首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large amounts of carbon in alpine sediments have been expected to be sensitive to climate change, but how carbon accumulation responds to climate change remains unclear. Thus, we explored the impact of different factors on the carbon accumulation rate (CAR) of alpine sediments by combining a variety of climatic variables, vegetation data and erosion indicators based on two alpine sediment successions on Taibai Mountain, the highest peak in central and eastern mainland China. One succession is near the modern treeline (Paomaliang Swamp, PML) and the other is located at the upper forest line (Sanqing Chi, SQC, a small lake). We used our previously published organic carbon content data and for the first time calculated the CAR, and further used pollen and physicochemical indicators to quantify the contributions from climate, vegetation and soil. We found that their contributions varied during different periods and between the two sediment successions. For the PML succession, from 5850 to 4000 calendar years before present (cal. a BP), the CAR was low, which was related to low annual temperatures, low vegetation cover and strong soil erosion. From 4000 to 2400 cal. a BP, a high CAR coincided with high annual temperatures, high vegetation cover and weak soil erosion. From 2400 to 200 cal. a BP, the CAR decreased, mainly attributed to low vegetation cover. Local vegetation cover had major impacts on the CAR in the SQC succession during the Middle–Late Holocene. In general, the local factor interpretation rate in SQC (83%) was higher than that of PML (47%), related to the vegetation stability of continuous forest and the treeline. This study highlights the important role of the local environment in determining carbon accumulation in the alpine region.  相似文献   

2.
The physical risk from snow avalanches poses a serious threat to mountain backcountry travelers. Avalanche risk is primarily managed by (1) assessing avalanche hazard through analysis of the local weather, snowpack, and recent avalanche activity and (2) selecting terrain that limits exposure to the identified hazard. Professional ski guides have a tremendous wealth of knowledge about using terrain to manage avalanche risk, but their expertise is tacit, which makes it difficult for them to explicitly articulate the underlying decision rules. To make this existing expertise more broadly accessible, this study examines whether it is possible to derive quantitative measures for avalanche terrain severity and condition-dependent terrain guidance directly from observed terrain selection of professional guides. We equipped lead guides at Mike Wiegele Helicopter Skiing with GPS tracking units during the 2014/2015 and 2015/2016 winters creating a dataset of 10,592 high-resolution tracked ski runs. We used four characteristics—incline, vegetation, down-slope curvature (convexities/concavities), and cross-slope curvature (gullies/ridges)—to describe the skied terrain and employed a mixed-effects ordered logistic regression model to examine the relationship between the character of most severe avalanche terrain skied on a day and the associated field-validated avalanche hazard ratings. Patterns in the regression parameter estimates reflected the existing understanding of how terrain is selected to manage avalanche risk well: the guides skied steeper, less dense vegetation, and more convoluted slopes during times of lower avalanche hazard. Avalanche terrain severity scores derived from the parameter estimates compared well to terrain previously zoned according to the Avalanche Terrain Exposure Scale. Using a GIS implementation of the regression analysis, we created avalanche condition-dependent maps that provide insights into what type of terrain guides deemed acceptable for skiing under different avalanche hazard conditions. These promising results highlight the potential of tracking guides’ terrain selection decisions as they manage avalanche hazard for the development of evidence-based avalanche terrain ratings and decision aids for professional and recreational backcountry travelers.  相似文献   

3.
The 137Cs tracer technique was used to study soil erosion of alpine meadow grassland in two small river basins in the headwater region of the Yellow River. The results show that the levels of 137Cs in soil samples from this alpine meadow vegetation zone exhibit an exponential distribution, generally within a depth of approximately 20 cm. Due to strong winds, freeze-thaw cycles and water, soil erosion was found to be stronger on the upper slope than on the lower slope, and except for the slope crest, the intensity of soil erosion at other sites was as follows: upslope < midslope < downslope. There was a significant negative correlation between the intensity of soil erosion and the extent of alpine meadow vegetation cover (P < 0.01). The mean soil erosion modulus exhibited a linear reduction trend with an increase in vegetation cover, and the correlation coefficient R 2 was ≥ 0.997. The higher the degradation degree of the alpine meadow grassland, the greater is the soil erosion. The mean erosion modulus in the severely degraded meadow zone was 2.23 times greater than the one in the slightly degraded zone, and the maximum erosion modulus reached 2.96 × 106 kg/km2/a.  相似文献   

