首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Simulation of South American wintertime climate with a nesting system   总被引:1,自引:1,他引:1  
A numerical nesting system is developed to simulate wintertime climate of the eastern South Pacific-South America-western South Atlantic region, and preliminary results are presented. The nesting system consists of a large-scale global atmospheric general circulation model (GCM) and a regional climate model (RCM). The latter is driven at its boundaries by the GCM. The particularity of this nesting system is that the GCM itself has a variable horizontal resolution (stretched grid). Our main purpose is to assess the plausibility of such a technique to improve climate representation over South America. In order to evaluate how this nesting system represents the main features of the regional circulation, several mean fields have been analyzed. The global model, despite its relatively low resolution, could simulate reasonably well the more significant large-scale circulation patterns. The use of the regional model often results in improvements, but not universally. Many of the systematic errors of the global model are also present in the regional model, although the biases tend to be rectified. Our preliminary results suggest that nesting technique is a computationally low-cost alternative for simulating regional climate features. However, additional simulations, parametrizations tuning and further diagnosis are clearly needed to represent local patterns more precisely. Received: 18 February 1999 / Accepted: 31 May 2000  相似文献   

2.
A fast and adjoint-free nonlinear data assimilation (DA) system was developed to simulate 3D baroclinic circulation in estuaries, leveraging two recently developed technologies: (1) a nonlinear model surrogate that executes forward simulation three orders of magnitude faster than a forward numerical circulation code and (2) a nonlinear extension to the reduced-dimension Kalman filter that estimates the state of the model surrogate. The noise sources in the Kalman filter were calibrated using empirical cross-validation and accounted for errors in model and model forcing.The DA system was applied to assimilate in situ measurements of water levels, salinities, and temperatures in simulations of the Columbia River estuary. To validate the DA results, we used a combination of cross-validation studies, process-oriented studies, and tests of statistical and dynamical consistency. The validation studies showed that DA improved the representation of several important processes in the estuary, including nonlinear tidal propagation, salinity intrusion, estuarine residual circulation, heat balance, and response of the estuary to coastal winds.  相似文献   

3.
A fast and adjoint-free nonlinear data assimilation (DA) system was developed to simulate 3D baroclinic circulation in estuaries, leveraging two recently developed technologies: (1) a nonlinear model surrogate that executes forward simulation three orders of magnitude faster than a forward numerical circulation code and (2) a nonlinear extension to the reduced-dimension Kalman filter that estimates the state of the model surrogate. The noise sources in the Kalman filter were calibrated using empirical cross-validation and accounted for errors in model and model forcing.The DA system was applied to assimilate in situ measurements of water levels, salinities, and temperatures in simulations of the Columbia River estuary. To validate the DA results, we used a combination of cross-validation studies, process-oriented studies, and tests of statistical and dynamical consistency. The validation studies showed that DA improved the representation of several important processes in the estuary, including nonlinear tidal propagation, salinity intrusion, estuarine residual circulation, heat balance, and response of the estuary to coastal winds.  相似文献   

4.
异模式嵌套及中期降水数值预报的试验   总被引:2,自引:1,他引:2       下载免费PDF全文
甘少华  张立凤  张铭 《大气科学》2001,25(3):411-419
成功地将一有限区域细网格模式嵌套在T63L9全球谱模式中,并利用该嵌套模式 做了降水中期数值预报的试验。结果表明,嵌套的细网格模式预报的中期降水明显地优于该谱模式,要做好中期降水预报,使用嵌套模式是必要的。  相似文献   

5.
网格嵌套技术对一次中尺度对流系统降水过程模拟的影响   总被引:6,自引:5,他引:1  
侯瑞钦  程麟生 《高原气象》2006,25(3):451-463
利用非静力中尺度模式MM5对2002年7月22日12:00~23日12:00(世界时,下同)长江流域的一次梅雨锋暴雨过程进行数值模拟试验,主要讨论了网格嵌套技术对降水和中尺度对流系统的影响。结果表明:三重嵌套在D1,D2域选用积云参数化方案后,模拟的雨区收缩,虚假降水中心相对减少,降水强度及分布更接近观测值。在模式非线性动力、热力及湿物理过程共同驱动下,通过嵌套网格的双向相互作用,使可分辨云尺度的细网格域D3将其信息通过嵌套边界向次细网格域D2传递,然后再通过D2域边界向粗网格域D1域传递。同样,动力、热力反馈也会反向进行。结果将有助于改进各网格域的预报效果。但对D1网格域系统位置及其发展演变过程的影响相对小些;另外,通过双向多重嵌套,可提高模式预报区域的分辨率,特别是提高模式关键预报区域的分辨率,这也就有可能改进预报的中尺度物理场,使其能够较真实地描写大气实况。  相似文献   

