共查询到20条相似文献,搜索用时 4 毫秒
1.
H. Rager 《Physics and Chemistry of Minerals》1977,1(4):371-378
The electron spin resonance (ESR) spectrum of Cr3+ in a synthetic single crystal of forsterite doped with Cr2O3 was studied at room temperature in the X-band frequency range. The dependence of the observed spectra on the crystal orientation with respect to the applied magnetic field was investigated. The ESR spectra are described by the spin Hamiltonian \(H = \beta HgS + D(S_Z^{\text{2}} - {\text{1/3}}S{\text{(}}S{\text{ + 1)) + }}E{\text{(}}S_x^{\text{2}} - S_y^{\text{2}} {\text{)}}\) with S=3/2. The spin resonance reveals that the chromium ions are located at both the M1 and M2 positions. Other possible substitutional or interstitial Cr3+ positions may be possible, but were not observed. The site occupancy numbers of Cr3+ at M1 and M2 are roughly 1.2×10?4 and 0.8×10?4, respectively, assuming that chromium is oxidized completely. The preference of the chromium ions for M1 was interpreted qualitatively in terms of crystal field criteria. The rhombic and axial spin Hamiltonian parameters, D and E, and the directions of the magnetic axes obtained for M1 and M2 are consistent with the respective oxygen coordination polyhedra. 相似文献
2.
Bruno Reynard 《Physics and Chemistry of Minerals》1991,18(1):19-25
New polarized infrared reflectance spectra of pure synthetic forsterite and natural Fo86-olivine have been recorded from 5000 to 100cm-1. Out of the 35 expected infrared active modes, 33 have been observed (8 B1u, 12 B2u, 13 B3u). The observed frequency shift from pure forsterite to Fo86-olivine is consistent with the higher mass of the substituted iron. The substitution of only 14% of iron also reduces the overal far-infrared reflectivity of olivine as compared to pure forsterite. Several discrepancies associated with previous studies of forsterite are explained by our investigation. We suggest that some of the previous investigations were complicated by polarization mixing. 相似文献
3.
Elastic moduli of forsterite were measured between 300 and 1,200 K (? 1.6 times the Debye temperature) by the Rectangular Parallelepiped Resonance method. All the moduli decrease regularly with temperature. A summary of the results is as follows: