首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ADAM VECSEI 《Sedimentology》1998,45(3):473-487
A thick bioclastic sediment wedge was deposited on the slope of the Maiella carbonate platform margin in the Late Campanian to Late Maastrichtian. The wedge consists of lobate depositional units (laterally and vertically convex structures). The complex internal geometries of the lobes combine characteristics of unidirectional sandwaves and the alternating point-sources of deltas. Excellent outcrop permits a detailed documentation and discussion of the depositional processes.
The sediment wedge constitutes a supersequence, which prograded along the platform margin as a result of high sediment supply and forced regression. Within the supersequence, a hierarchy of higher-order stratigraphic units (sequence sets and sequences) are developed. The individual bioclastic sediment lobes are interpreted as systems tracts and parasequences of the sequences within the sequence sets.  相似文献   

2.
The boundary separating Maastrichtian Sharwayn Formation from late Paleocene Eocene Umm Er Radhuma (UER) Formation in Dhofar, southern Oman, is characterized by a regionally extensive unconformity. The Jabal Samhan escarpment, north of Marbat-Sadh transect, preserves this unconformable boundary. This paper addresses the lithologic and diagenetic differences of the strata across the boundary and discusses their significance and link to the development of the upper Maastrichtian to lower Paleocene unconformity. The upper part of the Sharwayn Formation is characterized by lower thickly bedded, bioclastic, and peloidal mudstone to wackestone lithofacies overlain by a thick ledge (~5.5 m) of medium to coarse crystalline, (sucrosic) dolostone. Poorly preserved outlines of the framework grains suggest an original peloidal and bioclastic grainstone texture for the dolostone unit. The contact with the overlying UER Formation is sharp. The UER Formation is characterized by thickly bedded, bioclastic mudstone to wackestone overlain by coarse-grained, foraminiferal grainstone. The dolomitization process of the dolomite unit at the top of the Sharwayn Formation is envisaged to a shallow subsurface mixed meteoric and sea water diagenetic realm. This interpretation is supported by an inferred timing of dolomitization of latest Maastrichtian (post-Sharwayn Formation) to early Paleocene (pre-EUR Formation), preservation (although poorly recognizable) of the original depositional texture and diagenetic features that postdate the sucrosic dolomite. Pervasive dolomitization of the dolomite unit was controlled by its original grainstone texture, which permitted efficient percolation of the dolomitizing fluids. Correlation between the reference section of the formation and the section studied in this work raises the thickness of the formation to 28.5 m (relative to a thickness of 22 m at the reference section). Analysis of the new composite section suggests that deposition of the formation took place in a shallowing-upward setting where low-energy subtidal sediments (the lower limestone unit) were succeeded by a high energy sand shoal (upper dolomitized unit).This shallowing-upward succession is attributed to a third-order sea-level drop. The later is also recognized in many parts of the Arabian Peninsula, as well as globally, and interpreted as eustatic sea-level fluctuation.  相似文献   

3.
Tidal-flat and shoal deposits of carbonate fades in the Qiziqiao Formation are widely distributed over the vast areas of Guangxi, Guangdong and Hunan provinces, constituting an important stratigraphic unit where strata-bound and stratiform ore deposits (galena-sphalerite-pyrite) are found. These types of ore deposit seem to have close relations to the tidal deposits. Recognition of tidal deposits is based upon rock fabric, texture, structure, fossil assemblage, and particular sedimentary cycle. The typical sequence of tidal-flat deposits consists mainly of three units:Amphipora limestone, laminated limestone and dolostone (from the bottom to the top). This sequence represents a complete process of sedimentation from low-tideflat through intertidal to high-tideflat or supratidal. The sequence of shoal deposits of carbonate facies consists chiefly of grainstone and algal oösparite. Two major types of tidal deposit (open and restricted marine facies) can be distinguished, with eleven microfacies as follows: 1) calcarenite (grainstone) with sparite (MF-1); 2) algal oösparite (MF-2); 3) oncolite (alga-, or stromatoporoid-encrusted grains) (MF-3); 4) bioclastic grainstone (biosparite) or rudstone with sparite (MF-4);5) Amphipora limestone (MF-5); 6) dark fossil-poor micrite (MF-6); 7) pelsparite or peloidal grainstone with sparite (MF-7); 8) laminated pellet mudstone-wackstone (MF-8); 9) micrite with onkoids (MF-9); 10) rudstone or floatstone (MF-10; and 11) bedded dolomite-gypsum-dolomite (MF-11).  相似文献   