6.
In this paper,we present the results simulated with the Chinese regional climate model nestedin NCAR CCM1 GCM through one-way nesting approach.The model has been run for 14 months.The NCAR CCM1(1992)is at rhomboidal truncation(R15),while the horizontal resolution ofthe Chinese regional climate model is 100 km.It is found that the Chinese regional climate modelhas some advantages in simulating the surface air temperature and precipitation over the generalclimate model,because of the improved land surface parameterization.  相似文献   

7.
月尺度区域气候数值预测试验   总被引:4,自引:1,他引:3  
将9层全球气候谱模式与CSU-RAMS中尺度数值式嵌套,进行了月尺度的短期区域气候预测试验。结果表明:GCM模式的集合预报能够反映较大尺度的平均环流;在此基础上,被嵌套的CSU-RAMS中尺度模式能够得到更为细致的区域环流特征以及它的短期气候尺度的演率。GCM模式与中尺度模式相结合的“区域气候数据模式”是了解短期区域气候变化的有效方法之一。  相似文献   

8.
赵宗慈  罗勇 《大气科学》1999,23(5):522-532
将美国国家大气研究中心(NCAR)的区域气候模式(RegCM2-1996)设置在东亚-西太平洋区域(简称东亚区域气候模式RegCM2/EA)。利用该模式研究东亚区域气候模式的几个重要问题,即:垂直分辨率的影响,侧边界条件(如嵌套技术、缓冲区宽度、不同资料)的重要性等。数值试验结果表明:细垂直分辨率模拟的降水分布优于粗分辨率模式,但容易引起“数值点暴雨”;RegCM2/EA与不同来源的大尺度侧边界嵌套,模拟的降水会有明显的不同;当用RegCM2/EA模拟较大区域时,应该取较宽的缓冲区;在各种嵌套方案中,指数松弛嵌套方法最好。这些结果为进一步探讨东亚区域气候模式的特点以及发展与改造区域气候模式提供一定的依据。研究结果还需要用更多的数值试验来验证。  相似文献   

9.
马林  温市耕 《气象科学》1995,15(3):219-227
本文以自嵌套方式,将一个有限区域暴雨数值模式编制成单向和双向的套网格模式,同时又将这两个套网格模式分别与T42L9模式进行了单向嵌套。形成了单向,双向两个双重套网格模式。运用这两个模式对1991年7月江淮流域的一次特大暴雨过程进行了数值试验。  相似文献   

10.
Summary An improved statistical-dynamical downscaling method for the regionalization of large-scale climate analyses or simulations is introduced. The method is based on the disaggregation of a multi-year time-series of large-scale meteorological data into multi-day episodes of quasi-stationary circulation. The episodes are subsequently grouped into a defined number of classes. A regional model is used to simulate the evolution of weather during the most typical episode of each class. These simulations consider the effects of the regional topography. Finally, the regional model results are statistically weighted with the climatological frequencies of the respective circulation classes in order to provide regional climate patterns. The statistical-dynamical downscaling procedure is applied to large-scale analyses for a 12-year climate period 1981–1992. The performance of the new method is demonstrated for winter precipitation in the Alpine region. With the help of daily precipitation analyses it was possible to validate the results and to assess the different sources of errors. It appeared that the main error originates from the regional model, whereas the error of the procedure itself was relatively unimportant. This new statistical-dynamical downscaling method turned out to be an efficient alternative to the commonly used method of nesting a regional model continuously within a general circulation model (dynamical downscaling). Received April 8, 1999 Revised July 30, 1999  相似文献   

11.
在复杂地形条件嵌套细网格模式基础上, 利用球圈模式与有限区域模式自嵌套, 就三维嵌套方法在长时间积分中的模拟结果进行了初步分析。结果表明:三维嵌套对垂直层次选取较敏感; 在长时间积分中模式运行稳定, 积分时间越长, 其优势越明显。这为有限区气候模式侧边界方案提供了新的思路。  相似文献   

