共查询到20条相似文献,搜索用时 15 毫秒
1.
米兰科维奇理论认为地球轨道的天文周期调控北半球高纬地区夏季接收太阳辐射的强度,进而驱动第四纪地表的冰期-间冰期旋回。20世纪60年代以来,米兰科维奇理论预测的天文周期在第四纪海洋沉积物中得到了印证,看似证明了该理论的正确性。但大量新记录的出现给经典米兰科维奇理论带来了挑战,早更新世的“4万年周期问题”——即为何早更新世的冰期旋回中没有岁差周期——就是其中之一。目前对于该问题的两种回答包括:1)南、北半球冰盖分别受当地夏季太阳辐射强度的驱动;2)早更新世冰期受北半球夏季累积太阳辐射量驱动。不难发现,这两种假说均默认了米兰科维奇理论中“高纬地区是驱动地球气候演变关键区域”的假设,争议的点仅在于岁差是否影响了高纬度冰盖的变化,这或许是“4万年周期问题”至今悬而未决的原因。未来要解决早更新世乃至整个第四纪冰期旋回的问题,或许目光要跳出高纬地区,考虑低纬过程以及高-低纬之间的相互作用。
相似文献2.
The lateral continuity and facies heterogeneities of metre‐scale cycles in a greenhouse Lower Jurassic (Sinemurian) carbonate ramp from the northern Iberian Basin (Spain) was evaluated from extensive field analysis carried out on a well‐exposed 12 km long outcrop. Eleven high‐frequency continuous cycles and their bounding surfaces are traceable laterally through the entire outcrop. However, three of these cycles are found to split laterally into discontinuous cycles of more limited distribution (up to 3 to 5 km of lateral extent). The continuous and discontinuous cycles have a similar field expression in one‐dimensional logs. As a consequence, the number of cycles that can be differentiated is variable along the logged sections (i.e. from 11 to 16). Cycles have variable facies heterogeneities and sedimentary trends depending on the environment of formation: shallowing‐upward and symmetrical cycles occur in protected lagoon–tidal flat areas and in the open‐marine, high‐energy domain. These cycles show significant facies heterogeneities, which were controlled mainly by lateral migration of a mosaic of facies over an irregular topography. Deepening‐upward and aggradational cycles are generated in low‐energy, sub wave‐base, open‐marine areas. Facies are laterally homogeneous, reflecting low potential for carbonate accumulation and inability to fill the created accommodation space in this low‐relief and relatively deep area. Cycle boundaries are generated by stages of rapid accommodation gain, involving the flooding of the carbonate ramp; they are more likely to originate from regional tectonic pulses (related to the extensional tectonics operating in the northern Iberian Basin) rather than greenhouse low‐amplitude eustacy. Discontinuous cycles tend to occur in thickened areas and are interpreted as originating from the infill of wedge‐shaped accommodation space resulting from differential subsidence (i.e. local tectonic pulses). In conclusion, where thickness variations occur in extensional settings lateral continuity of cycles should not be expected. In less well‐exposed, or in one‐dimensional sections and in wells, it would not be possible to distinguish continuous from discontinuous cycles, or to understand such two‐dimensional heterogeneities. Identification of unique cycle‐forming mechanisms or attempting cyclostratigraphic long‐distance correlation of cycles is unrealistic without a detailed analysis of the architecture of cycles in laterally continuous outcrops. 相似文献
3.
