首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solution enthalpies of synthetic olivine solid solutions in the system Mg2SiO4-Fe2SiO4 have been measured in molten 2PbO·B2O3 at 979 K. The enthalpy data show that olivine solid solutions have a positive enthalpy of mixing and the deviation from ideality is approximated as symmetric with respect to composition, in contrast to the previous study. Applying the symmetric regular solution model to the present enthalpy data, the interaction parameter of ethalpy (WH) is estimated to be 5.3±1.7 kJ/mol (one cation site basis). Using this Wh and the published data on excess free energy of mixing, the nonideal parameter of entropy (Ws) of olivine solid solutions is estimated as 0.6±1.5 J/mol·K.  相似文献   

2.
 Magnetic measurement of Fe3− x Si x O4 spinel solid solutions indicates that their Curie temperatures decrease gradually, but not linearly, from 851 to 12 K with increasing content of nonmagnetic ions Si4+. Magnetic hysteresis becomes more noticeable in solid solutions having a larger content of Fe2SiO4. Saturation magnetizations of Fe3− x Si x O4 samples increase up to x=0.357 and they are easily saturated in the field of H=0.1 T. However, magnetization of the sample of x=0.794 does not approach saturation even at high field of H=7.0 T and has a large coercive force. The Si4+ disordered distribution is confirmed to be tetr[Fe3+ 1− x + x t Si4+ x (1− t )] octa[Fe2+ 1+ x Fe3+ 1− x x t Si4+ x t ] O4 by the spin moment, which is consistent with site occupancy obtained from X-ray crystal structure refinement. Their molecular magnetizations would be expressed as M B={4(1+x)+10xtB as functions of composition parameter x and Si4+ ordering parameter t of the solid solution. The sample of x=0.794 is antiferromagnetic below the Néel temperature, mainly due to the octahedral cation interaction M OM O, while both M TM O and M OM O interactions induce a ferrimagnetic property. Concerning magnetic spin configuration, in the case of x>0.42, the lowest dɛ level becomes a singlet, resulting in no orbital angular momentum. Received: 20 April 2000 / Accepted: 11 September 2000  相似文献   

3.
Some unusual density relations between olivine and coexisting liquid in the system fosterite-fayalite are reported. At 1 atmosphere pressure olivine floats on its coexisting liquid for intermediate compositions on this binary because of extreme partitioning of Fe into the melt phase. At 20 kilobars the usual behavior of olivine settling occurs because the partitioning of Fe in the melt is reduced, aided possibly by the dissolution of CO2 in the melt from use of a graphite container. Olivine flotation and settling are rapid in a time period of only a few hours because viscosities are a little greater than that of paraffin oil at room temperature. Some adcumulate textures with good triple junction grain boundaries are developed. General observations of differentiated magmatic systems on a number of scales and experimental data indicate that the mechanisms by which magmas can differentiate vary considerably in the ultramafic to tholeiitic compositional range.  相似文献   

4.
The isobaric (P=10 kb) temperature dependence of the electrical conductivities of forsterite, fayalite and forsterite-fayalite mixed crystals was measured with special regard to the thermodynamics of point defects in these minerals. Measurements, taken at increasing and decreasing temperature, were performed on synthetic powders of the following compositions: Fo 100/Fa 0, Fo 90/Fa 10, Fo 80/Fa 20, Fo 60/Fa 40, and Fo 0/Fa100. Control of oxygen partial pressure was achieved with solid state buffers (Fa/Q/M, Fa/Q/I, and Fe/FeO). Activities of the binary components were controlled by equilibrating the sample with its neighbouring phases. All values for σ, obtained with controlled pO2 and fixed activities of the binary components, agree well upon either heating or cooling. From the gradient of lg σ vs. 1/T plots, the following activation energies were estimated: 2,461 eV (970°–1075°C) and 0.984 eV (522°–970°C) for Fo 100/Fa 0 equilibrated with MgO; 0.777 eV and 0.683 eV for Fo 90/Fa 10 and Fo 80/Fa 20 equilibrated with enstatite and pO2 controlled by Fe/FeO buffer; 0.622 eV, 0.528 eV, and 0.479 eV for Fo 90/Fa 10, Fo 80/Fa 20, and Fo 60/Fa 40 equilibrated with enstatite and pO2 controlled by Fa/Q/M buffer; and 0.524 eV and 0.383 eV for Fo 0/Fa 100 equilibrated with Q/I and Q/M respectively.  相似文献   