4.
云南省玉龙雪山表土花粉垂直散布与植被关系研究   总被引:4,自引:4,他引:0       下载免费PDF全文
对云南省玉龙雪山地区8个垂直植被带下采集的49个表土样品进行表土孢粉的垂直散布研究,同时选择43个受人类活动干扰较少的样品和20个主要木本花粉类型进行了降维对应分析(DCA)。结果表明,玉龙雪山地区不同垂直植被带的孢粉组合具有不同的代表性成分与变化特征,能够较好地反映相应的植被带类型。在植物稀疏、花粉产量低的高山杜鹃灌丛植被带中,孢粉组合以外来的松属、冷杉属、落叶松属、云杉属和铁杉属等为主;   冷杉林、落叶松林、云杉林和铁杉林等植被带孢粉组合的指示性成分分别是冷杉属、落叶松属、云杉属和铁杉属花粉,它们对应的峰值分别为13.6%,4.7%,39.4%和11.5%;   针阔混交林、中山湿性常绿阔叶林的孢粉组合分别以高含量的常绿栎类、栲/石栎属为特征,并都含有多种落叶阔叶乔木和灌木的花粉,但后者比前者所包含的阔叶乔木与灌木成分更多,且蕨类孢子的峰值也出现在中山湿性常绿阔叶林中;   云南松林的孢粉组合中除松属外很少有木本花粉出现。DCA排序结果较好地反映了现代植被与环境之间的相互关系,认为温度是决定不同植被带样点分布的最重要因素,这与垂直植被带随着海拔升高、温度逐渐降低而发生更替的规律是一致的。  相似文献   

5.
长江黄河源区覆被变化下降水的产流产沙效应研究   总被引:4,自引:2,他引:4       下载免费PDF全文
在长江和黄河源区的左冒西孔曲和纳通河、垮热洼尔玛河流域的不同植被覆盖下建立了天然径流观测场,利用观测天然降水和人工模拟降水,初步研究了江河源区不同植被覆盖下降水的产流产沙效应。结果表明,长江黄河源区的3个小流域内,在典型高寒草甸草地30°坡面上,退化较为严重的30%覆盖度以下的场地内,地表径流产出量明显大于覆盖度较好的95%、92%和68%场地,同时产沙量显著高于这3个场地,其平均单次降水形成的泥沙量是这三种盖度的2~4倍,由此造成地表侵蚀量平均为这3种盖度的3~10倍。通过对几次典型的降水形态的分析,在长江黄河源区高寒草甸草地的坡面上,不但降水量影响着产流产沙量,降水形态也影响着产流产沙量,降雨仍是引起水土流失的主要降水形态,在降水量相同的条件下,降雪可比降雨和雨加雪增加产流量2.1~3.5倍,可比降雨减少泥沙侵蚀45.4%~80.3%。人工模拟结果表明:对于覆盖度为5%和30%的强度退化草地,次降水量在3.5 mm时,就形成了较为明显的径流和产沙效应,当次降雨量达到7 mm,降雨持续时间15 min,5 m2场地内就会形成1 400 mL以上的径流量;在地表土壤含水量(FDR测0~5 cm平均含水量为36.7%)较高的情况下,次降雨量达4mm,降雨强度超过0.4 mm/min,在5 m2场地内历时5 min就能形成1 060 mL的地表径流,每100 mL径流中含泥沙高达1.6 g。这一试验结果在长江黄河源区3个不同的河源小流域是一致的。  相似文献   