High-frequency cyclicity (Milankovitch and millennial-scale) in slope-apron carbonates: Zechstein (Upper Permian), North-east England 总被引:2,自引:0,他引:2
The Upper Permian (Zechstein) slope carbonates in the Roker Formation (Zechstein 2nd‐cycle Carbonate) in North‐east England consist of turbidites interbedded with laminated lime‐mudstone. Studies of turbidite bed thickness and relative proportion of turbidites (percentage turbidites in 20 cm of section) reveal well‐developed cyclicities consisting of thinning‐upward and thickening‐upward packages of turbidite beds. These packages are on four scales, from less than a metre, up to 50 m in thickness. Assuming that the laminae of the hemipelagic background sediment are annual allows the durations of the cycles to be estimated. In addition, counting the number and thickness of turbidite beds in 20 cm of laminated lime‐mudstone, which is approximately equivalent to 1000 years (each lamina is 200 μm), gives the frequencies of the turbidite beds, the average thicknesses and the overall sedimentation rates through the succession for 1000 year time‐slots. Figures obtained are comparable with modern rates of deposition on carbonate slopes. The cyclicity present in the Roker Formation can be shown to include: Milankovitch‐band ca 100 kyr short‐eccentricity, ca 20 kyr precession and ca 10 kyr semi‐precession cycles and sub‐Milankovitch millennial‐scale cycles (0·7 to 4·3 kyr). Eccentricity and precession‐scale cycles are related to ‘highstand‐shedding’ and relative sea‐level change caused by Milankovitch‐band orbital forcing controlling carbonate productivity. The millennial‐scale cycles, which are quasi‐periodic, probably are produced by environmental changes controlled by solar forcing, i.e. variations in solar irradiance, or volcanic activity. Most probable here are fluctuations in carbonate productivity related to aridity–humidity and/or temperature changes. Precession and millennial‐scale cycles are defined most strongly in early transgressive and highstand parts of the larger‐scale short‐eccentricity cycles. The duration of the Roker Formation as a whole can be estimated from the thickness of the laminated lithotype as ca 0·3 Myr. 相似文献
4.
The sedimentology and cyclic stratigraphy of palaeokarst structures in Aptian peritidal carbonate successions are interpreted using field and laboratory microfacies analyses of closely spaced samples from measured outcrop stratigraphic sections in southwest Turkey. Cycles displaying shallowing-upward metre-scale cyclicity are generally composed of lime mudstones/wackestones/packestones at the bottom and stromatolites or lime mudstones with charophytes and ostracods at the top. Subaerial exposure structures such as in situ karst breccias, dissolution vugs/pipes, mud cracks and sheet cracks are encountered at the top of the cycles. The presence of limestone layers between the successive karst breccia levels indicates that they are in situ palaeokarst structures, not recent karstifications or deep penetration from the upper palaeokarst surface down to the older strata. Palaeokarst breccia deposits are interpreted as mantling breccia formed as a result of epikarstification. Three main palaeokarst levels are recorded in nearly all sections. The sedimentology of the palaeokarst breccias, their position in cyclic peritidal carbonates and the biostratigraphic framework are used to trace the record of the global mid-Aptian sea-level fall in the southwest Taurides. The successive occurrences of three karst breccia levels close to the mid-Aptian sea-level fall correspond to falling periods of high-amplitude sea-level fluctuation within a late high-stand or early fall condition of a third-order sea level. 相似文献
5.
James Rose 《Proceedings of the Geologists' Association. Geologists' Association》2006,117(3):277-279
6.
Jürgen Titschack Daniel Baum Ricardo De Pol‐Holz Matthias López Correa Nina Forster Sascha Flögel Dierk Hebbeln André Freiwald 《Sedimentology》2015,62(7):1873-1898
Cold‐water coral ecosystems present common carbonate factories along the Atlantic continental margins, where they can form large reef structures. There is increasing knowledge on their ecology, molecular genetics, environmental controls and threats available. However, information on their carbo‐nate production and accumulation is still very limited, even though this information is essential for their evaluation as carbonate sinks. The aim of this study is to provide high‐resolution reef aggradation and carbonate accumulation rates for Norwegian cold‐water coral reefs from various settings (sunds, inner shelf and shelf margin). Furthermore, it introduces a new approach for the evaluation of the cold‐water coral preservation within cold‐water coral deposits by computed tomography analysis. This approach allows the differentiation of various kinds of cold‐water coral deposits by their macrofossil clast size and orientation signature. The obtained results suggest that preservation of cold‐water coral frameworks in living position is favoured by high reef aggradation rates, while preservation of coral rubble prevails by moderate aggradation rates. A high degree of macrofossil fragmentation indicates condensed intervals or unconformities. The observed aggradation rates with up to 1500 cm kyr?1 exhibit the highest rates from cold‐water coral reefs so far. Reef aggradation within the studied cores was restricted to the Early and Late Holocene. Available datings of Norwegian cold‐water corals support this age pattern for other fjords while, on the shelf, cold‐water coral ages are reported additionally from the early Middle Holocene. The obtained mean carbonate accumulation rates of up to 103 g cm?2 kyr?1 exceed previous estimates of cold‐water coral reefs by a factor of two to three and by almost one order of magnitude to adjacent sedimentary environments (shelf, slope and deep sea). Only fjord basins locally exhibit carbonate accumulation rates in the range of the cold‐water coral reefs. Furthermore, cold‐water coral reef carbonate accumulation rates are in the range of tropical reef carbonate accumulation rates. These results clearly suggest the importance of cold‐water coral reefs as local, maybe regional to global, carbonate sinks. 相似文献
7.
