首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is renewed interest in a series of Carnian-aged sandstone units across the UK because they represent a unique event in the Late Triassic, the Carnian Pluvial Episode (CPE), from 233 to 232 Ma. The North Curry Sandstone Member of the Mercia Mudstone Group in Somerset is of particular importance because it yielded a rich fauna of shark, bony fish and amphibian remains in coarse-grained sandstones to Charles Moore in the 1860s. However, the exact location and age of his important collection had not been identified. Here, we demonstrate that the Moore collection comes from the North Curry Sandstone Member in a location in the village of Ruishton, just east of Taunton, where a new road cutting reveals both the bone-rich units and a complete succession through the CPE, a time of major climatic and biotic upheaval. The 16 m section comprises several sandstones interbedded with red-green mudstones, representing a terrestrial environment with lacustrine, evaporitic mud flat and fluvial deposits.  相似文献   

2.
The continental Upper Triassic Tadrart Ouadou Sandstone Member was deposited in an extensional setting on the Pangaean continent, strongly influenced by a low‐latitude climatic regime (10° to 20° north). Complex interaction of basin subsidence and climatically driven processes led to high facies variability and a lack of correlatable units across the Argana Valley exposures. A process‐orientated approach integrating detailed facies with architectural element analysis was undertaken, which resulted in a multistage depositional model for the Tadrart Ouadou Sandstone Member. The basin‐scale model shows that basal alluvial fan and braided river systems are confined to the centre of the Argana Valley exposures. Aeolian deposits occur throughout the sequence, but dominate in the north. After a phase of playa deposition, prominent basin‐wide fluvial incision of up to 8 m marks the onset of perennial fluvial flow. These well‐sorted, internally complex and locally highly amalgamated fluvial sandstones are widespread throughout the basin and are focused in a north to south (south‐west) flowing channel system. After a final stage of aeolian sedimentation, sandstone deposition of the Tadrart Ouadou Sandstone Member in the Argana Valley is terminated rapidly by the onlap of lacustrine mudstones of the Sidi Mansour Member. The study revealed that, except for one pronounced period of perennial conditions, sedimentation is controlled largely by ephemeral fluvial flow, alternating ground water tables, deflation processes and periods with limited periodic local run‐off. The study highlights that facies architecture in the basin is the result of complex interaction of local syn‐sedimentary tectonics and the climatic regime within the basin, but also the climate of the catchment area to the east. The data suggest a proximal to mid‐distal basin setting in the rain‐shadow to the west of a mountain range (Massif Ancien), which exerted a strong control on the depositional environments of Triassic deposits exposed in this part of South‐west Morocco.  相似文献   

3.
ANNA BREDA  NEREO PRETO 《Sedimentology》2011,58(6):1613-1647
The Travenanzes Formation is a terrestrial to shallow‐marine, siliciclastic–carbonate succession (200 m thick) that was deposited in the eastern Southern Alps during the Late Triassic. Sedimentary environments and depositional architecture have been reconstructed in the Dolomites, along a 60 km south–north transect. Facies alternations in the field suggest interfingering between alluvial‐plain, flood‐basin and shallow‐lagoon deposits, with a transition from terrestrial to marine facies belts from south to north. The terrestrial portion of the Travenanzes Formation consists of a dryland river system, characterized by multicoloured floodplain mudstones with scattered conglomeratic fluvial channels, merging downslope into small ephemeral streams and sheet‐flood sandstones, and losing their entire discharge subaerially before the shoreline. Calcic and vertic palaeosols indicate an arid/semi‐arid climate with strong seasonality and intermittent discharge. The terrestrial/marine transition shows a coastal mudflat, the flood basin, which is usually exposed, but at times is inundated by both major river floods and sea‐water storm surges. Locally coastal sabkha deposits occur. The marine portion of the Travenanzes Formation comprises carbonate tidal‐flat and shallow‐lagoon deposits, characterized by metre‐scale shallowing‐upward peritidal cycles and subordinate intercalations of dark clays from the continent. The depositional architecture of the Travenanzes Formation suggests an overall transgressive pattern organized in three carbonate–siliciclastic cycles, corresponding to transgressive–regressive sequences with internal higher‐frequency sedimentary cycles. The metre‐scale sedimentary cyclicity of the Travenanzes Formation continues without a break in sedimentation into the overlying Dolomia Principale. The onset of the Dolomia Principale epicontinental platform is marked by the exhaustion of continental sediment supply.  相似文献   