4.
西藏改则县热那错东沟剖面上三叠统卡尼阶至瑞替阶日干配错组沉积了厚度较大的碳酸盐岩地层,其中化石丰富。在碳酸盐岩中识别出11种主要的岩石类型:灰泥灰岩﹑含生物碎屑灰泥灰岩、生物碎屑粒泥灰岩、生物碎屑泥粒灰岩、内碎屑泥粒灰岩、内碎屑颗粒灰岩、藻颗粒灰岩、多种类型鲕粒灰岩、单一类型鲕粒灰岩、球粒泥粒灰岩和生物礁灰岩。根据岩石特征及组合类型可划分为5种沉积相:陆源碎屑滨岸相、局限台地相、开阔台地相、台地边缘浅滩相和台地边缘礁相,它们共同构成了日干配错组4个有序的海侵—海退旋回,整体显现出海侵的相序结构。  相似文献   

5.
Contourite drift systems form a significant component of the marine clastic sedimentary record. Although contourites form in all tectonic settings, few studies have described their development along convergent margins; such characterization is needed to underpin oceanographic and palaeoenvironmental studies in active settings. This study is the first to document contourite drift development along the Hikurangi subduction margin of New Zealand. Integration of bathymetric, seismic and well data enables five classes of drift to be recognized around the subduction wedge, occurring in three principal associations: (i) an upper slope drift association of giant elongate mounded (ca 150 km long, 50 km wide and up to 1100 m thick) and plastered drifts (ca 300 km long, 8 km wide and <600 m thick), which occurs upon and inboard of a major intrabasinal thrust‐cored high, whose long axis parallels the coast; shallow bottom currents disperse sub‐parallel to this axis; (ii) a spatiotemporally discontinuous association of confined and mounded hybrid drifts (ca 500 m long, <2 km wide and up to 500 m thick) that occurs along the mid‐to‐outer slope domain of the wedge, recording the interaction of along‐slope and downslope currents within trench‐slope basins; and (iii) a trench fill assemblage that implies the passage of abyssal bottom currents across a 40 km reach of the trench‐axial Hikurangi Channel‐levée, with associated modification of the channel form and of overbank sediment waves. The fundamental presence of contourites along this margin appears to depend on the orientation and strength of oceanographic bottom currents. However, drift type and evolution vary depending on the slope gradient and the presence of irregular seafloor topography created by tectonic structures. The documented drifts are generally smaller, less continuous, and develop more intermittently than similar styles of drifts documented on passive margins; this mode of occurrence may be characteristic of contourite development on convergent margins.  相似文献   