Valentin Chesnel Óscar Merino‐Tomé Luis Pedro Fernández Elisa Villa Elias Samankassou 《地学学报》2016,28(5):364-373
Sedimentary cyclic sequences deposited during the Late Palaeozoic Ice Age are widespread. Glacio‐eustatic control of the cyclic patterns is commonly accepted, and the durations of the cyclothems generally match the short‐ and long‐eccentricity Milankovitch orbital parameters. Nevertheless, geochemical fingerprints of orbital parameters are poorly documented in deep‐time sedimentary records. Here, we report on well‐exposed Bashkirian cyclothems of c. 123 ka and c. 400 ka durations from the Valdorria platform. The shorter‐term cyclothems can be grouped into longer‐term composite sequences that are consistent with generally accepted durations of c. 125 ka and c. 400 ka for Milankovitch eccentricity cycles. The stratigraphic pattern is mirrored by the isotope geochemical signals, which show distinct recurring trends. These trends are confirmed by statistical tests. Whereas intrinsic factors and/or subaerial exposure related to sea‐level lowstands might have truncated cycle patterns in tectonically stable basins, rapid subsidence of the Valdorria platform's foreland basin appears to have contributed to a faithful recording of cyclothems of different orders. The patterns and biostratigraphic constraint revealed in this study demonstrate the power of orbital forcing in imprinting sedimentary and geochemical signals in the rock record. 相似文献
8.
Climate and ocean‐only models have shown that the ocean will respond abruptly to significant perturbations in surface forcing. Centennial‐scale oscillation is a characteristic of circulation in large semi‐enclosed ocean basins such as the Arctic, whereas millennial‐scale adjustment to changes in surface forcing has been found in the global ocean component of climate models. We show that the millennial time‐scale in climate models is likely to be intrinsic to the ocean through its presence in an ocean‐only model. The strength of the thermohaline circulation is shown to be very sensitive to the magnitude of ice albedo and, to a lesser extent, perturbation in the surface freshwater flux. Modelled glacial ocean circulation, in contrast to present‐day simulations, requires an enhanced freshwater flux over the northern Atlantic, even in its non‐Heinrich state, to obtain realistic overturning in the North Atlantic. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
9.
WONSUCK KIM BRUCE W. FOUKE ANDREW L. PETTER TERRENCE M. QUINN CHARLES KERANS FRED TAYLOR 《Sedimentology》2012,59(6):1677-1694
A mathematical model of carbonate platform evolution is presented in which depth‐dependent carbonate growth rates determine platform‐top accumulation patterns in response to rising relative sea‐level. This model predicts that carbonate platform evolution is controlled primarily by the water depth and sediment accumulation rate conditions at the onset of relative sea‐level rise. The long‐standing ‘paradox of a drowned platform’ arose from the observation that maximum growth rate potentials of healthy platforms are faster than those of relative sea‐level rise. The model presented here demonstrates that a carbonate platform could be drowned during a constant relative sea‐level rise whose rate remains less than the maximum carbonate production potential. This scenario does not require environmental changes, such as increases in nutrient supply or siliciclastic sedimentation, to have taken place. A rate of relative sea‐level rise that is higher than the carbonate accumulation rate at the initial water depth is the only necessary condition to cause continuous negative feedbacks to the sediment accumulation rates. Under these conditions, the top of the carbonate platform gradually deepens until it is below the active photic zone and drowns despite the strong maximum growth potential of the carbonate production factory. This result effectively resolves the paradox of a drowned carbonate platform. Test modelling runs conducted with 2·5 m and 15 m initial sea water depths at bracketed rates of relative sea‐level rise have determined how fast the system catches up and maintains the ‘keep‐up’ phase. This is the measure of time necessary for the basin to respond fully to external forcing mechanisms. The duration of the ‘catch‐up’ phase of platform response (termed ‘carbonate response time’) scales with the initial sea water depth and the platform‐top aggradation rate. The catch‐up duration can be significantly elongated with an increase in the rate of relative sea‐level rise. The transition from the catch‐up to the keep‐up phases can also be delayed by a time interval associated with ecological re‐establishment after platform flooding. The carbonate model here employs a logistical equation to model the colonization of carbonate‐producing marine organisms and captures the initial time interval for full ecological re‐establishment. This mechanism prevents the full extent of carbonate production to be achieved at the incipient stage of relative sea‐level rise. The increase in delay time due to the carbonate response time and self‐organized processes associated with biological colonization increase the chances for platform drowning due to deepening of water depth (> ca 10 m). Furthermore this implies a greater likelihood for an autogenic origin for high‐frequency cyclic strata than has been estimated previously. 相似文献
10.