6.
Natural runoff observation fields with different vegetation coverage were established in the Zuomaoxikongqu River basin in the headwater area of the Yangtze River, and in the Natong River basin and the Kuarewaerma River basin in the headwater area of the Yellow River, China. The experiments were conducted using natural precipitation and artificially simulated precipitation between July and August to study the runoff and sediment-producing effects of precipitation under the conditions of the same slope and different alpine meadow land with coverage in the headwater areas. The results show that, in the three small river basins in the headwater areas of the Yangtze and the Yellow Rivers, the surface runoff yield on the 30° slope surface of the alpine meadow land with a vegetation cover of 30% is markedly larger than that of the fields with a vegetation cover of 95, 92, and 68%. Furthermore, the sediment yield is also obviously larger than the latter three; on an average, the sediment yield caused by a single precipitation event is 2–4 times as large as the latter three. Several typical precipitation forms affecting the runoff yield on the slope surface also influence the process. No matter how the surface conditions are; the rainfall is still the main precipitation form causing soil erosion. In some forms of precipitation, such as the greatest snow melting as water runoff, the sediment yield is minimal. Under the condition of the same precipitation amount, snowfall can obviously increase the runoff yield, roughly 2.1–3.5 times as compared to the combined runoff yield of the Sleet or that of rainfall alone; but meanwhile, the sediment yield and soil erosion rate decrease, roughly decreasing by 45.4–80.3%. High vegetation cover can effectively decrease the runoff-induced erosion. This experimental result is consistent in the three river basins in the headwater areas of the Yangtze and Yellow Rivers.  相似文献   

7.
高原高寒冻土区生态治理是世界性难题,在生态治理的同时进行煤炭资源保护更少先例可言。按照系统工程思路,以生态环境保护为宗旨,并兼顾残存煤炭资源的保护,在青海省木里地区生态治理过程中取得成果认识如下:研究了木里矿区自然气候特征控制下的生态易破坏且难于修复性;总结了土壤层状结构控制下的水土流失和植被水分补给特征;认为生态地质层缺失和破坏是致使生态破坏的关键症结。为此,借鉴前人成果,研发了煤层顶板及其上覆岩层生态地质层修复技术,建立了生态地质层损伤判识方法,分析了生态地质层修复与再造对煤炭保护及生态修复的意义。  相似文献   

8.
准确识别雪崩潜在释放区或雪崩高易发区域对高寒山区工程建设减灾防灾意义重大,特别是在雪崩监测数据缺失地区,能够提供重要的区域性灾害风险预估参考。本文以新疆天山地区伊阿铁路沿线区域为例,将铁路沿线154个雪崩范围形成区作为评价样本,开展基于机器学习算法的雪崩易发性评价,构建新疆天山地区伊阿铁路沿线雪崩易发性评价体系;开展基于数据叠加的雪崩潜在释放区(PRA)识别,绘制伊阿铁路沿线雪崩潜在释放区分布图,并对两个结果通过Kappa系数和AUC值进行检验,并对比讨论。结果显示,支持向量机(SVM)、多层感知器(MLP)、PRA的Kappa系数分别为0.806、0.774、0.600;AUC值分别为0.993、0.961、0.802,机器学习算法在雪崩易发性评价中的表现优于传统的基于数据叠加的雪崩潜在释放区识别算法;两种机器学习算法模型均精度高,其中支持向量机(SVM)算法表现最佳,优于多层感知器(MLP),评价结果比较符合野外雪崩发育实际情况,可为高寒山区重大工程建设的雪崩防灾减灾工作提供基础的科学依据;雪崩潜在释放区的自动识别算法评价能力较弱,评价结果基本符合野外雪崩发育实际情况,对于缺乏可用数据的高寒山区具有评价意义。  相似文献   

9.
The Tibetan Plateau is one of the most important ecological barriers in China.Resolving the internal relations and dynamics ruling the association between regional vegetation and climate change is important to understand and protect the regional ecosystems.Based on vegetation,temperature and precipitation data of the Tibetan Plateau from 2001 to 2010,we analyze the spatial and temporal variations of vegetation cover over the past 10 years and discuss the vegetation response to climate change using empirical orthogonal function and singular value decomposition.Our results reveal the following:(1) vegetation cover gradually decreases from the southeast to the northwest of the Tibetan Plateau; (2) vegetation cover has increased on the Tibetan Plateau over the past 10 years,mainly in the central and eastern zones; and (3) a significant positive relationship was suggested between vegetation cover during growing season and the temperature in the entire region and with precipitation in the central and southern zones.  相似文献   