6.
The 150–160 m thick lowermost Silurian (Rhuddanian) Becscie and Merrimack formations of Anticosti Island, Canada, represent continuous deposition on a shallow, open marine carbonate ramp. Several rock types are identified: (a) laminated and homogenous mudstone; (b) laminated and homogenous packstone; (c) argillaceous mudstone and packstone; (d) calcareous shale; (e) laminated calcisiltite; (f) medium- to fine-grained grainstone; and (g) bio/intraclastic rudstone. These rock types are arranged into five distinct lithofacies: (LF1) calcareous mudstone-shale; (LF2) laminated-homogenous mudstone; (LF3) calcareous grainstone-shale; (LF4) laminated mudstone-grainstone; and (LF5) laminated calcisiltite-grainstone. The sequence reflects deposition on a low-energy, muddy, carbonate to argillaceous ramp subject to short-lived, episodic high-energy storms. These events produced fining-upwards storm units 5–80 cm thick, or tempestites, consisting of: a sharp scoured base overlain by intra/bioclastic rudstone grading upwards into medium-grained grainstone, finely laminated calcisiltite and mudstone, or shale. These are interbedded with low-energy, fairweather mudstones and calcareous shales. Deposition progressed from a carbonate mud-dominated ramp in the Becscie Formation to an argillaceous mud-dominated ramp in the Merrimack Formation. Lateral tempestite proximality trends and lithofacies distribution indicate that the Anticosti Basin deepened to the south-east into the Iapetus Ocean and shallowed towards a SW—NE-orientated shoreline to the north-west. Vertical tempestite proximality trends and lithofacies changes identify third-order eustatic sea-level changes. After an initial deepening at the base of the formation, a shallowing-deepening event dominated the sequence. Several higher order fluctuations, defined by lithofacies and tempestite proximality trends, are superimposed on these changes. The fluctuations identified with the aid of tempestite proximality trends are of an order of magnitude higher than those identified by either lithofacies or palaeontological methods.  相似文献   

7.
The identification of sediment drifts typically relies on interpretation of reflection seismic data sets. This study sedimentologically analyzed an example of a carbonate delta drift previously identified in seismics in order to provide a catalogue of characteristic features at core and seismic scale for allowing testing the occurrence of this poorly known type of deposit elsewhere. Cores and downhole logs recovered during International Ocean Discovery Program Expedition 359 to the Maldives, in combination with seismic data, were analyzed with this objective. The diagnostic criteria for the sedimentological recognition of a delta drift are: (i) the development of sigmoidal clinoforms that thin out towards proximal and distal settings; (ii) a proximal part characterized by coarse‐grained facies with abundant shallow‐water components and distal areas dominated by fine‐grained facies with rare to absent shallow‐water components; (iii) winnowing of the finer fraction in proximal facies; (iv) extensive fragmentation of most of the bioclasts with minor intervals of well‐preserved components; (v) bigradational intervals in the proximal part and large channels in proximal to distal settings; and (vi) the lobe to delta shaped outline of the sediment accumulation. The characteristic shallow‐water fossil assemblage of the Mid to Upper Miocene delta drift consists of large benthic foraminifera (Amphistegina, Cycloclypeus, Lepidocyclina, Operculina and Heterostegina), fragmented red algae and bryozoans, equinoid debris, and Halimeda plates. The deeper‐water part of the drift bodies consists of fine‐grained planktonic foraminifera‐rich wackestone. Condensed intervals may occur as result of enhanced bottom‐current activity. In contrast to siliciclastic drift bodies, the carbonate delta drift has an important contribution by in situ shallow‐water carbonate production reminiscent of a shoal. In situ carbonate production is proposed as a major controlling factor which is as important as the pelagic settling or the shaping by density and bottom currents in siliciclastic drifts. In the absence of three‐dimensional data and in two‐dimensional views the carbonate delta drift sediment bodies resemble carbonate ramps, which indicates that there may be the need to re‐evaluate various cases of such systems described from the geological record.  相似文献   