Little is known about controls on river avulsion at geological time scales longer than 104 years, primarily because it is difficult to link observed changes in alluvial architecture to well‐defined allogenic mechanisms and to disentangle allogenic from autogenic processes. Recognition of Milankovitch‐sale orbital forcing in alluvial stratigraphy would provide unprecedented age control in terrestrial deposits, and also exploit models of allogenic forcing enabling more rigorous testing of allocyclic and autocyclic controls. The Willwood Formation of the Bighorn Basin is a lower Eocene fluvial unit distinctive for its thick sequence of laterally extensive lithological cycles on a scale of 4 to 10 m. Intervals of red palaeosols that formed on overbank mudstones are related to periods of relative channel stability when gradients between channel belts and floodplains were low. The intervening drab, heterolithic intervals with weak palaeosol development are attributed to episodes of channel avulsion that occurred when channels became super‐elevated above the floodplain. In the Deer Creek Amphitheater section in the McCullough Peaks area, these overbank and avulsion deposits alternate with a dominant cycle thickness of ca 7·1 m. Using integrated stratigraphic age constraints, this cyclicity has an estimated period of ca 21·6 kyr, which is in the range of the period of precession climate cycles in the early Eocene. Previous analyses of three older and younger sections in the Bighorn Basin showed a similar 7 to 8 m spacing of red palaeosol clusters with an estimated duration close to the precession period. Intervals of floodplain stability alternating with episodes of large‐scale reorganization of the fluvial system could be entirely autogenic; however, the remarkable regularity and the match in time scales documented here indicate that these alternations were probably paced by allogenic, astronomically forced climate change. 相似文献
11.
Pleistocene aeolianites at Cape Spencer,South Australia; record of a vanished inner neritic cool‐water carbonate factory 下载免费PDF全文
Aeolianites are integral components of many modern and ancient carbonate depositional systems. Southern Australia contains some of the most impressive and extensive late Cenozoic aeolianites in the modern world. Pleistocene aeolianites on Yorke Peninsula are sculpted into imposing seacliffs up to 60 m high and comprise two distinct imposing complexes of the Late Pleistocene Bridgewater Formation. The lower aeolianite complex, which forms the bulk of the cliffs, is a series of stacked palaeodunes and intervening palaeosols. The diagenetic low Mg‐calcite sediment particles are mostly bivalves, echinoids, bryozoans and small benthic foraminifera. This association is similar to sediments forming offshore today on the adjacent shelf in a warm‐temperate ocean. By contrast, the upper aeolianite complex is a series of mineralogically metastable biofragmental carbonates in a succession of stacked lenticular palaeodunes with impressive interbedded calcretes and palaeosols. Bivalves, geniculate coralline algae and benthic foraminifera, together with sparse peloids and ooids, dominate sediment grains. Fragments of large benthic foraminifera including Marginopora vertebralis, a photosymbiont‐bearing protist, are particularly conspicuous. Palaeocean temperatures are interpreted as having been sub‐tropical, somewhat warmer than offshore carbonate factories in the region today. The older aeolianite complex is tentatively correlated with Marine Isotope Stage 11, whereas the upper complex is equivalent to Marine Isotope Stage 5e. Marine Isotope Stage 5e deposits exposed elsewhere in southern Australia (Glanville Formation) are distinctive with a subtropical biota, including Marginopora vertebralis. Thus, in this example, palaeodune sediment faithfully records the nature of the adjacent inner neritic carbonate factory. By inference, aeolianites are potential repositories of information about the nature of long‐vanished marine systems that have been removed due to erosion, tectonic obliteration or are inaccessible in the subsurface. Such information includes not only the nature of marine environments themselves but also palaeoceanography. 相似文献
12.
On the basis of fundamental constitutive laws such as elasticity, perfect plasticity, and pure viscosity, many elasto‐viscoplastic constitutive relations have been developed since the 1970s through phenomenological approaches. In addition, a few more recent micro‐mechanical models based on multi‐scale approaches are now able to describe the main macroscopic features of the mechanical behaviour of granular media. The purpose of this paper is to compare a phenomenological constitutive relation and a micro‐mechanical model with respect to a basic issue regularly raised about granular assemblies: the incrementally non‐linear character of their behaviour. It is shown that both phenomenological and micro‐mechanical models exhibit an incremental non‐linearity. In addition, the multi‐scale approach reveals that the macroscopic incremental non‐linearity could stem from the change in the regime of local contacts between particles (from plastic regime to elastic regime) in terms of the incremental macroscopic loading direction. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
13.
Late Quaternary multiple incised valley systems: An unusually well‐preserved stratigraphic record of two interglacial valley‐fill successions from the Arno Plain (northern Tuscany,Italy) 下载免费PDF全文
Un‐fragmented stratigraphic records of late Quaternary multiple incised valley systems are rarely preserved in the subsurface of alluvial‐delta plains due to older valley reoccupation. The identification of a well‐preserved incised valley fill succession beneath the southern interfluve of the Last Glacial Maximum Arno palaeovalley (northern Italy) represents an exceptional opportunity to examine in detail evolutionary trends of a Mediterranean system over multiple glacial–interglacial cycles. Through sedimentological and quantitative meiofauna (benthic foraminifera and ostracods) analyses of two reference cores (80 m and 100 m long) and stratigraphic correlations, a mid‐Pleistocene palaeovalley, 5 km wide and 50 m deep, was reconstructed. Whereas valley filling is chronologically constrained to the penultimate interglacial (Marine Isotope Stage 7) by four electron spin resonance ages on bivalve shells (Cerastoderma glaucum), its incision is tentatively correlated with the Marine Isotope Stage 8 sea‐level fall. Above basal fluvial‐channel gravels, the incised valley fill is formed by a mud‐prone succession, up to 44 m thick, formed by a lower floodplain unit and an upper unit with brackish meiofauna that reflects the development of a wave‐dominated estuary. Subtle meiofauna changes towards less confined conditions record two marine flooding episodes, chronologically linked to the internal Marine Isotope Stage 7 climate‐eustatic variability. After the maximum transgressive phase, recorded by coastal sands, the interfluves were flooded around 200 ka (latest Marine Isotope Stage 7). The subsequent shift in river incision patterns, possibly driven by neotectonic activity, prevented valley reoccupation guiding the northward formation of the Last Glacial Maximum palaeovalley. The applied multivariate approach allowed the sedimentological characterization of the Marine Isotope Stage 7 and Marine Isotope Stage 1 palaeovalley fills, including shape, size and facies architecture, which revealed a consistent river‐coastal system response over two non‐consecutive glacial–interglacial cycles (Marine Isotope Stages 8 to 7 and Marine Isotope Stages 2 to 1). The recurring stacking pattern of facies documents a predominant control exerted on stratigraphy by Milankovitch and sub‐Milankovitch glacio‐eustatic oscillations across the late Quaternary period. 相似文献
14.
A two‐scale modeling of solute transport in double‐porosity (DP) media under unsaturated water flow conditions is presented. The macroscopic model was developed by applying the asymptotic homogenization method. It is based on theoretical and empirical considerations dealing with the orders of magnitude of characteristic quantities involved in the process. For this purpose a physical model that mimics the behavior of DP medium was built. The resulting two‐equation model relies on a coupling exchange term between micro‐ and macro‐porosity subdomains associated with local non‐equilibrium solute concentrations. The model was numerically implemented (Comsol Multiphysics®) to simulate the macroscopic one‐dimensional physical process taking place into the porous medium of 3D periodic microstructure. A series of dispersion experiments of NaCl solution under unsaturated steady‐state flow conditions were performed. The experimental results were used first to calibrate the dispersion coefficient of the model, and second to validate it through two other independent experiments. The excellent agreement between the numerical simulations and the measurements of the time evolution of the non‐symmetrical breakthrough curves provides a proof of predictive capacity of the developed model. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
15.