12.
A variable-grid atmospheric general circulation model, LMDZ, with a local zoom over southeast China is used to investigate regional climate changes in terms of both means and extremes. Two time slices of 30?years are chosen to represent, respectively, the end of the 20th century and the middle of the 21st century. The lower-boundary conditions (sea-surface temperature and sea-ice extension) are taken from the outputs of three global coupled climate models: Institut Pierre-Simon Laplace (IPSL), Centre National de Recherches Météorologiques (CNRM) and Geophysical Fluid Dynamics Laboratory (GFDL). Results from a two-way nesting system between LMDZ-global and LMDZ-regional are also presented. The evaluation of simulated temperature and precipitation for the current climate shows that LMDZ reproduces generally well the spatial distribution of mean climate and extreme climate events in southeast China, but the model has systematic cold biases in temperature and tends to overestimate the extreme precipitation. The two-way nesting model can reduce the ??cold bias?? to some extent compared to the one-way nesting model. Results with greenhouse gas forcing from the SRES-A2 emission scenario show that there is a significant increase for mean, daily-maximum and minimum temperature in the entire region, associated with a decrease in the number of frost days and an increase in the heat wave duration. The annual frost days are projected to significantly decrease by 12?C19?days while the heat wave duration to increase by about 7?days. A warming environment gives rise to changes in extreme precipitation events. Except two simulations (LMDZ/GFDL and LMDZ/IPSL2) that project a decrease in maximum 5-day precipitation (R5d) for winter, other precipitation extremes are projected to increase over most of southeast China in all seasons, and among the three global scenarios. The domain-averaged values for annual simple daily intensity index (SDII), R5d and fraction of total rainfall from extreme events (R95t) are projected to increase by 6?C7, 10?C13 and 11?C14%, respectively, relative to their present-day values. However, it is clear that more research will be needed to assess the uncertainties on the projection in future of climate extremes at local scale.  相似文献   

13.
In Northeast China (NEC), snowfalls usually occur during winter and early spring, from mid-October to late March, and strong snowfalls rarely occur in middle spring. During 12?C13 April 2010, an exceptionally strong snowfall occurred in NEC, with 26.8?mm of accumulated water-equivalent snow over Harbin, the capital of the most eastern province in NEC. In this study, the major features of the snowfall and associated large-scale circulation and the predictability of the snowfall are analyzed using both observations and models. The Siberia High intensified and shifted southeastward from 10?days before the snowfall, resulting in intensifying the low-pressure system over NEC and strengthening the East Asian Trough during 12?C13 April. Therefore, large convergence of water vapor and strong rising motion appeared over eastern NEC, resulting in heavy snowfall. Hindcast experiments were carried out using the NCAR Weather Research and Forecasting (WRF) model in a two-way nesting approach, forced by NCEP Global Forecast System data sets. Many observed features including the large-scale and regional circulation anomalies and snowfall amount can be reproduced reasonably well, suggesting the feasibility of the WRF model in forecasting extreme weather events over NEC. A quantitative analysis also shows that the nested NEC domain simulation is even better than mother domain simulation in simulating the snowfall amount and spatial distribution, and that both simulations are more skillful than the NCEP Global Forecast System output. The forecast result from the nested forecast system is very promising for an operational purpose.  相似文献   

14.
Dynamical downscaling has been recognized as a useful tool not only for the climate community, but also for associated application communities such as the environmental and hydrological societies. Although climate projection data are available in lower-resolution general circulation models (GCMs), higher-resolution climate projections using regional climate models (RCMs) have been obtained over various regions of the globe. Various model outputs from RCMs with a high resolution of even as high as a few km have become available with heavy weight on applications. However, from a scientific point of view in numerical atmospheric modeling, it is not clear how to objectively judge the degree of added value in the RCM output against the corresponding GCM results. A key factor responsible for skepticism is based on the fundamental limitations in the nesting approach between GCMs and RCMs. In this article, we review the current status of the dynamical downscaling for climate prediction, focusing on basic assumptions that are scrutinized from a numerical weather prediction (NWP) point of view. Uncertainties in downscaling due to the inconsistencies in the physics packages between GCMs and RCMs were revealed. Recommendations on how to tackle the ultimate goal of dynamical downscaling were also described.  相似文献   