8.
Carbonate environments inhabit the realm of the surface, intermediate and deep currents of the ocean circulation where they produce and continuously deliver material which is potentially deposited into contourite drifts. In the tropical realm, fine‐grained particles produced in shallow water and transported off‐bank by tidal, wind‐driven, and cascading density currents are a major source for transport and deposition by currents. Sediment production is especially high during interglacial times when sea level is high and is greatly reduced during glacial times of sea‐level lowstands. Reduced sedimentation on carbonate contourite drifts leads to early marine cementation and hardened surfaces, which are often reworked when current strength increases. As a result, reworked lithoclasts are a common component in carbonate drifts. In areas of temperate and cool water carbonates, currents are able to flow across carbonate producing areas and incorporate sediment directly to the current. The entrained skeletal carbonate particles have variable bulk density and shapes that lower the prediction of transport rates in energy‐based transport models, as well as prediction of current velocity based on grain size. All types of contourite drifts known in clastic environments are found in carbonate environments, but three additional drift types occur in carbonates because of local sources and current flow diversion in the complicated topography inherent to carbonate systems. The periplatform drift is a carbonate‐specific plastered drift that is nearly exclusively made of periplatform ooze. Its geometry is built by the interaction of along‐slope currents and downslope currents, which deliver sediment from the adjacent shallow‐water carbonate realm to the contour current via a line source. Because the periplatform drift is plastered on the slopes of the platforms it is also subject to mass gravity flow and large slope failures. At platform edges, a special type of patch drift develops. These hemiconal platform‐edge drifts also contain exclusively periplatform ooze but their geometry is controlled by the current around the corner of the platform. At the north‐western end of Little and Great Bahama Bank are platform‐edge drifts that are over 100 km long and up to 600 m thick. A special type of channel‐related drift forms when passages between carbonate buildups or channels within a platform open into deeper water. A current flowing in these channels will entrain material shed from the sediment producing areas. At the channel mouth, the sediment‐charged current deposits its sediment load into the deeper basin. With continuous flow, a submarine delta drift is built that progrades into the deep water. The strongly focused current forming the delta drift, is able to rework coarse skeletal grains and clasts, making this type of carbonate drift the coarsest drift type.  相似文献   

9.
The Lower Ordovician La Silla Formation of the Precordillera of west‐central Argentina is part of the west‐facing early Palaeozoic, tropical carbonate platform succession that comprises the core of the Cuyania terrane. Up to 360 m thick, it is exposed in several thrust sheets over a distance of some 250 km along and across depositional strike over a palinspastically unrestored distance of about 35 km. La Silla Formation is a strikingly pure limestone with subordinate finely crystalline dolomite and rare chert. It accumulated on a more or less uniformly subsiding passive margin. Copious precipitation of microcrystalline calcite, probably influenced by microbial activity to varying degrees, led to the generation of peloids, ooids and aggregates of these grains, as well as small amounts of lime mud, intraclasts, stromatolites and thrombolites. Rare bioclasts are limited mostly to scattered gastropods and trilobite sclerites; bioturbation is present locally. The array of carbonate rock types is grouped into eight recurring lithofacies, in order of decreasing abundance: (i) peloidal grainstone; (ii) laminated dolostone; (iii) intraclastic rudstone; (iv) microbial laminite; (v) peloidal packstone; (vi) ooidal grainstone; (vii) thrombolite boundstone; and (viii) mudstone. These facies represent sediments that formed solely in a shallow subtidal marine environment, with no evidence of restricted conditions, hypersalinity or subaerial exposure. No events of eustatic sea‐level change are recorded. By far the dominant facies is grainstone composed of well‐sorted, fine sand‐sized peloids and peloidal aggregates in homogeneous, tabular to gently undulating, medium to thick beds; cross‐lamination is scarce. Clusters of sub‐metre‐sized microbial patch reefs developed sporadically. The shallow platform is envisaged to have been covered by extensive peloidal sand flats and low‐relief banks, and little lime mud was generated. The setting was probably microtidal and may not have been affected by strong trade winds. It was washed by frequent, relatively gentle wave action but without experiencing powerful storms. In the middle member, anomalous lenses of intraclastic rudstone and laminated dolostone occur as graded beds overlying sharply downcut scoured surfaces up to 20 cm deep; these are interpreted to indicate a phase when accretion was punctuated occasionally by tsunamis generated from rift‐faulting seaward of the platform margin. The remarkably uniform peloidal grainstone composition over a broad area shows that, given the appropriate combination of climate, environmental and ecological factors, large portions of some early Palaeozoic platforms were dominated by grainy sediment and remained under well‐agitated conditions within fair‐weather wave‐base, without distinct lateral facies differentiation or tidal‐flat aggradation.  相似文献   