4.
A deep‐water trilobite fauna has been discovered in the otherwise graptolitic Mydrim Formation near Clarbeston Road, Pembrokeshire, south‐west Wales. Associated graptolites indicate an early Caradocian age. The trilobites comprise three species with eyes reduced or absent, representing an atheloptic assemblage with benthic life habits, which appeared during a short period of relative oxygenation of the Welsh Basin. The trilobite Platycalymene dilatata (Tullberg) is redescribed from the type material from Sweden, and new material from Wales is assigned to this species. Two new species are described in addition. Rorringtonia multisegmentata sp. nov. possesses twelve thoracic segments, which has implications for the classification of the Rorringtoniidae within the Aulacopleuroidea. Trinucleus conollyi sp. nov. differs from T. fimbriatus in the proliferation of the radial sulci. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
High‐resolution climatic records of the late Holocene along the north‐west African continental margin are scarce. Here we combine sediment grain size, elemental distribution and mineral assemblage data to trace dust and riverine sources at a shallow‐marine sediment depocentre in the vicinity of the Senegal River mouth. The aim is to understand how these terrigenous components reflect climate variability during the late Holocene. Major element contents were measured and mineral identification was performed on three sub‐fractions of our sediment core: (i) fluvial material < 2 µm, (ii) aeolian material of 18–63 µm and (iii) a sub‐fraction of dual‐origin material of 2–18 µm. Results show that more than 80% of the total Al and Fe terrigenous bulk content is present in the fluviogenic fraction. In contrast, Ti, K and Si cannot be considered as proxies for one specific source off Senegal. The Al/Ca ratio, recording the continental river runoff, reveals two dry periods from 3010 to 2750 cal a BP and from 1900 to 1000 cal a BP, and two main humid periods from 2750 to 1900 cal a BP and from 1000 to 700 cal a BP. The match between (i) intervals of low river runoff inferred by low Al/Ca values, (ii) reduced river discharge inferred by integrated palynological data from offshore Senegal and (iii) periods of enhanced dune reactivation in Mali confirms this interpretation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
《Sedimentology》2018,65(2):335-359
Predominantly fine‐grained strata were deposited in the Smith Bank Formation (Early Triassic) in the Central North Sea area of the Northern Permian Basin. Previously regarded as monotonous red claystone, examination of continuous core reveals abundant stratification, significant variation in colour, siltstone as the prevalent average grain size, and claystone is rare. Loessite occurs beyond the north‐western lacustrine margin, and aerosol dust has inundated clay pellets derived from aeolian reworking of the desiccated lake floor. The loessite has limited evidence of pluvial reworking but rare fossil roots testify to sufficient moisture to sustain plants. Loessite has not previously been differentiated successfully from other fine‐grained strata in the subsurface, but this study defines the presence of random grain‐fabric orientation as an intrinsic unequivocal characteristic of loessite that formed during air‐fall deposition of aerosol dust. Comparison with outcrop data verifies the utility of grain fabric to differentiate loessite. Tosudite, an aluminous di‐octahedral regularly ordered mixed‐layer chlorite/smectite, which is rare in sedimentary rock, forms a significant proportion (10 to 21%) of the clay mineral fraction of loessite along with a similar quantity of kaolinite. In all other samples, only illite and chlorite are identified, which is typical of fine‐grained Triassic strata. In a location, close to the southern lake margin, lacustrine strata are characterized by fining‐upward couplets of very fine‐grained sandstone into siltstone and mudstone, with occasional desiccated surfaces. Small sand injections and associated sand extrusions are common and indicate periodic fluidization of sand. Precise stratigraphic location of the Smith Bank Formation is problematic because of extremely sparse fossil preservation; however, there is no sedimentological evidence for a period of hyperaridity known from the early Olenekian in continental Europe, which may mean that the North Permian Basin was never hyperarid or that the Smith Bank Formation is restricted to the Induan.  相似文献   