15.
An intriguing feature associated with ‘breaks’ in the Indian summer monsoon is the occurrence of intense/flood-producing precipitation confined to central-eastern parts of the Himalayan (CEH) foothills and north-eastern parts of India. Past studies have documented various large-scale circulation aspects associated with monsoon-breaks, however the dynamical mechanisms responsible for anomalous precipitation enhancement over CEH foothills remain unclear. This problem is investigated using diagnostic analyses of observed and reanalysis products and high-resolution model simulations. The present findings show that the anomalous precipitation enhancement over the CEH foothills during monsoon-breaks emerges as a consequence of interactions between southward intruding mid-latitude westerly troughs and the South Asian monsoon circulation in its weak phase. These interactions facilitate intensification of mid-tropospheric cyclonic vorticity and strong ascending motion over the CEH foothills, so as to promote deep convection and concentrated rainfall activity over the region during monsoon-breaks. Mesoscale orographic effects additionally tend to amplify the vertical motions and precipitation over the CEH foothills as evidenced from the high-resolution model simulations. It is further noted from the model simulations that the coupling between precipitation and circulation during monsoon-breaks can produce nearly a threefold increase of total precipitation over the CEH foothills and neighborhood as opposed to active-monsoon conditions.  相似文献   

16.
Most of current general circulation models (GCMs) show a remarkable positive precipitation bias over the southwestern equatorial Indian Ocean (SWEIO), which can be thought of as a westward expansion of the simulated IO convergence zone toward the coast of Africa. The bias is common to both coupled and uncoupled models, suggesting that its origin does not stem from the way boundary conditions are specified. The spatio-temporal evolution of the precipitation and associated three-dimensional atmospheric circulation biases is comprehensively characterized by comparing the GFDL AM3 atmospheric model to observations. It is shown that the oceanic bias, which develops in spring and reduces during the monsoon season, is associated to a consistent precipitation and circulation anomalous pattern over the whole Indian region. In the vertical, the areas are linked by an anomalous Hadley-type meridional circulation, whose northern branch subsides over northeastern India significantly affecting the monsoon evolution (e.g., delaying its onset). This study makes the case that the precipitation bias over the SWEIO is forced by the model excess response to the local meridional sea surface temperature (SST) gradient through enhanced near-surface meridional wind convergence. This is suggested by observational evidence and supported by AM3 sensitivity experiments. The latter show that relaxing the magnitude of the meridional SST gradient in the SWEIO can lead to a significant reduction of both local and large-scale precipitation and circulation biases. The ability of local anomalies over the SWEIO to force a large-scale remote response to the north is further supported by numerical experiments with the GFDL spectral dry dynamical core model. By imposing a realistic anomalous heating source over the SWEIO the model is able to reproduce the main dynamical features of the AM3 bias. These results indicate that improved GCM simulations of the South Asian summer monsoon could be achieved by reducing the springtime model bias over the SWEIO. Deficiencies in the atmospheric model, and in particular in the convective parameterization, are suggested to play a key role. Finally, the important mechanism controlling the simulated precipitation distribution over South Asia found here should be considered in the interpretation and attribution of regional precipitation variation under climate change.  相似文献   

17.
The downscaling ability of a one-way nested regional climate model (RCM) is evaluated over a region subjected to strong surface forcing: the west of North America. The sensitivity of the results to the horizontal resolution jump and updating frequency of the lateral boundary conditions are also evaluated. In order to accomplish this, a perfect-model approach nicknamed the Big-Brother Experiment (BBE) was followed. The experimental protocol consists of first establishing a virtual-reality reference climate over a fairly large area by using the Canadian RCM with grid spacing of 45 km nested within NCEP analyses. The resolution of the simulated climate is then degraded to resemble that of operational general circulation models (GCM) or observation analyses by removing small scales; the filtered fields are then used to drive the same regional model, but over a smaller sub-area. This set-up permits a comparison between two simulations of the same RCM over a common region. The Big-Brother Experiment has been carried out for four winter months over the west coast of North America. The results show that complex topography and coastline have a strong positive impact on the downscaling ability of the one-way nesting technique. These surface forcings, found to be responsible for a large part of small-scale climate features, act primarily locally and yield good climate reproducibility. Precipitation over the Rocky Mountains region is a field in which such effect is found and for which the nesting technique displays significant downscaling ability. The best downscaling ability is obtained when the ratio of spatial resolution between the nested model and the nesting fields is less than 12, and when the update frequency is more than twice a day. Decreasing the spatial resolution jump from a ratio of 12 to six has more benefits on the climate reproducibility than a reduction of spatial resolution jump from two to one. Also, it is found that an update frequency of four times a day leads to a better downscaling than twice a day when a ratio of spatial resolution of one is used. On the other hand, no improvement was found by using high-temporal resolution when the driving fields were degraded in terms of spatial resolution.  相似文献   