10.
The onset of the Cambrian witnessed the diversification of “small shelly fossils (SSF)”, which affected carbonate depositional system. One of the problematic SSF, chancelloriids, are common components of the early to middle Cambrian carbonate and shale, and their contributions toward Cambrian carbonates are not yet fully understood. This study assesses distribution patterns of chancelloriid sclerites in the Cambrian Series 3 Daegi Formation based on microfacies analysis and discusses their sedimentologic implications. In the lower part of the formation, partially articulated chancelloriid sclerites occur mainly in bioclastic packstone and grainstone facies, with isolated sclerite rays in nodular packstone to grainstone facies. In the middle part of the formation, chancelloriid fragments occur only sporadically in bioclastic wackestone to packstone, bioclastic grainstone and oolitic packstone to grainstone facies, whereas boundstone facies are nearly devoid of their fragments. There are no chancelloriid fragments in the upper part of the formation, which consists of oolitic packstone to grainstone facies. Chancelloriids are interpreted to have primarily occupied platform margin shoal environments, shedding their sclerites to surrounding areas, and thus contributed as sediment producers. The distribution of Daegi chancelloriid sclerites is similar to other Cambrian examples, with the exception of common chancelloriids in Cambrian Series 2 reefs and their apparent near absence in the Daegi and other Cambrian Series 3 reefs. This disparity resulted from changes in the ecologic niche of chancelloriids after the end-Cambrian Series 2 reef crisis, coupled with an overall decline of chancelloriids in the middle Cambrian.  相似文献   

11.
The results of Barnum Brown's 1937 expedition to the Almond Formation of Wyoming consisted of two unidentified ceratopsian skulls and a partial hadrosaurid specimen (AMNH 3651). The hadrosaurid is here attributed to the Maastrichtian genus Saurolophus, verifying previous biostratigraphic correlations of this formation using ammonite zones. Fossiliferous lower Maastrichtian formations occurring latitudinally between those of Alberta, Canada, and southwestern Texas, USA, such as the Almond Formation, are essential for testing the effects and duration of apparent hadrosaurid faunal segregation earlier in the Campanian, and indirectly aiding in the placement of faunal boundaries that are currently unknown for the late Campanian. The discovery of Saurolophus in Wyoming, a close relative of the Campanian genus Prosaurolophus, affirms that the segregation of hadrosaurid faunas established in the late Campanian (~75 Ma) continued for at least 3 million years. Combining occurrences of Saurolophus from Mongolia and the Moreno Formation of California with those of Alberta, Canada, this genus appears to have had one of the largest geographic ranges of any equivalent clade of hadrosaurid dinosaur, although species level distributions are still uncertain.  相似文献   

12.
The Transylvanian region of Romania preserves some of the most unusual and iconic dinosaurs in the global fossil record, including dwarfed herbivores and aberrant carnivores that lived during the very latest Cretaceous (Maastrichtian) in an ancient island ecosystem (the Haţeg Island). A series of artificial outcrops recently exposed during a hydroelectric project, the Petreşti-Arini section near Sebeş in the Transylvanian Basin, records a 400+ meter sequence documenting the transition from fully marine to terrestrial environments during the Campanian–Maastrichtian. Calcareous nannofossil biostratigraphy indicates that the lower marine beds in this section, part of the uppermost Bozeş Formation, can be assigned to the CC22 biozone, corresponding to the lower–mid upper Campanian. These beds smoothly transition, via a brackish-water unit, into the fully continental Maastrichtian Sebeş Formation. Dinosaur and pterosaur fossils from the uppermost Bozeş Formation can be assigned a late Campanian age making them the oldest well-dated terrestrial fossils from the Haţeg Island, and indicating that the classic Haţeg dinosaur fauna was becoming established by this time, coincident with the first emergence of widespread land areas. Vertebrate fossils occur throughout the overlying Sebeş Formation at the site and are dominated by the small-bodied herbivorous dinosaur Zalmoxes. The dominance of Zalmoxes, and the absence of many taxa commonly seen elsewhere in Maastrichtian sites in Romania, suggests the possibility that either the Petreşti-Arini section preserves a somewhat unusual near-shore environment, or the earliest Haţeg Island dinosaur communities were structured differently from the more diverse communities later in the Maastrichtian. Alternatively, due to the limited sample size available from the studied succession, it is also conceivable that sampling biases give an incomplete portrayal of the Petreşti-Arini local fauna. Support for any one of these alternative hypotheses requires further data from Petreşti-Arini as well as from the larger Transylvania area.  相似文献   

