首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flash flood forecasting of catchment systems is one of the challenges especially in the arid ungauged basins. This study is attempted to estimate the relationship between rainfall and runoff and also to provide flash flood hazard warnings for ungauged basins based on the hydrological characteristics using geographic information system (GIS). Morphometric characteristics of drainage basins provide a means for describing the hydrological behavior of a basin. The study examined the morphometric parameters of Wadi Rabigh with emphasis on its implication for hydrologic processes through the integration analysis between morphometric parameters and GIS techniques. Data for this study were obtained from ASTER data for digital elevation model (DEM) with 30-m resolution, topographic map (1:50,000), and geological maps (1,250,000) which were subject to field confirmation. About 36 morphometric parameters were measured and calculated, and interlinked to produce nine effective parameters for the evaluation of the flash flood hazard degree of the study area. Based on nine effective morphometric parameters that directly influence on the hydrologic behavior of the Wadi through time of concentration, the flash flood hazard of the Rabigh basin and its subbasins was identified and classified into three groups (High, medium, and low hazard degree). The present work proved that the physiographic features of drainage basin contribute to the possibility of a flash flood hazard evaluation for any particular drainage area. The study provides details on the flash flood prone subbasins and the mitigation measures. This study also helps to plan rainwater harvesting and watershed management in the flash flood alert zones. Based on two historical data events of rainfall and the corresponding maximum flow rate, morphometric parameters and Stormwater Management and Design Aid software (SMADA 6), it could be to generate the hydrograph of Wadi Rabigh basin. As a result of the model applied to Wadi Rabigh basin, a rainfall event of a total of 22 mm with a duration of 5 h at the station nearby the study area, which has an exceedance probability of 50 % and return period around 2 years, produces a discharge volume of 15.2?×?106 m3 at the delta, outlet of the basin, as 12.5 mm of the rainfall infiltrates (recharge).  相似文献   

2.
Adequacy of satellite derived rainfall data for stream flow modeling   总被引:2,自引:0,他引:2  
Floods are the most common and widespread climate-related hazard on Earth. Flood forecasting can reduce the death toll associated with floods. Satellites offer effective and economical means for calculating areal rainfall estimates in sparsely gauged regions. However, satellite-based rainfall estimates have had limited use in flood forecasting and hydrologic stream flow modeling because the rainfall estimates were considered to be unreliable. In this study we present the calibration and validation results from a spatially distributed hydrologic model driven by daily satellite-based estimates of rainfall for sub-basins of the Nile and Mekong Rivers. The results demonstrate the usefulness of remotely sensed precipitation data for hydrologic modeling when the hydrologic model is calibrated with such data. However, the remotely sensed rainfall estimates cannot be used confidently with hydrologic models that are calibrated with rain gauge measured rainfall, unless the model is recalibrated. G. Artan, J. L. Smith and K. Asante – work performed under USGS contract 03CRCN0001.  相似文献   

3.
选择桂林丫吉试验场溶洞—硝岩洞及其上方的汇水坡面作为研究区,通过在不同降雨条件下,对坡面径流和硝盐洞中流水水文动态进行监测并做对比分析研究。结果表明:(1)降雨强度、降雨持续时间和各含水系统前期含水情况决定了岩溶石山区坡面地表和包气带水文动态变化过程;(2)在不同降雨条件下,地表坡面流和经过上部包气带调蓄过的硝盐洞水文动态都表现为暴涨暴落,坡面径流表现的更为明显,一般坡面径流的整个水文过程持续几个小时到十几个小时,而硝盐洞中流水水文过程持续13d;(3)一般大到暴雨条件下,坡面流最大流量大于硝盐洞,但由于持续时间短,其一场降雨后所获得的水量远不如下渗到包气带—硝盐洞中滴水水量。  相似文献   

4.
In the current years, changing the land cover/land use had serious hydrological impacts affecting the flood events in the Kelantan River basin. The flood events at the east coast of the peninsular Malaysia got highly affected in the recent decades due to several factors like urbanisation, rapid changes in the utilisation of land and lack of meteorological (i.e. change in climate) and developmental monitoring and planning. The Kelantan River basin has been highly influenced due to a rapid change in land use during 1984 to 2013, which occurred in the form of transformation of agricultural area and deforestation (logging activities). In order to evaluate the influence of the modifications in land cover on the flood events, two hydrological regional models of rainfall-induced runoff event, the Hydrologic Engineering Center (HEC)-Hydrologic Modeling System (HMS) model and improved transient rainfall infiltration and grid-based regional model (Improved TRIGRS), were employed in this study. The responses of land cover changes on the peak flow and runoff volume were investigated using 10 days of hourly rainfall events from 20 December to the end of December 2014 at the study area. The usage of two hydrological models defined that the changes in land use/land cover caused momentous changes in hydrological response towards water flow. The outcomes also revealed that the increase of severe water flow at the study area is a function of urbanisation and deforestation, particularly in the conversion of the forest area to the less canopy coverage, for example, oil palm, mixed agriculture and rubber. The monsoon season floods and runoff escalate in the cleared land or low-density vegetation area, while the normal flow gets the contribution from interflow generated from secondary jungle and forested areas.  相似文献   