7.
8.
Travertine deposits in western Turkey are very well‐exposed in the area of Kocaba?, in the eastern part of the Denizli Basin. The palaeoclimatic significance of these travertines is discussed using U/Th dates, stable isotope data and palynological evidence. The Kocaba? travertine occurrences are characterized by successions of depositional terraces associated with palaeosols and karstic features. The travertines have been classified into eight lithotypes and one erosional horizon, namely: laminated, coated bubble, reed, paper‐thin raft, intraclasts, micritic travertine with gastropods, extra‐formational pebbles and a palaeosol layer. The analysed travertines mostly formed between 181 ka and 80 ka (Middle to Late Pleistocene) during a series of climatic changes including glacial and interglacial intervals; their δ13C and δ18O values indicate that the depositional waters were mainly of basinal thermal origin, occasionally mixed with surficial meteoric water. Palynological results obtained from the palaeosols showed an abundance of non‐arboreal percentage and xerophytic plants (Oleaceae and Quercus evergreen type) indicating that a drought occurred. Marine Isotope Stage 6 is represented by grassland species but Marine Isotope Stage 5 is represented by Pinaceae–Pinus and Abies, Quercus and Oleaceae. Uranium/thorium analyses of the Kocaba? travertines show that deposition began in Marine Isotope Stage 6 (glacial) and continued to Marine Isotope Stage 4 (glacial), but mostly occurred in Marine Isotope Stage 5 (interglacial). The travertine deposition continued to ca 80 ka in the south‐west of the study area, in one particular depression depositional system. Palaeoenvironmental indicators suggest that the travertine depositional evolution was probably controlled by fault‐related movements that influenced groundwater flow. Good correlation of the stable isotope values and dates of deposition of the travertines and palynological data of palaeosols in the Kocaba? travertines serve as a starting point for further palaeoclimate studies in south‐west Turkey. Additionally, the study can be compared with other regional palaeoclimate archives.  相似文献   

9.
Expansive playa‐lake systems situated in high‐altitude piggyback basins are important and conspicuous components of both modern and ancient cordilleran orogenic systems. Extant playa lakes provide vital habitat for numerous endemic species, whereas sediments from these deposystems may record signals of climate change or develop natural resources over geological time. Laguna de los Pozuelos (North‐west Argentina) provides the opportunity for an actualistic sedimentological and geochemical assessment of a piggyback basin playa lake in an area of critical interest for understanding Quaternary palaeoclimate dynamics. Silty clays and diatom ooze are the dominant playa‐lake centre microfacies, with concentrations of total organic carbon and biogenic silica commonly exceeding 1·5 wt% in this sub‐environment. Elemental and stable isotopic analyses point to a mixed organic matter composition in the playa‐lake centre, with substantial contributions from algae and transported aquatic macrophytes. Bulk sediment and organic mass accumulation rates in the southern playa‐lake centre approach 0·22 g cm?2 year?1 and 2·89 mg cm?2 year?1, respectively, indicating moderately rapid deposition with negligible deflation over historic time. Playa margin facies contain higher percentages of fragmented biogenic carbonate (ostracods and charophytes) and inorganically precipitated aragonite crusts due to seasonal pumping and evaporation of ground water. Organic matter accumulation is limited along these heavily bioturbated wet and dry mud flats. Fluvial–lacustrine transitional environments, which are key waterbird habitats, are either silty terminal splay (northern axis) or sandy deltas (southern axis) containing highly oxidized and partially allochthonous organic matter. Modern analogue data from Laguna de los Pozuelos provide key insights for: (i) environmental reconstructions of ancient lake sequences; and (ii) improving facies models for piggyback basins.  相似文献   

10.
Understanding the impact of past climatic changes on landscape stability is crucial in order to predict and mitigate the effects of future changes. However, in arid and semi‐arid environments, reconstructions are often hampered by a poor understanding of the relationship between sediment deposition and climate. We present here data from central Texas, a region that is sensitive to environmental change but has received relatively little attention. The study integrates a chronology of 29 optically stimulated luminescence (OSL) ages from six sedimentary sites in a range of depositional contexts with a 19 000 a climate record derived from pollen extracted from the adjacent Boriack Bog. By comparing the two records, we aimed to assess the relationship between climate change and geomorphic activity. Data show that extensive aeolian and colluvial deposition occurred during the mid to late Holocene, with sedimentation generally increasing during more arid phases. However, a number of depositional events on slopes were associated with moister episodes, and sediment was also deposited in a summit setting immediately after phases of increased precipitation. Linkages between climate change and geomorphic response were therefore complex, being controlled by both sediment supply and transport energy. The climatic fluctuations identified in the Boriack Bog record highlight the sensitivity of central Texas to environmental change, while disparities in conditions recorded between it and other palaeoenvironmental sites in the southern USA emphasise the need for further work in order to enhance understanding of landscape sedimentary response to climate. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
In the Maritime Alps (north‐west Italy – south‐east France), the Middle Triassic–lowermost Cretaceous platform carbonates of the Provençal Domain locally show an intense dolomitization. Dolomitized bodies, irregularly shaped and variable in size from some metres to hundreds of metres, are associated with tabular bodies of dolomite‐cemented breccias, cutting the bedding at a high angle, and networks of dolomite veins. Field and petrographic observations indicate that dolomitization was a polyphase process, in which episodes of hydrofracturing and host‐rock dissolution, related to episodic expulsion of overpressured fluids through faults and fracture systems, were associated with phases of host‐rock dolomitization and void cementation. Fluid inclusion analysis indicates that dolomitizing fluids were relatively hot (170 to 260°C). The case study represents an outstanding example of a fossil hydrothermal system, which significantly contributes to the knowledge of such dolomitization systems in continental margin settings. The unusually favourable stratigraphic framework allows precise constraint of the timing of dolomitization (earliest Cretaceous) and, consequently, direct evaluation of the burial setting of dolomitization which, for the upper part of the dolomitized succession, was very shallow or even close to the surface. The described large‐scale hydrothermal system was probably related to deep‐rooted faults, and provides indirect evidence of a significant earliest Cretaceous fault activity in this part of the Alpine Tethys European palaeomargin.  相似文献   