13.
At Montagna della Maiella and at Gola del Furlo (central Apennines) two discrete layers of bentonic clay are intercalated within the pelagic (Furlo) and turbiditic/pelagic limestones (Maiella) of the Upper Cretaceous basinal succession of the Umbrian basin (Scaglia facies). The bentonite layers are dated by planktonic foraminifera to the Globotruncanita elevata zone, early Campanian, and by calcareous nannofossils to the Aspidolithus parcus zone (CC 18); they fall into the reversed interval of chron 33. Detailed correlation shows the layers to be of exactly the same age. The upper layer is dated by U/Pb on magmatic zircons to 81.67±0.21 Ma, an age compatible with the Cretaceous time-scale of Obradovich. The mineralogy of the bentonitic clays is almost pure montmorillonite and contrasts sharply with the clay mineral assemblage of the enclosing pelagic and turbiditic limestones, which is dominated by soil-derived smectite and illite in different proportions. The bentonite seams are interpreted as the submarine alteration products of wind-borne volcanic ashes. They can be followed with only minor changes in thickness over 200 km and must be derived from distant volcanic sources and related to extreme volcanic events. A possible source area is present in the Dinarides where Upper Cretaceous subduction-related magmatic rocks are widespread.  相似文献   

14.
基于对川北米仓山西部旺苍县鼓城乡唐家河下寒武统仙女洞组露头剖面的观察与镜下分析发现,仙女洞组下段由生物碎屑泥晶灰岩(L)、粉砂质泥岩(M)、似瘤状砾屑灰岩(L')、角砾灰岩(R)、藻凝块灰岩(A)和含生屑钙质砂岩(S)组合而成,其以角砾灰岩、似瘤状砾屑灰岩和藻凝块灰岩为特征,且发育异地岩块和滑塌变形构造。进一步分析认为:L-M岩石组合为正常的斜坡环境低能沉积;L'-R岩石组合中的角砾灰岩为上斜坡生物灰泥丘崩坍滑动至下部而形成的,似瘤状砾屑灰岩可能是由于L-M岩石组合快速沉积导致沉积物失稳滑动变形、上斜坡生物灰泥丘崩落角砾致使的差异压实和滑动、以及后期物质成分差异引起的压溶作用等共同作用的结果,从而使灰质层发生破碎并被泥质包围形成断续的砾屑状,甚至轻微的位移,进而形成条带特征不明显的杂乱变形构造;微生物岩(Mb)组合为上斜坡的灰泥丘沉积;S-M岩石组合为斜坡上部的浊流沉积。根据上述分析结果建立米仓山西部仙女洞组碳酸盐岩台缘斜坡沉积模式,表明仙女洞组沉积早期米仓山西部存在台缘斜坡相沉积。  相似文献   