5.
针对缺乏水位流量资料的山区小流域地区山洪临界雨量难以确定的问题,以四川省南江河上游流域作为研究区域,基于德国Geomer公司开发的二维非恒定流水动力模型"FloodArea ",利用流域逐时降雨资料,地形高程数据以及土地利用数据,重现南江" 6·28"山洪暴发的动态演进过程,对模拟得到的逐时淹没深度与1~24 h累积流域面雨量求相关,选取预警点淹没深度与累积面雨量的相关系数最高的时效作为预警点致灾临界雨量阈值的预报时效,通过建立预警点淹没深度与预报时效累积面雨量的回归方程,从而获取预警点不同风险等级的临界雨量阈值。结果表明:FloodArea模型能够较好地呈现出此次典型山洪的暴发过程,通过对不同地势预警点临界雨量阈值的对比,最终选取地势较低,位于河流汇口地带、风险等级较高的上两九义校作为南江河上游流域山洪风险预警点。  相似文献   

6.
There has been a yearly increase in precipitation in Taiwan, consistent with trends seen across the world. In the summer and fall, typhoons or tropical cyclones with torrential rainfall frequently occur as a result of Taiwan’s subtropical climate. Flash floods may cause a levee-break and/or the overtopping of banks at narrow neck locations in a river system, which may in turn produce inundation in urban areas. Therefore, a model that predicts flash floods is of vital importance for river management. The present study is based on a flash flood routing model, which incorporates levee-break and overbank functions to calculate the discharge hydrographs in the complicated Danshuei River system of northern Taiwan. The numerical model was calibrated and verified against observed water stages using three typhoon events. The results indicate reasonable agreement between the model simulations and the observed data. The model was then used to calculate the levee-break and overbank flow hydrographs due to Typhoon Talim (2005) and Typhoon Nari (2001), respectively. The simulated results indicate that several parameters significantly affect the flow hydrograph during a levee-break and should be carefully monitored when levee-break events occur in the river system. The simulated water stages at several stations are consistent with observed data from Typhoon Nari. The simulated overbank flow results quantitatively agree with reported information. The data also confirm that most of the overbank events occurred at the upper reaches of the Keelung River, consistent with the low levee height protection.  相似文献   

7.
A real-time flood-forecasting method coupled with the one-dimensional unsteady flow model was developed for the Danshuei River system in northern Taiwan. Based on the flow at current time, the flow at new time is calculated to provide the water stage forecasting during typhoons. Data, from two typhoons in 2000: Bilis and Nari, were used to validate and evaluate the model capability. First, the developed model was applied to validate and evaluate with and without discharge corrections at the Hsin-Hai Bridge in Tahan Stream, Chung-Cheng Bridge in Hsintien Stream, and Sir-Ho Bridge in the Keelung River. The results indicate that the calculated water stage profiles approach the observed data. Moreover, the water stage forecasting hydrograph with discharge correction is close to the observed water stage hydrograph and yields a better prediction than that without discharge correction. The model was then used to quantify the difference in prediction between different methods of real-time water stage correction. The model results reveal that water stages using the 1–6 h forecast with real-time stage correction exhibits the best lead times. The accuracy for 1–3 h lead time is higher than that for 4–6 h lead time, suggesting that the flash flood forecast in the river system is reasonably accurate for 1–3 h lead time only. The method developed is effective for flash flood forecasting and can be adopted for flood forecasting in complicated river systems.  相似文献   

8.
为研究雨水花园对暴雨径流水文调控效果受不同设计参数的影响,在试验研究的基础上,利用排水模型DRAINMOD分析了雨水花园长期运行效果受其蓄水层深度、汇流面积比以及降雨特征等因素的影响。模型测试结果显示,DRAINMOD可以较好地模拟雨水花园内部水文过程;长序列(1951—2007年)模拟结果发现,试验雨水花园对暴雨径流量削减率的年均值为18.5%,经介质净化的水量占雨水径流总量的76.1%;雨水花园蓄水层深度超过某一临界值后对其滞留效果没有影响;汇流面积比增大,排水量和溢流量均增大;在雨水花园内部增加30 cm反硝化作用蓄水层后,排水量下降了19.2%,雨水花园对径流量的削减率提高到33.5%。可见,增加内部蓄水层后雨水花园对水量削减和污染物浓度去除都具有积极作用。  相似文献   

