首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Classification of Thermal Patterns at Karst Springs and Cave Streams   总被引:1,自引:0,他引:1  
Thermal patterns of karst springs and cave streams provide potentially useful information concerning aquifer geometry and recharge. Temperature monitoring at 25 springs and cave streams in southeastern Minnesota has shown four distinct thermal patterns. These patterns can be divided into two types: those produced by flow paths with ineffective heat exchange, such as conduits, and those produced by flow paths with effective heat exchange, such as small fractures and pore space. Thermally ineffective patterns result when water flows through the aquifer before it can equilibrate to the rock temperature. Thermally ineffective patterns can be either event‐scale, as produced by rainfall or snowmelt events, or seasonal scale, as produced by input from a perennial surface stream. Thermally effective patterns result when water equilibrates to rock temperature, and the patterns displayed depend on whether the aquifer temperature is changing over time. Shallow aquifers with seasonally varying temperatures display a phase‐shifted seasonal signal, whereas deeper aquifers with constant temperatures display a stable temperature pattern. An individual aquifer may display more than one of these patterns. Since karst aquifers typically contain both thermally effective and ineffective routes, we argue that the thermal response is strongly influenced by recharge mode.  相似文献   

2.
Hibbs BJ  Darling BK 《Ground water》2005,43(5):750-763
Intermontane basins in the Trans-Pecos region of westernmost Texas and northern Chihuahua, Mexico, are target areas for disposal of interstate municipal sludge and have been identified as possible disposal sites for low-level radioactive waste. Understanding ground water movement within and between these basins is needed to assess potential contaminant fate and movement. Four associated basin aquifers are evaluated and classified; the Red Light Draw Aquifer, the Northwest Eagle Flat Aquifer, the Southeast Eagle Flat Aquifer, and the El Cuervo Aquifer. Encompassed on all but one side by mountains and local divides, the Red Light Draw Aquifer has the Rio Grande as an outlet for both surface drainage and ground water discharge. The river juxtaposed against its southern edge, the basin is classified as a topographically open, through-flowing basin. The Northwest Eagle Flat Aquifer is classified as a topographically closed and drained basin because surface drainage is to the interior of the basin and ground water discharge occurs by interbasin ground water flow. Mountains and ground water divides encompass this basin aquifer on all sides; yet, depth to ground water in the interior of the basin is commonly >500 feet. Negligible ground water discharge within the basin indicates that ground water discharges from the basin by vertical flow and underflow to a surrounding basin or basins. The most likely mode of discharge is by vertical, cross-formational flow to underlying Permian rocks that are more porous and permeable and subsequent flow along regional flowpaths beneath local ground water divides. The Southeast Eagle Flat Aquifer is classified as a topographically open and drained basin because surface drainage and ground water discharge are to the adjacent Wildhorse Flat area. Opposite the Eagle Flat and Red Light Draw aquifers is the El Cuervo Aquifer of northern Chihuahua, Mexico. The El Cuervo Aquifer has interior drainage to Laguna El Cuervo, which is a phreatic playa that also serves as a focal point of ground water discharge. Our evidence suggests that El Cuervo Aquifer may lose a smaller portion of its discharge by interbasin ground water flow to Indian Hot Springs, near the Rio Grande. Thus, El Cuervo Aquifer is a topographically closed basin that is either partially drained if a component of its ground water discharge reaches Indian Hot Springs or undrained if all its natural ground water discharge is to Laguna El Cuervo.  相似文献   