MASSIMO ZECCHIN DARIO CIVILE MAURO CAFFAU GIOVANNI STURIALE CESARE RODA 《Sedimentology》2011,58(2):442-477
The Cutro Terrace is a mixed marine to continental terrace, where deposits up to 15 m thick discontinuously crop out in an area extending for ca 360 km2 near Crotone (southern Italy). The terrace represents the oldest and highest terrace of the Crotone area, and it has been ascribed to marine isotope stage 7 (ca 200 kyr bp ). Detailed facies and sequence‐stratigraphic analyses of the terrace deposits allow the recognition of a suite of depositional environments ranging from middle shelf to fluvial, and of two stacked transgressive–regressive cycles (Cutro 1 and Cutro 2) bounded by ravinement surfaces and by surfaces of sub‐aerial exposure. In particular, carbonate sedimentation, consisting of algal build‐ups and biocalcarenites, characterizes the Cutro 1 cycle in the southern sector of the terrace, and passes into shoreface and foreshore sandstones and calcarenites towards the north‐west. The Cutro 2 cycle is mostly siliciclastic and consists of shoreface, lagoon‐estuarine, fluvial channel fill, floodplain and lacustrine deposits. The Cutro 1 cycle is characterized by very thin transgressive marine strata, represented by lags and shell beds upon a ravinement surface, and thicker regressive deposits. Moreover, the cycle appears foreshortened basinwards, which suggests that the accumulation of its distal and upper part occurred during forced regressive conditions. The Cutro 2 cycle displays a marked aggradational component of transgressive to highstand paralic and continental deposits, in places strongly influenced by local physiography, whereas forced regressive sediments are absent and probably accumulated further basinwards. The maximum flooding shoreline of the second cycle is translated ca 15 km basinward with respect to that of the first cycle, and this reflects a long‐term regressive trend mostly driven by regional uplift. The stratigraphic architecture of the Cutro Terrace deposits is the result of the interplay between regional uplift and high amplitude, Late Quaternary glacio‐eustatic changes. In particular, rapid transgressions, linked to glacio‐eustatic rises that outpaced regional uplift, favoured the accumulation of thin transgressive marine strata at the base of the two cycles. In contrast, the combined effect of glacio‐eustatic falls and regional uplift led to high‐magnitude forced regressions. The superposition of the two cycles was favoured by a relatively flat topography, which allowed relatively complete preservation of stratal geometries that record large shoreline displacements during transgression and regression. The absence of a palaeo‐coastal cliff at the inner margin of the terrace supports this interpretation. The Cutro Terrace provides a case study of sequence architecture developed in uplifting settings and controlled by high‐amplitude glacio‐eustatic changes. This case study also demonstrates how the interplay of relative sea‐level change, sediment supply and physiography may determine either the superposition of cycles forming a single terrace or the formation of a staircase of terraces each recording an individual eustatic pulse. 相似文献
16.