15.
山东省长清县中寒武统的张夏-崮山剖面为华北地区张夏组的正层型剖面,其岩石地层、生物地层研究都较为成熟.从碳酸盐岩微相的角度,对其微相组分、微相类型和沉积环境作了进一步研究.在张夏-崮山地区的张夏组碳酸盐岩中识别出了6种微相类型:异地生物碎屑泥粒灰岩、附枝藻黏结灰岩、具再搬运鲕粒的粒泥-泥粒灰岩、含介壳及完整底栖化石的泥粒-粒泥灰岩、放射状鲕粒泥粒-粒泥灰岩和同心圆状鲕粒颗粒灰岩.微相类型的垂向叠覆及野外露头观察指示了5种沉积相带,自下而上分别为:局限台地鲕粒滩相、开阔台地海相、台地边缘鲕粒滩相、台地边缘藻礁相及台地边缘滩前斜坡相,表明山东省长清县张夏组为典型的镶边型碳酸盐岩台地沉积.  相似文献   

16.
Heterozoan temperate‐water carbonates mixed with varying amounts of terrigenous grains and muddy matrix (Azagador limestone) accumulated on and at the toe of an inherited escarpment during the late Tortonian–early Messinian (late Miocene) at the western margin of the Almería–Níjar Basin in south‐east Spain. The escarpment was the eastern end of an uplifting antiform created by compressive folding of Triassic rocks of the Betic basement. Channelized coralline‐algal/bryozoan rudstone to coarse‐grained packstone, together with matrix‐supported conglomerate, are the dominant lithofacies in the higher outcrops, comprising the deposits on the slope. These sediments mainly fill small canyon‐shaped, half‐graben depressions formed by normal faults active before, during and after carbonate sedimentation. Roughly bedded and roughly laminated coralline‐algal/bryozoan rudstone to coarse‐grained packstone are the main lithofacies forming an apron of four small (kilometre‐scale) lobes at the toe of the south‐eastern side of the escarpment (Almería area). Channelized and roughly bedded coralline‐algal/bryozoan rudstone to coarse‐grained packstone, conglomerates, packstone and sandy silt accumulated in a small channel‐lobe system at the toe of the north‐eastern side of the escarpment (Las Balsas area). Carbonate particles and terrigenous grains were sourced from shallow‐water settings and displaced downslope by sediment density flows that preferentially followed the canyon‐shaped depressions. Roughly laminated rudstone to packstone formed by grain flows on the initially very steep slope, whereas the rest of the carbonate lithofacies were deposited by high‐density turbidite currents. The steep escarpment and related break‐in‐slope at the toe favoured hydraulic jumps and the subsequent deposition of coarse‐grained, low‐transport efficiency skeletal‐dominated sediment in the apron lobes. Accelerated uplift of the basement caused a relative sea‐level fall resulting in the formation of outer‐ramp carbonates on the apron lobes, which were in turn overlain by lower Messinian coral reefs. The Almería example is the first known ‘base of slope’ apron within temperate‐water carbonate systems.  相似文献   

17.
A rich foraminiferal assemblage, consisting of abundant Aulotortus sinuosus and A. tumidus in association with Lamelliconus multispirus, Endoteba ex gr. controversa, E. ex gr. badouxi, Endotebanella kocaeliensis, Endotriada tyrrhenica, Endotriadella wirzi, Malayspirina fontainei, Ammobaculites rhaeticus, Diplotremina astrofimbriata, Agathammina austroalpina, and others, was found in the Doi Long Formation of the Triassic Lampang Group, Northern Thailand. These foraminifers suggest that the formation is referable to the Carnian (early Late Triassic), which is consistent with the age estimated by ammonoids. In microfacies, peloidal grainstone, bioclastic grainstone, sponge-microbial boundstone, and oolitic grainstone were recognized in the Doi Long Formation. Based on microfacies, three depositional facies, the lagoon facies, reef facies, and shoal facies, are recognized in this formation. These lines of evidence are suggestive that the Doi Long Formation was deposited in a reef or bank setting rather than a ramp setting.  相似文献   