5.
《Chemical Geology》2006,225(3-4):244-255
Thermodynamic properties of the BaSO4–BaCrO4 hashemite solid solution were calculated using molecular principles. Force-field potentials and physical properties of the end member BaCrO4 were derived using the program package GULP. Subsequently, anion–anion (SO42−–CrO42−, SO42−–SO42−, CrO42−–CrO42−) interaction energies were fitted to a number of random and ordered anion distributions, which were energy-optimized using these empirical potentials. With these interaction energies, diagrams for the enthalpy and free energy of mixing could be computed for the entire range of the hashemite solid solution between the BaSO4 and BaCrO4 end members and for a number of annealing temperatures. These thermodynamic data show that the solid solution is close to ideal and ordering is not observed at low temperatures for any composition. However, according to our calculations, exsolution may occur at the nanoscale due to a slight tendency of sulfate–chromate avoidance.Growth experiments of chromate-rich hashemite on barite using atomic force experiments (AFM) in a fluid cell indicate that hashemite does not show the same degree of growth anisotropy as barite. In the case of barite, this anisotropy leads to a structural self-inhibition of spiral growth. In contrast, hashemite exhibits a spatially more extended spiral growth, which can contribute more to overall volume growth than in the case of barite. This finding is confirmed by a higher growth rate of hashemite than of barite in macroscopic batch-reactor and flow-through experiments.Molecular simulations indicate that there is a less pronounced step energy difference between bounding steps of growth islands for hashemite than for barite, which may partially explain the difference in growth anisotropy of the two minerals. Differences in adsorption energies to the corners of growth islands, which are the limiting steps of growth, do not seem to be high enough to explain differences in growth anisotropies. Therefore, kinetic effects or differences in the interfacial free energies of the two minerals may serve as an additional explanation for differences in the growth behavior.  相似文献   

6.
A thermodynamic solution model is developed for minerals whose compositions lie in the two binary systems Mg2SiO4-Fe2SiO4 and Mg2Si2O6-Fe2Si2O6. The formulation makes explicit provision for nonconvergent ordering of Fe2+ and Mg2+ between M1 and M2 sites in orthopyroxenes and non-zero Gibbs energies of reciprocal ordering reactions in both olivine and orthopyroxene. The calibration is consistent with (1) constraints provided by available experimental and natural data on the Fe-Mg exchange reaction between olivine and orthopyroxene ± quartz, (2) site occupancy data on orthopyroxenes including both crystallographic refinements and Mössbauer spectroscopy, (3) enthalpy of solution data on olivines and orthopyroxenes and enthalpy of disordering data on orthopyroxene, (4) available data on the temperature and ordering dependence of the excess volume of orthopyroxene solid solutions, and (5) direct activity-composition determinations of orthopyroxene and olivine solid solutions at elevated temperatures. Our analysis suggests that the entropies of the exchange [Mg(M2)Fe(M1)Fe(M2)Mg(M1)] and reciprocal ordering reactions [Mg(M2)Mg(M1)+ Fe(M2)Fe(M1)Fe(M2)Mg(M1)+Mg(M2)Fe(M1)] cannot differ significantly (± 1 cal/K) from zero over the temperature range of calibration (400°–1300° C). Consideration of the mixing properties of olivine-orthopyroxene solid solutions places tight constraints on the standard state thermodynamic quantities describing Fe-Mg exchange reactions involving olivine, orthopyroxene, pyralspite garnets, aluminate spinels, ferrite spinels and biotite. These constraints are entirely consistent with the standard state properties for the phases-quartz,-quartz, orthoenstatite, clinoenstatite, protoenstatite, fayalite, ferrosilite and forsterite which were deduced by Berman (1988) from an independent analysis of phase equilibria and calorimetric data. In conjunction with these standard state properties, the solution model presented in this paper provides a means of evaluating an internally consistent set of Gibbs energies of mineral solid solutions in the system Mg2SiO4-Fe2SiO4-SiO2 over the temperature range 0–1300° C and pressure interval 0.001–50 kbars. As a consequence of our analysis, we find that the excess Gibbs energies associated with mixing of Fe and Mg in (Fe, Mg)2SiO4 olivines, (Fe, Mg)3Al2Si3O12 garnets, (Fe, Mg)Al2O4 and (Fe, Mg)Fe2O4 spinels, and K(Mg, Fe)3AlSi3O10(OH)2 biotites may be satisfactory described, on a macroscopic basis, with symmetric regular solution type parameters having values of 4.86±0.12 (olivine), 3.85±0.09 (garnet), 1.96±0.13 (spinel), and 3.21±0.29 kcals/gfw (biotite). Applications of the proposed solution model demonstrate the sensitivity of petrologic modeling to activity-composition relations of olivine-orthopyroxene solutions. We explore the consequences of estimating the activity of silica in melts forming in the mantle and we develop a graphical geothermometer/geobarometer for metamorphic assemblages of olivine+orthopyroxene+quartz. Quantitative evaluation of these results suggests that accurate and realistic estimates of silica activity in melts derived from mantle source regions,P-T paths of metamorphism and other intensive variables of petrologic interest await further refinements involving the addition of trace elements (Al3+ and Fe3+) to the thermodynamic formulation for orthopyroxenes.  相似文献   