9.
城市下垫面改变引起水文循环过程发生变异,导致目前已掌握的天然情况下的产汇流规律和机制难以解释城市化等新形势下的水文现象与过程,而面临需重新再认识的挑战。本文以长三角地区为典型,建立了不同城市化水平及空间规模的水文试验流域,探讨了快速城市化地区暴雨洪水响应规律和机制。结果表明:(1)不同量级降水事件下城镇用地土壤水响应程度(表层土壤水涨幅基本超过4%)总体高于其他土地利用类型,城市化地区下垫面的改变通过影响土壤水动态响应模式直接影响了地表产流过程,植被覆盖率较低的城镇用地和荒地土壤含水率呈现出陡涨陡落现象,而植被作用下的土地利用类型则表现出缓慢上升和缓慢消退的土壤水响应过程。(2)流域洪峰滞时和洪峰流量整体表现为随流域面积增加而呈幂律函数关系形式的增加。(3)总降水量与主要洪水特征(如洪峰流量、单位面积洪峰流量和径流深)基本呈显著相关(相关系数分别达0.49、0.41和0.78以上)。城市下垫面通过改变土壤水动态响应等产汇流特征而直接影响了洪水过程,未来长三角地区暴雨洪水在城市化和气候因素双重作用下呈现持续加剧的趋势。  相似文献   

10.
1939年为海河流域20世纪特大洪涝灾害年之一。根据历史文献记载及观测资料,从降水过程、洪水过程及受灾情况等方面对1939年海河流域洪涝灾害过程作了梳理,得出以下结论: (1)1939年的洪涝灾害是7—8月份3次大范围集中暴雨导致的,集中降水出现于7月9—15日、7月23—29日和8月11—13日。3次暴雨中心均集中在昌平—紫荆关—中唐梅一带,其7、8两个月份总降雨量最高达到1000 mm以上,向东向西逐渐减小。(2)1939年海河流域诸河径流随着7—8月份集中降雨而出现涨落变化,稍滞后于降水变化1~2天,各河流最大流量和水位出现在7月23—29日集中降水后,并开始涨溢、决口,各河水位至8月底各河上游降雨中止而渐渐回落,9月中旬天津市区各河水位骤落,10月份以后洪水才迟缓退去,而洪水泛滥引发的涝灾一直延续到1940年。(3)1939年洪涝灾害在海河南系和北系都有发生,共造成150多个县市受灾,大部分受灾县市农业减产甚至绝收,被灾耕地面积成数超过8成的县市主要分布在大清河下游沿线、永定河下游沿线和南运河下游沿线靠近天津市的地区。  相似文献   

11.
Simulation of a flood producing rainfall event of 29 July 2010 over north-west Pakistan has been carried out using the Weather Research and Forecasting (WRF) model. This extraordinary rainfall event was localized over north-west Pakistan and recorded 274 mm of rainfall at Peshawar (34.02°N, 71.58°E), within a span of 24 h on that eventful day where monthly July normal rainfall is only 46.1 mm. The WRF model was run with the triple-nested domains of 27, 9, and 3 km horizontal resolution using Kain–Fritsch cumulus parameterization scheme having YSU planetary boundary layer. The model performance was evaluated by examining the different simulated parameters. The model-derived rainfall was compared with Pakistan Meteorological Department–observed rainfall. The model suggested that this flood producing heavy rainfall event over north-west region of Pakistan might be the result of an interaction of active monsoon flow with upper air westerly trough (mid-latitude). The north-west Pakistan was the meeting point of the southeasterly flow from the Bay of Bengal following monsoon trough and southwesterly flow from the Arabian Sea which helped to transport high magnitude of moisture. The vertical profile of the humidity showed that moisture content was reached up to upper troposphere during their mature stage (monsoon system usually did not extent up to that level) like a narrow vertical column where high amounts of rainfall were recorded. The other favourable conditions were strong vertical wind shear, low-level convergence and upper level divergence, and strong vorticity field which demarked the area of heavy rainfall. The WRF model might be able to simulate the flood producing rainfall event over north-west Pakistan and associated dynamical features reasonably well, though there were some spatial and temporal biases in the simulated rainfall pattern.  相似文献   