10.
近22年长江源区植被覆盖变化规律与成因   总被引:4,自引:1,他引:3  
利用GIMMS-NDVI遥感数据以及植被类型等专题信息,结合遥感图像处理以及地理信息系统技术,统计分析了1982—2003年长江源地区时间和空间上植被覆盖变化规律,并分析了植被覆盖变化的地形地貌因素与人为因素影响。结果表明:近22a,长江源植被覆盖呈总体增加趋势,而高寒草甸退化较严重,喜湿植被退化快于耐干旱植被,植被的生存环境趋于干旱化。研究结果表明,植被退化受到海拔、坡向、人类活动和地下水位的影响。海拔4400~4600m的较低海拔地带退化最强烈,主要为高寒草甸与高寒沼泽草甸受牧业影响较大;牧业影响半径为24km;道路的影响范围为24km,道路的修建加速了人类对高原植被的破坏作用;阳坡植被呈现趋于稳定和退化的趋势,阴坡植被表现为增长的趋势,降水量增加是源区植被,尤其是阴坡植被变好的重要原因,而太阳光照增强是导致阳坡干旱和植被趋于退化的潜在原因;近河床区地下水位埋深较浅,植被生长具有稳定的地下水源;在远离河床的一定区域内,地下水易于疏干,植被易于退化,河流影响范围为24km。  相似文献   

11.
土壤质量评价是提高对土壤质量理解的关键环节。为了了解青藏高原多年冻土区高寒草地土壤质量的基本情况,在青藏高原腹地西大滩至安多地区,根据不同海拔梯度和植被盖度共采集了154个土壤样品。通过主成分分析(PCA)法确定了影响青藏高原多年冻土区高寒草地土壤质量的最小数据集(MDS):全氮、全磷、全钾。根据影响土壤质量的最小数据集对青藏高原多年冻土区高寒草地土壤质量进行评价,得出了不同海拔、不同植被盖度下的土壤质量指数(SQI)。通过对不同海拔、不同植被盖度的土壤质量指数进行对比研究表明:随着海拔的升高,SQI呈增加的趋势,即海拔4 300~4 600 m(0.270±0.043) < 海拔4 600~4 900 m(0.326±0.061) < 海拔4 900~5 200 m(0.410±0.075);随着植被盖度的增加,SQI也呈现增加的变化趋势,即植被盖度小于50%(0.262~0.265) < 植被盖度大于50%(0.336~0.344)。在分别考虑了有机质、盐分、土壤水分对土壤质量的影响下得出的土壤质量指数值与基于最小数据集得到的土壤质量指数相一致,说明基于主成分分析的最小数据集可以对青藏高原多年冻土区高寒草地土壤质量做出较准确的评价。  相似文献   

12.
Avalanche hazard mapping over large undocumented areas   总被引:3,自引:1,他引:2  
An innovative methodology to perform avalanche hazard mapping over large undocumented areas is herewith presented and discussed. The method combines GIS tools, computational routines, and statistical analysis in order to provide a “semi-automatic” definition of areas potentially affected by avalanche release and motion. The method includes two main modules. The first module is used to define zones of potential avalanche release, based on the consolidated relations on slope, morphology, and vegetation. For each of the identified zones of potential release, a second module, named Avalanche Flow and Run-out Algorithm (AFRA), provides an automatic definition of the areas potentially affected by avalanche motion and run-out. The definition is generated by a specifically implemented “flow-routing algorithm” which allows for the determination of flow behaviour in the track and in the run-out zone. In order to estimate the avalanche outline in the run-out zone, AFRA uses a “run-out cone”, which is a 3D projection of the angle of reach α. The α-value is evaluated by statistical analysis of historical data regarding extreme avalanches. Pre- and post-processing of the AFRA input/output data is done in an open source GIS environment (GRASS GIS). The method requires only a digital terrain model and an indication of the areas covered by forest as input parameters. The procedure, which allows rapid mapping of large areas, does not in principle require any site-specific historical information. Furthermore, it has proven to be effective in all cases where a preliminary cost-efficient analysis of the territories potentially affected by snow avalanche was needed.  相似文献   

13.
利用Landsat-8、高分1号、2号等卫星影像,评估九寨沟核心钙华景点及整个景区在“8·8”地震前、后和钙华生境保育修复后植被覆盖度、土壤湿度、森林面积和水系面积的动态变化。结果显示:人工为辅、自然为主的钙华保育修复后钙华核心景点和整个景区的高植被、中低植被、低植被覆盖面积均有了显著增加,裸地生态类型仍存在,但呈逐年减少趋势,中植被覆盖类型较震后和震前减少;保育后第二年,湿润和很湿润面积、总森林面积和水系面积比震前和震后都有大幅增加,高植被覆盖度面积、森林面积和水系面积间存在正相关关系,可能是由于人工干预下原生境快速恢复,提高了植被覆盖面积,植被的蒸散和截流作用进一步影响了流域的水文过程,促进了水系面积的恢复。  相似文献   