7.
Three Al-Cr exchange isotherms at 1,250°, 1,050°, and 796° between Mg(Al, Cr)2O4 spinel and (Al, Cr)2O3 corundum crystalline solutions have been studied experimentally at 25 kbar pressure. Starting from gels of suitable bulk compositions, close approach to equilibrium has been demonstrated in each case by time studies. Using the equation of state for (Al, Cr)2O3 crystalline solution (Chatterjee et al. 1982a) and assuming that the Mg(Al, Cr)2O4 can be treated in terms of the asymmetric Margules relation, the exchange isotherms were solved for Δ G *, and . The best constrained data set from the 1,250° C isotherm clearly shows that the latter two quantities do not overlap within three standard deviations, justifying the choice of asymmetric Margules relation for describing the excess mixing properties of Mg(Al, Cr)2O4 spinels. Based on these experiments, the following polybaric-polythermal equation of state can be formulated: , P expressed in bars, T in K, G m ex and W G,i Sp in joules/mol. Temperature-dependence of G m ex is best constrained in the range 796–1,250° C; extrapolation beyond that range would have to be done with caution. Such extrapolation to lower temperature shows tentatively that at 1 bar pressure the critical temperature, T c, of the spinel solvus is 427° C, with dTc/dP≈1.3 K/kbar. The critical composition, X c, is 0.42 , and changes barely with pressure. Substantial error in calculated phase diagrams will result if the significant positive deviation from ideality is ignored for Al-Cr mixing in such spinels.  相似文献   

8.
Structural parameters and thermodynamic properties of strontianite — witherite solid solutions have been studied by X-ray powder diffraction, heat flux Calvet calorimetry and cation-exchange equilibria technique. X-ray study of the synthetic samples have shown linear and quadratic (for c-parameter) composition dependencies of the lattice constants in the carbonate solid solution. The thermodynamic energy parameters demonstrate the non-ideal character of strontianite — witherite solid solutions. Enthalpies of solution of the samples have been measured in 2PbO*B2O3 at 973 K. The new data on the enthalpy of formation H f,298.15 0 of SrCO3 and BaCO3 were obtained: -1231.4±3.2 and -1209.9±5.8 kJ*mol-1 respectively. The enthalpy of mixing of the solid solution was found to be positive and asymmetric with maximum at XBa (carbonate)=0.35. The composition dependence of the enthalpy of mixing may be described by two — parametric Margules model equation: H mix=X BaX Sr[(4.40±3.91)X Ba+(28.13±3.91)X Sr] kJmol–1 Cation-exchange reactions between carbonates and aqueous SrCl2-BaCl2 supercritical solutions (fluids) were carried out at 973 and 1073 K and 2 kbar. Calculated Margules model parameters of the excess free energy are: for orthorhombic carbonate solid solutions W Sr=W Ba=11.51±0.40 kJmol–1 (973 K) and W Sr=W Ba=12.09±0.95 kJmol (1073 K) for trigonal carbonate solid solutions W Sr=W Ba=13.55±0.40 kJmol (1073 K).  相似文献   

9.
New polarized infrared reflectance spectra of pure synthetic forsterite and natural Fo86-olivine have been recorded from 5000 to 100cm-1. Out of the 35 expected infrared active modes, 33 have been observed (8 B1u, 12 B2u, 13 B3u). The observed frequency shift from pure forsterite to Fo86-olivine is consistent with the higher mass of the substituted iron. The substitution of only 14% of iron also reduces the overal far-infrared reflectivity of olivine as compared to pure forsterite. Several discrepancies associated with previous studies of forsterite are explained by our investigation. We suggest that some of the previous investigations were complicated by polarization mixing.  相似文献   

10.
The magnetic behaviour and Curie temperatures (T C ) of spinelloids and spinels in the Fe3O4–Fe2SiO4 and Fe3O4–(Mg,Fe)2SiO4 systems have been determined from magnetic susceptibility (k) measurements in the temperature range –192 to 700 °C. Spinelloid II is ferrimagnetic at room temperature and the k measurements display a characteristic asymmetric hump before reaching a T C at 190 °C. Spinelloid V from the Mg-free system is paramagnetic at room temperature and hysteresis loops at various low temperatures indicate a ferri- to superparamagnetic transition before reaching the T C . The T C shows a non-linear variation with composition between –50 and –183 °C with decreasing magnetite component (X Fe3O4). The substitution of Mg in spinelloid V further decreases T C . Spinelloid III is paramagnetic over nearly the total temperature range. Ferrimagnetic models for spinelloid II and spinelloid V are proposed. The T C of Fe3O4–Fe2SiO4 spinel solid solutions gradually decrease with increasing Si content. Spinel is ferrimagnetic at least to a composition of X Fe3O4=0.20, constraining a ferrimagnetic to antiferromagnetic transition to occur at a composition of X Fe3O4<0.20. A contribution of the studied ferrimagnetic phases for crustal anomalies on the Earth can be excluded because they lose their magnetization at relatively low temperatures. However, their relevance for magnetic anomalies on other planets (Mars?), where these high-pressure Fe-rich minerals could survive their exhumation or were formed by impacts, has to be considered.  相似文献   

11.
Raman microprobe (RMP) spectra were produced for each of the olivine and spinel structured phases of Mg2GeO4 and (Mg, Fe)2SiO4. The assembled data show that bands due to the tetrahedra in silicate and germanate olivines shift in a way that indicates a dominant mass effect. This correspondence is difficult to make in spinels due to differences in structural type. Differences in Fe/Mg content of olivine shift the tetrahedral vibration bands only slightly, but their linear shifts could be used to indicate the composition of the phase.  相似文献   

12.
Polarized optical absorption measurements were carried out on three single crystals of Mg2SiO4 (forsterite), differently doped with Cr. Two crystals containing average 0.013 and 0.027 weight% Cr, respectively, were pulled from the melt in air, whereas one crystal containing average 0.08 weight% Cr was pulled from the melt in an argon atmosphere. The absorption spectra of the three crystals agree with each other although the intensity of single absorption bands varies significantly. In all -polarized patterns a sharp absorption line around 18000cm-1 (550 nm) appears. Conjectures are presented to assign this line to the lasing center in Cr doped forsterite which very likely exists as Cr4+ at the fourfold coordinated Si site.  相似文献   

13.
Tracerdiffusion coefficients D Fe* (and D Mg*) are presented for olivines of composition (Fe x Mg1?x )2SiO4 at T=1,130° C as a function of x, and oxygen activity, a O 2. Since the oxygen activity dependence of D Fe* (D Mg*) and that of the cation vacancy concentration are almost identical, it is concluded that a vacancy diffusion mechanism is operative in the octahedrally coordinated cation sublattices. From D Fe* and D Mg*, the chemical diffusion coefficient \(\bar D\) can be calculated. The calculated \(\bar D\) is in agreement with \(\bar D\) -values obtained by Boltzmann-Matano analysis of interdiffusion experiments. In addition, correlation factors are evaluated from the tracerdiffusion data in order to calculate selfdiffusion coefficients.  相似文献   

14.
The method of crystal static deformation, including inner strain effects, was applied to calculate the structure configuration and the elastic constants of forsterite under anisotropic and isotropic pressure. A Born type interatomic potential is used, with optimized atomic charges and repulsive radii; SiO4 tetrahedra are approximated as rigid units. Computations were carried out in the range 1–8 GPa, with steps of 1 GPa, for the three uniaxial stresses τ1, τ2, τ3 and for pressure p. By interpolation of results, interatomic distances and elastic tensor components are shown to depend quadratically on stress. A non-linear behaviour generally appears above 4 GPa; the importance of inner strain and non-linear effects is analyzed. Mg-O bond lengths and O-O edges of coordination polyhedra respond differently to anisotropic and to isotropic stresses, according to the topological features of the structure. Elastic and structural results for hydrostatic pressure are compared to experimental literature data, discussing the range of validity of the rigid body approximation for SiO4 groups.  相似文献   

15.
Enthalpies of solution in eutectic (Li, Na)2B2O4 melts at 1023 K were measured for five synthetic orthopyroxenes on the join MgSiO3-FeSiO3. The pyroxenes were synthesized at 1120°C and 20 kbar and thus were presumed to be highly disordered. The measurements indicate a small positive enthalpy of mixing, with WH = 950 cal/MSiO3.Enthalpy of solution measurements were made on a natural, well-ordered orthopyroxene near the composition En52.5Fs47.5 and on this material after heat-treatment at 1150°C and 20 kbar. Irreversible expansion of the unit-cell constants of the natural pyroxene after heat-treatment at various temperatures was used to characterize the degree of M-site disorder. The observed enthalpy of solution decrement of 0.85 kcal/MSiO3 between the natural En52.5 and the same material heated at 1150° corresponds to about half of the maximum possible disordering, or ΔXFeM1? 0.25, which leads to a ΔH of 7.5 kcal/M2Si2O6, for the exchange reaction: Fe(M2) + Mg(Ml) = Fe(Ml) + Mg(M2) if M-site interaction energy terms are ignored. This ΔH is larger than inferred from any of the analyses of site-occupancy data except that of Besancon (1981), who gave a very similar value. The measured ΔH of disorder and the WH of mixing together indicate a large ΔH as great as 3.2 kcal for the reciprocal reaction: Fe2Si2O6 + Mg2Si2O6 = Fe(M2)Mg(M1)Si2O6 + Fe(M1)Mg(M2)Si2O6 as anticipated by Sack (1980).As a consequence of the inferred magnitudes of ΔHof the exchange and reciprocal reactions, departures from ideality of Gibbs energy of mixing of orthopyroxene are very small at 700°–1000°C. Activities of MgSiO3 and FeSiO3 may be replaced by their mol fractions at all temperatures in most petrologic calculations.  相似文献   

16.
High pressure phase transformations for all the mineral phases along the joins Mg2SiO4-Ca2-SiO4 and MgO-CaSiO3 in the system MgO-CaO-SiO2 were investigated in the pressure range between 100 and 300 kbar at about 1,000 °C, by means of the technique involving a diamond-anvil press coupled with laser heating. In addition to the four end-members, there are three stable intermediate mineral components in these two joins. Phase behaviour of all the end-member components at high pressure have been reported earlier and are reviewed here. Results of this study reveal that the three intermediate components are all unstable relative to the end-members at pressures greater than 200 kbar. Ultimately, monticellite (CaMgSiO4) decomposes into CaSiO3 (perovskite-type)+MgO; merwinite (Ca3MgSi2O8) decomposes into Ca2SiO4(K2NiF4-type)+CaSiO3 (perovskite-type)+MgO; and akermanite (Ca2MgSi2O7) decomposes into CaSiO3 (perovskite-type)+MgO. Note that the decomposition reactions of all phases studied here result in the formation of MgO. Intermediate Ca-Mg silicates transform to pure Ca-silicates plus MgO, while pure Mg2SiO4 transforms to MgSiO3+MgO.  相似文献   

17.
A multi-anvil device was used to synthesize 24 mg of pure γ-Fe2SiO4 crystals at 8.5 GPa and 1,273 K. The low-temperature heat capacity (C p) of γ-Fe2SiO4 was measured between 5 and 303 K using the heat capacity option of a physical properties measurement system. The measured heat capacity data show a broad λ-transition at 11.8 K. The difference in the C p between fayalite and γ-Fe2SiO4 is reduced as the temperature increases in the range of 50–300 K. The gap in C p data between 300 and 350 K of γ-Fe2SiO4 is an impediment to calculation of a precise C p equation above 298 K that can be used for phase equilibrium calculations at high temperatures and high pressures. The C p and entropy of γ-Fe2SiO4 at standard temperature and pressure (S°298) are 131.1 ± 0.6 and 140.2 ± 0.4 J mol−1 K−1, respectively. The Gibbs free energy at standard pressure and temperature (Δ f,298) is calculated to be −1,369.3 ± 2.7 J mol−1 based on the new entropy data. The phase boundary for the fayalite–γ-Fe2SiO4 transition at 298 K based on current thermodynamic data is located at 2.4 ± 0.6 GPa with a slope of 25.4 bars/K, consistent with extrapolated results of previous experimental studies.  相似文献   

18.
19.
We present the temperature dependence of the specific heat of CoCr2O4 between 2.08 K and 306 K in zero magnetic field. The lattice component can be described by the Komada–Westrum model with a characteristic temperature ΘKW = 541 K. The entropy of the magnetic component amounts to 33.51 J mol?1 K?1 at T = 298.15 K, in good agreement with the magnetic entropy of Co2+ and Cr3+ ions with completely quenched orbital moments. We compare our results with data available in literature.  相似文献   

20.
Elastic moduli of forsterite were measured between 300 and 1,200 K (? 1.6 times the Debye temperature) by the Rectangular Parallelepiped Resonance method. All the moduli decrease regularly with temperature. A summary of the results is as follows:
Elastic moduli C ij in GPa  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号