18.
The finding that surface warming over the Arctic exceeds that over the rest of the world under global warming is a robust feature among general circulation models (GCMs). While various mechanisms have been proposed, quantifying their relative contributions is an important task in order to understand model behavior. Here we apply a recently proposed feedback analysis technique to an atmosphere–ocean GCM under two and four times CO2 concentrations which approximately lead to seasonally and annually sea ice-free climates. The contribution of feedbacks to Arctic temperature change is investigated. The surface warming in the Arctic is contributed by albedo, water vapour and large-scale condensation feedbacks and reduced by the evaporative cooling feedback. The surface warming contrast between the Arctic and the global averages (AA) is maintained by albedo and evaporative cooling feedbacks. The latter contributes to AA predominantly by cooling the low latitudes more than the Arctic. Latent heat transport into the Arctic increases and hence evaporative cooling plus large-scale condensation feedback contributes positively to AA. On the other hand, dry-static energy transport into the Arctic decreases and hence dynamical heating feedback contributes negatively to AA. An important contribution is thus made via changes in hydrological cycle and not via the ‘dry’ heat transport process. A larger response near the surface than aloft in the Arctic is maintained by the albedo, water vapour, and dynamical heating feedbacks, in which the albedo and water vapour feedbacks contribute through warming the surface more than aloft, and the dynamical heating feedback contributes by cooling aloft more than the surface. In our experiments, ocean and sea ice dynamics play a secondary role. It is shown that a different level of CO2 increase introduces a latitudinal and seasonal difference into the feedbacks.  相似文献   

19.
The downscaling ability of a one-way nested regional climate model (RCM) is evaluated over a region subjected to strong surface forcing: the west of North America. The sensitivity of the results to the horizontal resolution jump and updating frequency of the lateral boundary conditions are also evaluated. In order to accomplish this, a perfect-model approach nicknamed the Big-Brother Experiment (BBE) was followed. The experimental protocol consists of first establishing a virtual-reality reference climate over a fairly large area by using the Canadian RCM with grid spacing of 45 km nested within NCEP analyses. The resolution of the simulated climate is then degraded to resemble that of operational general circulation models (GCM) or observation analyses by removing small scales; the filtered fields are then used to drive the same regional model, but over a smaller sub-area. This set-up permits a comparison between two simulations of the same RCM over a common region. The Big-Brother Experiment has been carried out for four winter months over the west coast of North America. The results show that complex topography and coastline have a strong positive impact on the downscaling ability of the one-way nesting technique. These surface forcings, found to be responsible for a large part of small-scale climate features, act primarily locally and yield good climate reproducibility. Precipitation over the Rocky Mountains region is a field in which such effect is found and for which the nesting technique displays significant downscaling ability. The best downscaling ability is obtained when the ratio of spatial resolution between the nested model and the nesting fields is less than 12, and when the update frequency is more than twice a day. Decreasing the spatial resolution jump from a ratio of 12 to six has more benefits on the climate reproducibility than a reduction of spatial resolution jump from two to one. Also, it is found that an update frequency of four times a day leads to a better downscaling than twice a day when a ratio of spatial resolution of one is used. On the other hand, no improvement was found by using high-temporal resolution when the driving fields were degraded in terms of spatial resolution. Figure legends were missing in original article. Climate Dynamics (2005) 23: 473-493. The complete article is given here. DOI: 10.1007/s00382-004-0438-5  相似文献   

20.
Experiments using a quasi-geostrophic model and the ECMWF T21 spectral model with and without orography are performed to investigate the effects of mechanical forcing on the mean meridional circulation. Results show that mechanical forcing intensifies the horizontal poleward heat flux and redistributes the eddy angular momentum in the vertical, and that this changes significantly the intensity and location of the mean me-ridional circulation centres.It is shown how the mean meridional circulation is set up in such a way to satisfy both the dynamical and thermodynamical transport requirements of the model atmosphere. Whenever external forcing changes the eddy fluxes, the Coriolis torques from the upper horizontal branches of the mean meridional circulations change to balance the extra divergence of eddy momentum flux, and additional adiabatic heating is produced by the vertical branches of the toroids to balance the extra divergence of eddy heat flux. The mean meridional circula-tion is, therefore, confirmed to be very sensitive to mechanical forcing, and can be used as an efficient tool to quantitatively diagnose the adequacy of the orographic representation of numerical forecasting and general cir-culation models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号