3.
Formation of extensive phreatic caves in eogenetic karst aquifers is widely believed to require mixing of fresh and saltwater. Extensive phreatic caves also occur, however, in eogenetic karst aquifers where fresh and saltwater do not mix, for example in the upper Floridan aquifer. These caves are thought to have formed in their modern settings by dissolution from sinking streams or by convergence of groundwater flow paths on springs. Alternatively, these caves have been hypothesized to have formed at lower water tables during sea level low‐stands. These hypotheses have not previously been tested against one another. Analyzing morphological data and water chemistry from caves in the Suwannee River Basin in north‐central Florida and water chemistry from wells in the central Florida carbonate platform indicates that phreatic caves within the Suwannee River Basin most likely formed at lower water tables during lower sea levels. Consideration of the hydrological and geochemical constraints posed by the upper Floridan aquifer leads to the conclusion that cave formation was most likely driven by dissolution of vadose CO2 gas into the groundwater. Sea level rise and a wetter climate during the mid‐Holocene lifted the water table above the elevation of the caves and placed the caves tens of meters below the modern water table. When rising water tables reached the land surface, surface streams formed. Incision of surface streams breached the pre‐existing caves to form modern springs, which provide access to the phreatic caves. Phreatic caves in the Suwannee River Basin are thus relict and have no causal relationship with modern surficial drainage systems. Neither mixing dissolution nor sinking streams are necessary to form laterally extensive phreatic caves in eogenetic karst aquifers. Dissolution at water tables, potentially driven by vadose CO2 gas, offers an underappreciated mechanism to form cavernous porosity in eogenetic carbonate rocks. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Precisioncalculationofcrustaldeformationinducedbyradialsteadylaminelarflowofundergroundwaterfromsinglewelinmulti┐layeredstruc...  相似文献   

5.
As part of an integrated study of the hydrology, meltwater quality and dynamics of the Haut Glacier d'Arolla, Switzerland, the glacier's drainage network structure was determined from patterns of dye recovery in 342 injection experiments conducted from 47 moulins distributed widely across the glacier. This structure was compared with theoretical predictions based upon reconstructed patterns of water flow governed by (a) the subglacial hydraulic potential surface, and (b) the subglacial bedrock surface. These reconstructions were based on measurements of ice surface and bedrock topography obtained by a combination of ground survey and radio-echo sounding techniques. The two reconstructions simulate the drainage system structures expected for (a) closed channels, in which water is pressurized by the overlying ice, and (b) gravity-driven, open-channel flow. The closed-channel model provides the best fit to the observed structure, even though theoretical calculations suggest that, under summer discharge conditions, open-channel flow may be widespread beneath the glacier. Possible reasons for this apparent discrepancy are discussed.  相似文献   

6.
Ground-water levels in the Upper Floridan aquifer beneath the southeastern coast of South Carolina have undergone pumpage-induced declines approaching 20 ft below sea level at the southern end of Hilton Head Island. This scenario suggests the potential exists for the inducement of recharge to the Upper Floridan aquifer across the island, which could affect the quality of water being pumped by wells. However, low radiocarbon concentrations in ground-water samples (0.5 to 1.4 ± 0.1 PMC) indicate that most of the water is relict ground water reflecting prepumpage ground-water flow conditions in the Upper Floridan aquifer. The isotopic data indicate long residence times and water-chemistry evolution more characteristic of ground-water recharge occurring farther inland prior to the commencement of pumpage in the late 1800s. Radiocarbon concentrations (as Percent Modern Carbon) and stable carbon isotope ratios (as δ13C in dissolved inorganic carbon) determined during this study and reported in other studies on and around Hilton Head Island varied in a systematic manner. Heavier δ13C values (–2.8 to –1.6 per mil) in ground water beneath southern Hilton Head Island reflect ground-water discharge from prepumpage flowpaths originating over 100 miles away, hence a depletion in radiocarbon concentration with corrected ground-water ages no younger than 16,000 yrs BP. In contrast, lighter δ13C values (–13.9 to –8.67 per mil) beneath the northern part of the island indicate recent recharge as a result of water-level declines, and recharge in areas off the island that have not changed as a result of pumpage (evidenced by enrichment in radiocarbon with corrected ground-water ages no older than 4,000 yrs BP). This suggests that the δ13C composition of ground water in the Upper Floridan aquifer is a useful indicator of mixing between ground waters from different sources, and can be used to delineate recharge-discharge patterns. This approach may be applicable to other aquifers of highly evolved ground-water chemistry in regional carbonate aquifer systems that may be receiving recent recharge. Moreover, this approach could prove useful in delineating the contribution of recent water being captured by pumped wells as part of wellhead protection programs designed to assess aquifer vulnerability from surficial contaminant sources.  相似文献   

