolysis/UV absorption spectrometry technique has been used to investigate the kinetics of the peroxy radical permutation reactions (i.e. self and cross reactions) arising from the OH-initiated oxidation of isoprene (2-methyl-1,3-butadiene), and of the simpler, but related conjugated dienes, 1,3-butadiene and 2,3-dimethyl-1,3-butadiene. The results of the two simpler systems are analysed to provide values of the rate coefficients for the 6 peroxy radical permutation reactions of the three types of isomeric peroxy radical produced in each system (T = 298 K, P = 760 Torr). The rate coefficients are all significantly larger than values estimated previously by extrapolation of structure-reactivity relationships based on the kinetics of a limited dataset of simpler radicals containing similar structural features. The results are discussed in terms of trends in self and cross reaction reactivity of primary, secondary and tertiary peroxy radicals containing combinations of allyl, -hydroxy and -hydroxy functionalities. Since the peroxy radicals formed in these systems are structurally very similar to those formed in the isoprene system, the kinetic parameters derived from the results of the simpler systems are used to assist the assignment of kinetic parameters to the 21 permutation reactions of the six types of isomeric peroxy radical generated in the isoprene system. Kinetic models describing the OH-initiated degradation of all three conjugated dienes to first generation products in the absence of NOx are recommended, which are also consistent with available end product studies. The model for isoprene is considered to be a further improvement on that suggested previously for its OH-initiated oxidation in the absence of NOx. The mechanism is further extended to include chemistry applicable to NOx-present conditions, and calculated product yields are compared with those reported in the literature.  相似文献   

17.
A comprehensive kinetic study of a potential daytime nitrous acid (HONO) source reaction, the photoenhanced reduction reaction of the nitrogen dioxide (NO2) on acidic humic acid (HA), was completed using a wetted-wall flow tube (WWFT) (Fickert et al.: J. Phys. Chem. A. 102, 10689, 1998) photoreactor integrated with a high sensitivity HONO analyser (Wall et al.: J. Atmos. Chem. 55, 31–54, 2006; Huang et al.: Atmos. Environ. 36, 2225–2235, 2002). The nature of this reaction, is of great interest since recently observed, unpredictably high HONO daytime concentrations demand its ordinarily proposed heterogeneous source to proceed 60 times more rapidly at noon than during the night (Kleffmann et al.: ChemPhysChem 8, 1137–1144, 2007). This study investigated the nature of the reduction reaction with simulated colloidal HA aqueous solutions characteristic of anaerobic environmental conditions, varying in acidity, concentration and composition. Typical urban NO2 levels were investigated. Increasing photoenhanced HONO production with weakening solution acidity was detected due to increased deprotonation of the carboxyl groups within the humic acid. It was deduced that the acidic HA substrate contains numerous feasible chromophoric sensitizer units capable of photochemically reducing NO2 to HONO, owing to its ‘biofilm’ (Donlan, 2002) function under UV exposure. The mechanism was found to be more effective for HA standards with higher levels of ‘bioactivity’ (refractivity). Using a complex mathematical model developed, incorporating both chemistry and diffusion, reaction probability datasets were produced from the experimental data, providing evidence that this is, indeed, an environmentally important daytime HONO surface source reaction. The parameters required to scale up the data of the photoreactor to that of a regional rural/urban scale were assessed.  相似文献   

18.
This paper reviews theory and measurements of transport processes between small particles and the surrounding gas. Evaporation and condensation coefficients and gas uptake coefficients are of particular interest. There has long been a great difference in coefficients reported by different experimentalists, and much of this disagreement is considered in this overview. A brief review of the kinetic theory of gases is provided to describe molecular transport to or from a surface when the mean free path of molecules, , is large compared with the particle dimensions, that is, when the Knudsen number is large. For a sphere of radius a the Knudsen number, Kn =  / a. The condition Kn >> 1 is called the free molecule regime, and for Kn << 1 continuum theory applies. It is shown that accommodation coefficients cannot be determined by experiments operating in the continuum regime. At intermediate Knudsen numbers (the Knudsen regime) transport theory is more difficult, but results based on solution of the Boltzmann equation describing the evolution of the molecular velocity distribution are reviewed. With the advent of high-speed computers transport theory has been supplemented by molecular dynamics calculations, and these calculations are often at odds with experimental measurements of accommodation coefficients. Examples are provided.Experimental methods surveyed include Knudsen cell methods, jet tensimetry, electrodynamic levitation experiments, expansion cloud chamber measurements, and vibrating orifice aerosol generator (VOAG) techniques. VOAG measurements are particularly useful for studying processes over small times, and theory and results related to VOAG experiments are presented. More recent experimental measurements of condensation coefficients involving the use of molecular beams are reported. There is a growing body of evidence that accommodation coefficients are of order unity in many cases, but coefficients smaller than 0.01 are still reported, particularly for uptake coefficients.  相似文献   

19.
Based on the surface 2?m monthly minimum temperature from the National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis dataset, the spatial and temporal characteristics of winter minimum temperature during 1961–2010 have been analyzed in China. Results showed that the minimum temperature in China has a significant increasing rate of 0.25° per decade calculated by the Mann–Kendall statistical test, which is consistent with the global warming trend. Empirical orthogonal function (EOF) analysis reveals that there are three main patterns that can explain more than 57.6% of the total variance of the winter minimum temperature. The EOF1, EOF2, and EOF3 account for 34.8%, 13.5%, and 13.5% of the total inter-annual variance, respectively. The EOF1, EOF2, and EOF3 patterns are synchronous in northern China, central China, and on the Tibetan Plateau. There exist a decrease trend in the corresponding time coefficients of EOF1 and EOF2 and an increase trend in that of EOF3 since the 1960s. Both the corresponding time coefficients of EOF1 and EOF2 have significant positive correlations with the 500?hPa geopotential heights of the Arctic region and negative correlations in the regions lower than 40°N, while a significant positive correlation is found between the corresponding time coefficients of EOF3 and 500?hPa geopotential heights in the low latitudes. This suggests that rapid warming occurs in northern China and on the Tibetan Plateau, while the weakest trend locates in southeast China. Thus, warming in winter is more pronounced at higher altitudes and latitudes. These patterns are tightly connected with the atmospheric circulation.  相似文献   

20.
本文用1979年夏季风试验时期(MONEX)得到的专门观测资料计算了孟加拉湾地区一个季风低压的能量收支,得到(1)无辐散风动能制造项是低压的主要动能制造项。在整个低压生命期,平均无辐散风动能制造为7.40瓦/米2,辐散风动能制造为0.67瓦/米2。这表明正压能量制造过程的重要性;(2)对于扰动动能收支,斜压能量转换和正压能量转换都有重要作用。另外通过边界通量,低压总是从环境得到扰动动能的。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号