12.
Karst flash flooding, identified as one of the hazards in karst terrains, is directly linked to the structure and hydraulic properties of karst aquifers. Due to the characteristics of flow within karst aquifers, characterized by a dual flow – diffuse flow within fissured limestone and conduit flow within karst conduits networks – flash flooding may be important in volume and dynamics. Such phenomenon may cause serious damages including loss of lives, as it occurred on 3rd October 1988 in Nîmes (Gard, South France). Flash floods there have been considered to be the result of very intensive rainfall events conjugated to runoff due to the geomorphologic context of the city located down hill. However, preliminary results of recent studies of the hydrologic behaviour of groundwater and surface water for a specific event (September 2005) show that the karst plays an important role in the flood genesis. The main characteristics of the Nîmes karst system leading to karst flash flooding are presented in this paper. A methodology comprising modelling of the karst system allowed proposing simple warning thresholds for various part of the karst (water level threshold for the karst conduits and cumulative rainfall threshold for the overflowing fissured karst). These thresholds can be included in the flash flood warning system of the Nîmes city.  相似文献   

13.
Midstream of the Keelung River Basin in Northern Taiwan has become highly urbanized and densely populated area. Flood inundation along riversides frequently occurred during typhoons or rainstorms. Three protection measures, including constructions of high-level protection levees, a diversion channel, and a detention reservoir, were proposed for flood mitigation. The main purpose of this study is to evaluate the flood mitigation performance of the three proposed structural measures by using combined hydrologic analyses and hydraulic routings. A semi-distributed parallel-type linear reservoirs rainfall-runoff model was used for estimating the surface runoff. Furthermore, a 1-D dynamic channel routing model was coupled with a two-dimensional inundation model to simulate the hydraulic characteristics of river flooding and overland flow. Simulation results of flood stages, runoff peak discharges, and inundation extent under design rainfall scenarios were chosen as the criteria for evaluation. The results showed a diversion channel is superior to the other two measures for flood mitigation of the study area. After the process of environmental impact assessment, a revised diversion channel approach has been approved for construction as the major structural measure.  相似文献   

14.
刘俊萍 《水文》2013,33(3):56-60
浙江省衢州庙源溪为典型的山区河流,庙源溪雨量丰富,河流比降大,源短流急,洪水陡涨陡落,汇流速度快,洪峰流量大。基于GIS的不规则三角网和空间分析功能,实现水文特征值等值线的内插。根据GIS获取的水文特征值,计算不同历时平均点雨量,考虑点面折算系数,得到平均面雨量。通过频率分析,获得不同频率下的设计雨量。采用瞬时单位线法,进行汇流计算,推求设计洪水过程线及洪峰流量,为制作山洪风险图,建立小流域防洪避洪保障体系提供依据。  相似文献   

15.
采用翻斗法自动量水技术和时域反射仪,对“岩土二元结构”小流域降雨过程、流域出口地下裂隙潜流以及坡地岩土水分的变化进行了测定与分析。试验结果表明,小流域坡地特有的岩土二元结构体具有较强的储、透水性能,小流域在前期坡地岩土水分平均为14.48%(埋深100cm范围内)的前提下,发生总降雨量170.25mm,降雨历时31h,平均强度5.5mmh的大暴雨,在小流域出口处未产生地表迳流;地下裂隙潜流对降雨具有明显的响应,起涨和回落过程均较为明显,峰值流量达到810Lh,是降雨前的32.4倍。因此,科学合理地利用“岩土二元结构”的水文地质特性对缓解洪峰的形成,降低洪灾具有重要作用,同时对山区的雨水资源化问题也具有重要的实际意义。  相似文献   

16.
Floods have been the most severe natural disasters in the West Black Sea Region of Turkey for many years; therefore Ulus Basin is selected as a study area for a thorough hydrologic flood analysis. The lack of embankments around the Ulus River and careless changes to the riverbed made by villagers, resulted in major flood events in the basin, causing significant damage in the area. In this study, the hydrodynamic characteristics of the basin and the riverbed are determined by calibrating the hydraulic module of the MIKE 11 modeling system with the observed 1991 flood. Then, for the 25-, 50- and 100-year floods the highest water levels in the river are forecasted by integration of the MIKE 11 hydrologic and hydraulic modules. Afterwards, inundation maps are obtained by using together the hydraulic and GIS modules of the MIKE 11 system.  相似文献   