14.
中国陆地生态系统总初级生产力VPM遥感模型估算   总被引:4,自引:0,他引:4  
陆地生态系统总初级生产力(Gross Primary Productivity,简称GPP)时空格局及其变化动态的准确监测是区域碳收支研究的核心问题之一,遥感模型正在为区域碳通量监测提供更为实时、准确的模拟数据。基于中分辨率成像光谱仪(MODerate-resolution Imaging Spectroradiometer,简称MODIS)遥感数据和涡度相关碳通量观测数据发展而来的VPM模型经过10年的努力,目前已经在全球涵盖十类生态系统的21个站点上开展模型的校验与验证研究,为区域GPP的准确估算与监测奠定了方法基础。本研究构建了评估GPP区域格局的VPM模型区域模式,以空间分辨率500m、时间步长8天的MODIS卫星影像数据以及相同时空分辨率的温度与光合有效辐射数据为模型输入数据,模拟估算我国2006~2008年GPP及其空间分布格局。VPM模型模拟的中国陆地生态系统GPP年总量平均值为5.0PgC/a,其中森林、草地、农田和灌丛生态系统分别占34%,17%,37%和12%。本研究模拟的全国GPP总量与多模型模拟的平均结果(5.40PgC/a)相当,但不同模型估算的各类生态系统GPP存在较大差异。本研究通过利用遥感数据对VPM模型中的关键参数(最大光能利用率)进行参数空间化,表达同一土地覆被类型内部光能利用率的空间异质性;应用目前我国准确性最为可靠的土地利用与植被数据提取土地覆被数据,首次将农业多熟种植作为单独的植被类型引入模型中,模型参数与输入数据的精度保障了模型模拟结果的可靠性。  相似文献   

15.
雅鲁藏布流域发育高山垫状植被、干旱河谷植被、沙洲植被、亚热带植被和高山冰川植被等多种类型的植被,与各种侵蚀类型相互克制又相互适应。通过2年的野外调查和采样分析研究植被分布规律和与各种侵蚀的相互关系。峡谷亚热带植被的物种多样性、覆盖度和植被厚度都很高,水力和风力侵蚀完全被克制,但是重力侵蚀和泥石流侵蚀发育。高山垫状植被由...  相似文献   

16.
To understand the influence of vegetation restoration on the water cycle in semiarid areas, the effects of vegetation restoration on evolution of the key elements of water cycle were clarified by analyzing the evolutionary trend of atmospheric precipitation, ecological consumption water, and surface runoff on a river basin scale on the basis of analytical results of the changes in vegetation coverage and the long-term meteorological and hydrological monitoring data of Beichuan River Basin. The results show that the vegetation cover in the Beichuan River basin has rapidly increased in the hilly and mountainous areas since the 1980s, especially from 2000 to 2019, with the maximum and average vegetation cover rates increased by 14.98% and 52.2%, respectively. During 1956-2016, the annual precipitation in the basin remained relatively stable; the annual surface runoff slightly declined, with an average attenuation rate of 20 million m~3/10 a. The main reason for the runoff decline is the increase in ecological water induced by the vegetation restoration, which has changed the spatial-temporal distribution of the water from atmospheric precipitation in the basin. Spatially, more precipitation was converted into ecological water. As a result, the remnant runoff supplied to the lower reaches reduced accordingly. Temporally, more precipitation participated in the soil water-groundwater cycle, thus prolonging the outward drainage period of the precipitation. Moreover, the large-scale vegetation restoration induced a significant decrease in the surface wind speed, evaporation from water surface and drought index. As a result, a virtuously mutual feedback relationship was formed between the vegetation and meteorological elements. Therefore, vegetation restoration is of great significance for the improvement in the water conservation capacity and semiarid climate conditions in the Beichuan River basin.  相似文献   