7.
Permian evaporite deposits have been extensively dissolved beneath the perimeter of the Southern High Plains in the Texas Panhandle. Hydrologic and geochemical data were collected from six test wells to determine hydrogeochemical processes involved and the source and flow paths of ground water moving in salt-dissolution zones. Geochemical similarities and hydraulic-head relationships indicate that ground water dissolving halite and anhydrite moves downward from aquifers in post-Permian formations and follows flow paths influenced by topography. Holocene salt-dissolution rates probably are lower than Tertiary and Pleistocene rates owing to regional changes in physiography and climate that probably decreased the amount of recharge to salt-dissolution zones. Present as well as palaeohydrologic ground-water velocities and salt-dissolution rates are probably less beneath the Southern High Plains than in adjacent, peripheral salt-dissolution zones because of lower hydraulic conductivities and lower hydraulic-head gradients. Salinities in peripheral salt-dissolution zones are low (67 000 to 95 000 mg L?1) despite high solubility of halite, reflecting relatively open circulation of ground water. In interior salt-dissolution zones beneath the Southern High Plains, ground-water circulation is low and water composition tends to reach halite saturation.  相似文献   

8.
Ground water flow in karst terranes generally occurs in the solution channels of carbonate aquifers. A hydrogeologist may utilize borehole geophysical methods to identify these solution channels in aquifers. Two specific methods that are applicable in karst terrains are:
1. Natural gamma ray logging
2. Borehole caliper logging.
Gamma ray logging can detect the presence of inter-bedded strata in the main limestone unit, such as shale, which emit high levels of gamma radiation. Gamma ray logging can also detect clay deposits in solution channels that may act to restrict the flow of ground water. The areal extent of these rock strata or clay-filled solution channels can be determined when gamma ray logs are conducted at several borehole locations across the site of investigation.
Borehole caliper logging can be employed to determine the presences of solution channels within the aquifer when penetrated by a borehole. In addition, since shale layers and clay filling are less resistant than the surrounding limestone, the caliper log may detect both the presence and the thickness of shale or clay layers in the aquifer.
Gamma ray logs can be used in conjunction with caliper logs to provide data on the stratigraphic location and thickness of solution channels and clay and shale layers within a limestone aquifer. This information is valuable to the hydrogeologist performing investigations at sites located in limestone terranes because ground water flow preferentially occurs along solution channels.  相似文献   

9.
Patterns and Age Distribution of Ground-Water Flow to Streams   总被引:2,自引:0,他引:2  
Simulations of ground-water flow in a generic aquifer system were made to characterize the topology of ground-water flow in the stream subsystem and to evaluate its relation to deeper ground-water flow. The flow models are patterned after hydraulic characteristics of aquifers of the Atlantic Coastal Plain and are based on numerical solutions to three-dimensional, steady-state, unconfined flow. The models were used to evaluate the effects of aquifer horizontal-to-vertical hydraulic conductivity ratios, aquifer thickness, and areal recharge rates on flow in the stream subsystem. A particle tracker was used to determine flow paths in a stream subsystem, to establish the relation between ground-water seepage to points along a simulated stream and its source area of flow, and to determine ground-water residence time in stream subsystems. In a geometrically simple aquifer system with accretion, the source area of flow to streams resembles an elongated ellipse that tapers in the down gradient direction. Increased recharge causes an expansion of the stream subsystem. The source area of flow to the stream expands predominantly toward the stream headwaters. Base flow gain is also increased along the reach of the stream. A thin aquifer restricts ground-water flow and causes the source area of flow to expand near stream headwaters and also shifts the start-of-flow to the drainage basin divide. Increased aquifer anisotropy causes a lateral expansion of the source area of flow to streams. Ground-water seepage to the stream channel originates both from near- and far-recharge locations. The range in the lengths of flow paths that terminate at a point on a stream increase in the downstream direction. Consequently, the age distribution of ground water that seeps into the stream is skewed progressively older with distance downstream. Base flow ia an integration of ground water with varying age and potentially different water quality, depending on the source within the drainage basin. The quantitative results presented indicate that this integration can have a wide and complex residence time range and source distribution.  相似文献   