The Liangshan and Qixia formations in the Sichuan Basin of central China were formed in the earlier middle Permian. Based on outcrop observation of the Changjianggou section at Shangsi, Guangyuan region and 3rd-order sequence division in typical drillings, one-dimensional spectrum analysis has been used to choose the better curve between the natural gamma ray spectrometry log(ln(Th/K)) in Well-Long17 and the gamma ray log(GR) in Well-Wujia1, respectively, for identifying Milankovitch cycles in Sequence PSQ1 which comprises the Liangshan and Qixia formations, and then to identify the variation in the Milankovitch cycle sequences. On this basis, the system tract and 4th-order sequence interfaces in Sequence PSQ1 were found via two-dimensional spectral analysis and digital filtering. Finally, a high-frequency sequence division program was established. Among these cycles, long eccentricity (413.0 ka) and short eccentricity (123.0 ka) are the most unambiguous, and they are separately the major control factors in forming 4th-order (parasequence sets) and 5th-order (parasequences) sequences, with the average thicknesses corresponding to the main cycles being 11.47 m and 3.32 m in Well-Long17, and 14.21 m and 3.79 m in Well-Wujia1, respectively. In other words, the deposition rate in the beach subfacies is faster than that of the inner ramp facies. The ln(Th/K) curve is more sensitive than the GR as the index of relatively ancient water depth in carbonate deposition. One-dimensional spectrum analysis of ln(Th/K) curve could distinguish the Milankovitch cycle sequences that arose from the Precession cycle (20.90 ka), with a much higher credibility. Sequence PSQ1 in Well-Long17 contains 10 4th-order sequences, and the growth span of Sequence PSQ1 consisting of the Liangshan and Qixia formations is about 4.13 Ma. The single deposition thickness of the long eccentricity cycle sequence has the characteristics of thinning and then thickening in the two-dimensional spectrum, which could be used to identify the system tract interface of the 3rd-order sequence. The precession sequence thickness remains stationary. As a result, the early deposition rate in the mid-Permian of the Sichuan basin was very slow, remaining nearly stationary, and this reflects a sustained depositional environment. Whole-rock carbon and oxygen isotope curves could also prove this point. Milankovitch cycle sequence studies provide a basis for paleoenvironmental analysis and, as such, can be used to analyze ancient climate change, calculate deposition rate and deposition time, and carry out fine isochronous stratigraphic correlation. 相似文献
17.
将天文轨道周期与不同级别的旋回联系起来,旨在使米兰科维奇周期这一高精度时间标尺纳入高频层序地层划分中,实现高精度旋回的识别与划分。以哈萨克斯坦南图尔盖盆地Aryskum地堑Ary301井为例,基于不同沉积特征,分别对卡拉甘塞组I~IV段自然伽马测井数据进行频谱分析和连续小波变换,结果显示沉积地层中保存完好的米兰科维奇旋回,天文轨道周期对Aryskum地堑沉积过程具有明显影响,并将31.9~39.5 m旋回厚度解释为受400 kyr长偏心率周期控制,11.9~14.2 m,6.7~8.8 m旋回厚度分别受125 kyr和95 kyr短偏心率周期控制。对长、短偏心率周期进行滤波分析后,与天文模型理论周期曲线进行对比,建立卡拉甘塞组的浮动天文年代标尺,分别以400 kyr、125 kyr偏心率周期滤波曲线作为中期和短期旋回划分的参考曲线,共识别出11.5个中期旋回和47个短期旋回,为高频旋回划分提供了一种不受人为因素影响的天然标准,保证了研究区旋回划分的科学性和统一性。 相似文献
18.
A micro‐hydromechanical model for granular materials is presented. It combines the discrete element method for the modeling of the solid phase and a pore‐scale finite volume formulation for the flow of an incompressible pore fluid. The coupling equations are derived and contrasted against the equations of conventional poroelasticity. An analogy is found between the discrete element method pore‐scale finite volume coupling and Biot's theory in the limit case of incompressible phases. The simulation of an oedometer test validates the coupling scheme and demonstrates the ability of the model to capture strong poromechanical effects. A detailed analysis of microscale strain and stress confirms the analogy with poroelasticity. An immersed deposition problem is finally simulated and shows the potential of the method to handle phase transitions. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
19.
20.
岩石纳米孔隙中的凝聚水与许多水文地质工程地质问题关系密切:干旱区凝聚水是维持当地生态平衡的重要水资源,石雕石刻文物保护中凝聚水问题是需要考虑的关键因素之一,页岩气工程中页岩纳米孔隙中的凝聚水对页岩气的聚集和流动有重要影响,全球碳循环问题中凝聚水会影响C02与碳酸盐岩的作用。本文给出了单位体积岩石形成的凝聚水的质量与温度、相对湿度、孔隙度、颗粒大小之间数学关系式。在这一关系式中,通过分离压理论计算吸附水,通过开尔文方程考虑了毛细作用。把解析计算结果与三个平行样四个不同湿度下的凝聚水量实验值对比,对所提出的数学表达式进行了验证。实验时选取直径500 nm的碳酸钙球形颗粒,采用夯实的办法加工成样,把样品置于恒温恒湿环境中令水汽在孔隙中凝聚,定期对样品称重计算凝聚水质量,直到凝聚过程达到平衡。 相似文献