17.
In alpine meadow ecosystems, considerable spatial heterogeneity in forb-dominant vegetation exists as a result of severe grassland degeneration; however, there is limited quantitative information on the vegetative differences between degenerated and pristine grasslands. Therefore, a field study, which seeks to identify the edaphic factors driving the variation in plant composition and distribution, was conducted in a severely degraded alpine meadow located in the Qinghai-Tibetan Plateau, NW China. Five meadows, an original meadow and four degraded meadows, were used to determine the differentiation and relationships between the vegetation and soil of degraded alpine meadows. The dominated species of these degraded meadows are Ligularia virgaureaArtemisia gmelinii (LA), Oxytropis ochrocephalaLeontopodium nanum (OL), Aconitum pendulumPotentilla anserina (AP) and Stellera chamaejasmeArtemisia nanschanica (SA), respectively. The results indicate that vegetation cover, grass biomass, species number and diversity indices clearly decrease from the original to the degraded meadow. Soil water, clay and nutrient content are also reduced with grassland degradation in surface and subsoil layers. The joint study of floristic and edaphic variables confirms that the soil features, especially the bulk density, sand content, pH, salinity, N and K, mainly determine the establishment of vegetation in the severely degraded fields of this study. These results may be useful for alpine grassland ecosystem restoration and management.  相似文献   

18.
In soil and water conservation research, vegetation is considered to be a primary factor affecting soil erosion. Many studies focus on the relationship between soil erosion and a given attribute of vegetation. Few studies have attempted a comprehensive analysis of vegetation attributes. Thus, the aim of this study is to explain the relationship between vegetation and soil erosion in detail. We studied 104 vegetation plots and 104 soil samples in the Yangjuangou catchment, Loess Plateau, Shaanxi Province, China. According to a correlation analysis of the vegetation attributes and soil 137Cs inventories, vegetation cover exerts a positive effect on soil erosion. In addition, vegetation aggregation increases with increasing soil loss. During this period of study, plant diversity can have different relationships with soil erosion according to the vegetation pattern. When vegetation distribution is relatively homogeneous, plant cover decreases with increasing diversity, and the soil loss increases. When vegetation pattern distributes between homogeneous and heterogeneous, the relationship between vegetation diversity and soil erosion is not obvious. When vegetation distribution is in a heterogeneous pattern, cover increases with increasing diversity, and soil loss decreases.  相似文献   

19.
This paper presents the environmental impacts caused by surface mining and the ecological rehabilitation of Haikou phosphate deposits, Kunming, China. Surface mining entails the removal of the overburden to expose bare rock surfaces, not only causing destruction of pre-existing vegetation, but also occupying large areas of land for dumping the spoil. Severe environmental impacts are caused, e.g. rock desertification, poor forest stand structure, loss of biodiversity, aesthetic depreciation of the landscape, and the potential hazard of landslide and ground erosion. Ecological restoration has been conducted in a demonstration area since 1989 by means of control of geological hazards and revegetation of the disturbed areas. On-site dumping of waste rock for restoration of the abandoned mine area was adopted, providing a new mode of mining reclamation with high economic, environmental, and social value. Countermeasures for prevention and control of landslides included cut and fill technology, drainage, safety netting protection, retaining wall construction, and vegetation cover. By recruiting native plant species to the mine site and planting a forest imitating a natural mixed forest, the mine area was successfully revegetated.  相似文献   

20.
This research selected water soil erosion indicators (land cover, vegetation cover, slope) to assess the risk of soil erosion, ARCMAP GIS ver.9.0 environments and ERDAS ver.9.0 were used to manage and process satellite images and thematic tabular data. Landsat TM images in 2003 were used to produce land/cover maps of the study area based on visual interpreting method and derived vegetation cover maps, and the relief map at the scale of 1:50,000 to calculate the slope gradient maps. The area of water soil erosion was classified into six grades by an integration of slope gradients, land cover types, and vegetation cover fraction. All the data were integrated into a cross-tabular format to carry out the grid-based analysis of soil erosion risk. Results showed that the upper basin of Miyun Reservoir, in general, is exposed to a moderate risk of soil erosion, there is 715,848 ha of land suffered from water soil erosion in 2003, occupied 46.62% of total area, and most of the soil erosion area is on the slight and moderate risk, occupied 45.60 and 47.58% of soil erosion area, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号