10.
The characteristics of karst aquifers are difficult to be determined due to their heterogeneous physical properties and lack of hydrogeological information. In this case study, we applied two methods for a comparative analysis of storage and drainage characteristics in upstream, midstream, and downstream of Houzhai cave stream basin. In the first method, Minimum Smoothed Method (MSM) is used to determine the proportion of baseflow to the total flow (Baseflow Index, BFI). In the second method, a bicarbonate‐base two‐end member mixing model is used to quantify the slow flow component and fast flow component. For both methods, slow flow and quick flow are quantified at three sampling sites, which provide useful information for the analysis of storage and drainage characteristics. The results from flow separation method and hydrogeochemical analysis show a consistently increasing trend of the proportion of slow flow to total flow from the upstream to downstream which indicates that the voids of highly conductive conduits and well‐connected fissures decrease along the flow paths in the Houzhai cave stream basin in southwest China. The upstream areas have a low proportion of baseflow which indicates a high drainage capacity due to high permeable conduits and well‐connected fissures. The downstream areas, on the contrary, have a high proportion of baseflow which indicates a high storage capacity and slow infiltration due to the predominant presence of matrix and poorly‐connected fissures. These numerical methods provide alternative ways to investigate the storage and drainage characteristics of karst aquifers where direct measurement are not available.  相似文献   

11.
Cushion plant dominated peatlands are key ecosystems in tropical alpine regions of the Andes in South America. The cushion plants have formed peat bodies over thousands of years that fill many valley bottoms, and the forage produced by the plants is critical for native and nonnative domesticated mammals. The sources and flow paths of water supporting these peatlands remain largely unknown. Some studies have suggested that glacier meltwater streams support some peatlands, and that the ongoing loss of glaciers and their meltwaters could lead to the loss or diminishment of peatlands. We analysed the hydrologic regime of 10 peatlands in four mountain regions of Bolivia and Peru using groundwater monitoring. Groundwater levels in peatlands were relatively stable and within 20 cm of the ground surface during the rainy season, and many sites had water tables 40–90 cm below the ground surface in the dry season. Topographic and groundwater elevations in the peatlands demonstrated that the water source of all 10 peatlands was hillslope groundwater flowing from lateral moraines, talus, colluvium, or bedrock aquifers into the peatlands. There was little to no input from streams, whether derived from glacier melt or other sources, and glacier melt could not have recharged the hillslope aquifers supporting peatlands. We measured the stable water isotopes in water samples taken during different seasons, distributed throughout the catchments, and the values are consistent with this interpretation. Our findings indicate that peatlands in the study region are recharged by hillslope groundwater discharge rather than stream water and may not be as vulnerable to glacial decline as other studies have indicated. However, both glaciers and peatlands are susceptible to changing thermal and precipitation regimes that could affect the persistence of peatlands.  相似文献   

12.
Interbasin ground water movement of 200 to 240 L/sec occurs as underflow beneath a mountainous surface water divide separating the topographically higher Salar de Michincha from the topographically lower Salar de Coposa internally drained basins in the Altiplano of northern Chile. Salt-encrusted flats (salars) and saline lakes occur on the lowest parts of the basin floors and comprise the principal evaporative discharge areas for the basins. Because a surface water divide separates the basins, surface water drainage boundaries do not coincide with ground water drainage boundaries. In the region, interbasin ground water movement is usually not recognized, but occurs for selected basins, and at places is an important component of ground water budgets. With increasing development of water for mining industry and potential exportation of ground water from the Altiplano for use at coastal cities, demonstration and quantification of interbasin movement is important for assessment of sustainable ground water development in a region of extreme aridity. Recognition and quantification of interbasin ground water underflow will assist in management of ground water resources in the arid Chilean Altiplano environment.  相似文献   