17.
Studies on rain-runoff process in the peripheral mountainous area of the Sichuan Basin, which is regarded as a key ecological shelter, will contribute to flood control and environmental protection for the Upper Yangtze River Basin. In two typical catchments--the Fujiang River Catchment and the Wujiang River Catchment, rainfall simulations have been conducted to study the rain-runoff processes of yellow soil and limestone soil in three types of land use--forestland, farmland and grassland. Results showed that (1) within the same rainfall process, overland flow occurs first on farmland, then on grassland, and finally on forestland; (2) soil surface coverage has a great impact on the occurrence and amount of overland flow. The runoff amount can increase 2-4 times after the coverage is removed; (3) the infiltration before the occurrence of overland flow will decrease because of higher gravel contents of soil, but it takes no effect on infiltration once overland flow becomes stable; (4) the runoff coefficient of the limestone soil forestland is greater than that of the yellow soil forest land, but less than that of the farmland; (5) three empirical infiltration models, including Horton' model, Kostiakov' model, and modified Kostiakov' model, were compared by using the observed results under rainfall simulation. The results showed that the Kostiakov' model performed better than both the Horton' model and modified Kostiakov model. According to the results of this research, the Kostiakov's model can be used to simulate rainfall infiltration when water erosion is modeled in the peripheral mountainous area of the Sichuan Basin.  相似文献   

18.
In April 2010, an ice/rockfall into Lake 513 triggered a glacial lake outburst flood (GLOF) along the Chucchun River in the Cordillera Blanca of Peru. This paper reconstructs the hydrological characteristics of this as yet undocumented event using a 1D flood model prepared with HEC-RAS. The principle model inputs were obtained during detailed field surveys of surface characteristics and topography within the river and across the adjacent floodplain; a total of 120 cross-sections were surveyed. These inputs were refined further by eyewitness accounts and additional geomorphological observations. The flood modelling has enabled us to constrain the extent of the water surface and its elevation at each cross-section in addition to defining the peak discharge (580 m3 s?1). These modelling results show good agreement with other information about the flood including: flood marks and minimum flood levels; the lake displacement wave height; the extent of the flooded area; and the travel time from Lake 513 to the confluence with the Santa River. This demonstrates that the model offers a reliable reconstruction of the basic hydrological characteristics of the GLOF. It provides important information about the flood intensity and significantly improves our ability to model future flood scenarios along both the studied river and within neighbouring catchments. The flood hazard, defined by the flood depth during peak discharge, shows that the majority of the damaged infrastructure (houses, bridges, and a drinking water treatment plant) was only subjected to low or medium flood intensities (defined by a maximum water depth of less than 2 m). These low flood intensities help to explain why the flooding caused comparatively minor damage despite the significant public attention it attracted.  相似文献   

19.
Studies on rain.runoff process in the peripheral mountainous area of the Sichuan Basin,which is re-garded as a key ecological shelter,will contribute to flood control and environmental protection for the Upper Yang-tze River Basin.In two typical catchments--the Fujiang River Catchment and the Wujiang River Catchment,rainfall simulations have been conducted to study the rain-runoff processes of yellow soil and limestone soil in three types of land use-forestland.farmland and grassland.Results showed that(1)within the same rainfall process,overland flow occurs first on farmland,then on grassland,and finally on forestland;(2)soil surface coverage has a great im-pact on the occurrence and amount of overland flow.The runoff amount Can increase 2-4 times after the coverage iS removed;(3)the infiltration before the occurrence of overland flow will decrease because of higher gravel contents of soil.but it takes no effect on infiltration once,overland flow becomes stable;(4)the runoff coefficient of the lime-stone soil forestland iS greater than that of the yellow soil forest land,but less than that of the farmland;(5)threeempirical infiltration models,including Horton'model,Kostiakov'model,and modified Kostiakov'model,were compared by using the observed results under rainfall simulation.The results showed that the Kostiakov'model per-formed better than both the Horton'model and modified Kostiakov model.According to the results of this research,the Kostiakov's model Can be used to simulate rainfall infiltration when water erosion is modeled in the peripheral mountainous area of the Sichuan Basin.  相似文献   

20.
Geomorphic effects observed in the Barranco (creek) de Arás basin are used to characterize the flood. Sediment features allow to qualify the flood as essentially a water flow. Using the critical section method, the peak flood discharge is estimated to be between 400 and 600 m3 s−1. Similar results were obtained using a paleohydraulic formula based on the size of the largest mobilized clasts. Using the rational method with available rainfall data, the discharge for a recurrence interval of 500 years is estimated to be between 150 and 200 m3 s−1. These results agree with predictions obtained using curves of peak discharge versus basin area based on regional data. Several trenches dug on the fan showed that the size of boulders mobilized by the event is larger that those left by previous floods at the same place. When the estimated peak flood discharge is related to the basin area, values between 20 and 30 m3 s−1 km−2 are obtained, demonstrating that the Barranco de Arás flood was most unusual.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号