18.
The Santaren Drift between the Great Bahama Bank and Cay Sal Bank (Bahamas) is closely linked to the development of the Gulf Stream and its shape and geometry record the local to global oceanographic, climatic and tectonic events since the Miocene. High‐resolution multichannel seismic data from the Santaren Channel allow detailed insight into the growth phases of the contourite drift, and by using the stratigraphic information from Ocean Drilling Program Site 1006 to infer its sedimentation rates. The results bring new understanding to this region and to interpretation of carbonate drifts. The data document that the signatures of a bottom current flow in the Santaren Channel initiated about 12·3 Ma, as indicated by the first occurrence of sheeted drifts and moat development at the northern part of the Santaren Channel. Narrowing and steepening of moat flanks as well as the pronounced upslope migration of the moat reflects a sustained current acceleration of the bottom currents until 5·5 Ma, associated with a transformation into mounded elongated drifts. Between 5·5 Ma and 3·1 Ma, bottom current intensity reached its maximum probably caused by the final closure of the Central American Seaway. The last 3·1 Myr were characterized by a marked increase in volume through flow reaching a maximum during the past 900 kyr. Drift growth was driven by the combined sources of export from the shallow‐water carbonate factory and by pelagic rain. The Middle Miocene channel‐related sheeted drift of the inner Santaren Channel is characterized by low accumulation rates, but a rapid increase of accumulation rates occurred during the Early Pliocene. The contourite drift buildup was disturbed by minor erosional phases with narrow moats in the Late Pliocene due to increasing bottom‐current velocities forced by strengthened Atlantic Ocean ventilation. The Early Pleistocene was dominated by increased periplatform sedimentation and margin progradation facilitated by a reduction in along‐slope current flow speed and a concurrent widening and flattening of the moats.  相似文献   

19.
水城地区包磨山组地层比较发育,岩性主要由一套碳酸盐岩夹细碎屑岩组成,碳酸盐岩横向结构变化较大。文章对水城地区自西向东实测7条相关剖面,通过系统采样300余件,室内制作岩石薄片鉴定,碳酸盐岩归纳为6个微相:有丰富有孔虫或藻类的颗粒灰岩/灰泥质颗粒石灰岩(SMF18)、有骨骼颗粒的生屑灰泥质颗粒石灰岩/颗粒质灰泥石灰岩(SMF10)、核形石砾屑碳酸盐岩/颗粒灰岩(SMF13)、海百合富集的石灰岩(SMF12-CRIN)、包壳的生屑颗粒(SMF11)、藻粘结灰岩(SMF7)。通过对比不同剖面碳酸盐岩结构特征、生物组合特征及水动力能量特征,总体反映了水城地区包磨山组时期沉积环境横向上自南西向北东由开阔台地→局限台地过渡,垂向上经历了至少3次向上变浅的海平面变化。与水城西北向槽盆萎缩期的沉积效应一致。   相似文献   

20.
李华  王英民  徐强  唐武  李冬 《古地理学报》2013,15(5):741-750
以地震资料为基础, 对南海北部第四系深层等深流沉积进行了研究。南海北部水深约1200~3000m范围内发育大型长条状漂积体、限制型漂积体、陆坡席状漂积体及沉积物波。大型长条状漂积体外形为丘状, 水道在靠陆一侧发育。限制型漂积体主要沉积于地形突起之间的地势相对低洼处, 外形多平坦, 水道较为发育。陆坡席状漂积体外形为席状。沉积物波面积较大, 部分与漂积体伴生。深层等深流在自北东向南西沿南海陆架运动过程中, 在中上陆坡由于地形变化相对较大及科氏力作用影响形成螺旋型等深流, 进而产生次生环流, 形成大型长条状漂积体及限制型漂积体。在中下陆坡因地形相对平坦、开阔, 等深流为层状水流, 多形成陆坡席状漂积体。本研究不仅能提高对南海深层等深流沉积的认识, 还能为油气勘探服务。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号