13.
Chen X 《Ground water》2001,39(5):721-728
Analysis of stream-aquifer interaction due to ground water extraction has traditionally focused on the determination of the amount of water depleted in the stream. Less attention has been paid to the movement of infiltrated stream water inside aquifer, particularly for agricultural areas. This paper presents a method of using particle-tracking techniques to evaluate the transport of the leaked stream water in the nearby aquifers. Simple stream-aquifer conditions are used to demonstrate the usefulness of the analysis. Travel times, pathlines, and influence zones of stream water were determined between a stream and nearby pumping wells for seasonal ground water extraction areas. When water quantity is a concern, the analyses provide additional information about stream depletion; when water quality is an issue, they offer information for wellhead protection. Analyses were conducted for transient conditions, and both pumping and nonpumping periods were considered. According to the results from the simulation examples, migration of infiltrated stream water into the nearby aquifers is generally slow and most infiltrated stream water does not arrive at the pumping well at the end of a 90-day irrigation season. Infiltrated stream water may remain in the aquifer for several years before arriving at the pumping well. For aquifers with a regional hydraulic gradient toward streams, part of the infiltrated stream water may discharge back to streams during a recovery period.  相似文献   

14.
Regional ground water flow is most usually estimated using Darcy's law, with hydraulic conductivities estimated from pumping tests, but can also be estimated using ground water residence times derived from radioactive tracers. The two methods agree reasonably well in relatively homogeneous aquifers but it is not clear which is likely to produce more reliable estimates of ground water flow rates in heterogeneous systems. The aim of this paper is to compare bias and uncertainty of tracer and hydraulic approaches to assess ground water flow in heterogeneous aquifers. Synthetic two-dimensional aquifers with different levels of heterogeneity (correlation lengths, variances) are used to simulate ground water flow, pumping tests, and transport of radioactive tracers. Results show that bias and uncertainty of flow rates increase with the variance of the hydraulic conductivity for both methods. The bias resulting from the nonlinearity of the concentration–time relationship can be reduced by choosing a tracer with a decay rate similar to the mean ground water residence time. The bias on flow rates estimated from pumping tests is reduced when performing long duration tests. The uncertainty on ground water flow is minimized when the sampling volume is large compared to the correlation length. For tracers, the uncertainty is related to the ratio of correlation length to the distance between sampling wells. For pumping tests, it is related to the ratio of correlation length to the pumping test's radius of influence. In regional systems, it may be easier to minimize this ratio for tracers than for pumping tests.  相似文献   

15.
Laplace transform step-response functions are presented for various homogeneous confined and leaky aquifer types and for anisotropic, homogeneous unconfined aquifers interacting with perennial streams. Flow is one-dimensional, perpendicular to the stream in the confined and leaky aquifers, and two-dimensional in a plane perpendicular to the stream in the water-table aquifers. The stream is assumed to penetrate the full thickness of the aquifer. The aquifers may be semi-infinite or finite in width and may or may not be bounded at the stream by a semipervious streambank. The solutions are presented in a unified manner so that mathematical relations among the various aquifer configurations are clearly demonstrated. The Laplace transform solutions are inverted numerically to obtain the real-time step-response functions for use in the convolution (or superposition) integral. To maintain linearity in the case of unconfined aquifers, fluctuations in the elevation of the water table are assumed to be small relative to the saturated thickness, and vertical flow into or out of the zone above the water table is assumed to occur instantaneously. Effects of hysteresis in the moisture distribution above the water table are therefore neglected. Graphical comparisons of the new solutions are made with known closed-form solutions.  相似文献   

16.
Heat was used as a natural tracer to characterize shallow ground water flow beneath a complex wetland system. Hydrogeologic data were combined with measured vertical temperature profiles to constrain a series of two-dimensional, transient simulations of ground water flow and heat transport using the model code SUTRA (Voss 1990). The measured seasonal temperature signal reached depths of 2.7 m beneath the pond. Hydraulic conductivity was varied in each of the layers in the model in a systematic manual calibration of the two-dimensional model to obtain the best fit to the measured temperature and hydraulic head. Results of a series of representative best-fit simulations represent a range in hydraulic conductivity values that had the best agreement between simulated and observed temperatures and that resulted in simulated pond seepage values within 1 order of magnitude of pond seepage estimated from the water budget. Resulting estimates of ground water discharge to an adjacent agricultural drainage ditch were used to estimate potential dissolved organic carbon (DOC) loads resulting from the restored wetland. Estimated DOC loads ranged from 45 to 1340 g C/(m2 year), which is higher than estimated DOC loads from surface water. In spite of the complexity in characterizing ground water flow in peat soils, using heat as a tracer provided a constrained estimate of subsurface flow from the pond to the agricultural drainage ditch.  相似文献   

17.
Application of a Discrete-Continuum Model to Karst Aquifers in North China   总被引:7,自引:0,他引:7  
A generalized discrete-continuum model is developed to simulate ground water flow in the karst aquifers of North China. The model is a hybrid numerical flow model, which takes into account both quick conduit flow and diffusive fissure flow. The conduit flow is represented by a discrete network model, and the fissure flow is modeled by a continuum approach. The developed model strongly emphasizes the function of the conduits in the flow fields. They control the general drainage pattern, as demonstrated in the simulation of a complex karst aquifer in North China. The model reproduces reasonably well the flow field in response to an unanticipated discharge of ground water from the karst aquifer into an underground mine based on the aquifer parameters that are manually calibrated from a multiple-well pumping test. Sensitivity of the model to the aquifer parameters was evaluated in the context of the case study.  相似文献   

18.
A large‐scale groundwater flow and transport model is developed for a deep‐seated (100 to 300 m below ground surface) sedimentary aquifer system. The model is based on a three‐dimensional (3D) hydrostratigraphic model, building on a sequence stratigraphic approach. The flow model is calibrated against observations of hydraulic head and stream discharge while the credibility of the transport model is evaluated against measurements of 39Ar from deep wells using alternative parameterizations of dispersivity and effective porosity. The directly simulated 3D mean age distributions and vertical fluxes are used to visualize the two‐dimensional (2D)/3D age and flux distribution along transects and at the top plane of individual aquifers. The simulation results are used to assess the vulnerability of the aquifer system that generally has been assumed to be protected by thick overlaying clayey units and therefore proposed as future reservoirs for drinking water supply. The results indicate that on a regional scale these deep‐seated aquifers are not as protected from modern surface water contamination as expected because significant leakage to the deeper aquifers occurs. The complex distribution of local and intermediate groundwater flow systems controlled by the distribution of the river network as well as the topographical variation (Tóth 1963) provides the possibility for modern water to be found in even the deepest aquifers.  相似文献   

19.
Upper Sinking Cove, dissecting the eastern escarpment of the Cumberland Plateau, is characterized by a multiple aquifer, predominantly vadose hydrologic system with minor surface components. There is a central trunk channel along the axis of the cove and a network of independent tributaries. Aquitards within the limestones, particularly Hartselle Formation shales, have influenced both cave and surface landform development by perching ground waters and slowing the vertical growth of closed depressions. Long-term solutional denudation in the portion of the cove underlain by limestones (40 per cent) is an estimated 56 mm per 1000 years, suggesting that karst development began 15–16 million years ago. Despite lower soil CO2 and spring water hardness, 61 per cent of annual denudation occurs in the six winter months when 76 per cent of yearly runoff occurs. Landform development in Upper Sinking Cove appears to have begun as stream erosion carved a valley first in the sandstone caprock of the escarpment and later in the underlying Pennington Formation limestones containing numerous shale layers which promoted surface stream flow. Eventually stream erosion exposed the massive Bangor limestones which allowed deep ground water flow. Surface streams were pirated underground with the eventual formation of the chain of three closed depressions which constitute Upper Sinking Cove.  相似文献   

20.
Canadian examples suggest that karst landforms may be divided into eight types in terms of their temporal relationships to the record of repeated Quaternary glaciations. Two types are postglacial, two are subglacial, one type occurs where glacial features are adapted to karstic drainage, and three types display sequences of karstic and glacial action. Glacier effects upon karst landforms and their underlying aquifers display the gamut of possibilities. They may destroy, inhibit, preserve, or stimulate karst development. Where continuous permafrost is maintained when covered by glacier ice, postglacial karst is limited to the active layer epikarst. Where permafrost is thawed beneath ice or during deglaciation there are a variety of postglacial karst developments, depending in part upon climate and in part upon local lithologic and relief conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号