12.
An excavation primarily intended to investigate the Bronze Age deposits at Hautrive‐Champréveyres, Neuchâtel, Switzerland, encountered beneath the Bronze Age levels a sequence of Late‐glacial sediments that were deposited between about 13000 yr BP and 11800 yr BP. Within these deposits Upper Palaeolithic hearths, bones and flint implements were found in a context that left no doubt that they accumulated on the actual living floors. Two separate cultures were involved; an earlier Magdalenian one overlain by a rather later Azilian assemblage. Coleoptera from the associated organic silts and sands provide detailed ecological and climatic information about the time when these people lived in the area. Radiocarbon dates indicate that the Magdalenians lived in the area at about 13000 yr BP. The Coleoptera show that the mean July temperature at this time was about 9°C and mean temperature of the coldest month was about −25°C. The landscape was bare of trees with an open patchy vegetation. Shortly after the area was abandoned by the Magdalenian hunters, the climate became suddenly warmer and mean July temperatures rose abruptly to at least 16°C and winter temperatures rose to levels not much different from those of the present day. There is evidence that at this time, intense slope instability and mud flows may have rendered the locality unsuitable for human occupation. About seven centuries after the episode of sudden climatic warming, namely at about 12300 yr BP, palaeolithic Azilian hunters occupied the area at a time when the climate was thoroughly temperate and the landscape was clothed in birch and willow woodland. This was gradually replaced by pine forest at the top of the sequence and Late‐glacial deposition ceased by about 11800 yr BP. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

13.
We tested the response of lacustrine testate amoebae (thecamoebians) to climate and environmental changes for the Lateglacial–Holocene transition. The palaeoenvironmental history of the study site (Lake Lautrey, Jura Mountains, eastern France) was previously established based on high‐resolution multi‐proxy studies of the same core. The present study is characterised by a high taxonomic resolution (54 taxa), inclusion of small species (down to 25 µm) and high total counts (>500 individuals per sample on average). Changes in the composition of testate amoeba assemblages (dominant species and assemblage structure), as well as in the accumulation rate (tests cm?2 a?1), corresponded to major climatic phases (i.e. Oldest Dryas, Bølling–Allerød Interstadial, Younger Dryas, Preboreal) as well as changes in organic matter inputs. Furthermore, decreases in the accumulation rate characterised minor short‐lived cooling events, such as Older Dryas event or Gerzensee oscillation. However, the Preboreal oscillation, which was well registered by other proxies at Lake Lautrey, could not be recognised in the testate amoeba record. This work demonstrates that lacustrine testate amoebae can be used for palaeoclimatic and palaeoecological reconstructions. Nevertheless, a better understanding of the relation between climate, organic matter and lacustrine testate amoebae requires further high‐resolution studies based on multi‐proxy approaches and the development of appropriate modern analogues. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
The Upper Cretaceous succession of the Leonese Area (NW Spain) comprises mixed clastic and carbonate sediments. This succession is divided into two lithostratigraphic units, the Voznuevo Member and the Boñar Formation, which represent fluvial, shoreface, intertidal, subtidal and open‐shelf sedimentary environments. Regional seismic interpretation and sequence stratigraphic analysis have allowed the study of lateral and vertical changes in the sedimentary record and the definition of third‐order levels of stratigraphic cyclicity. On the basis of these data, the succession can be divided into two second‐order depositional sequences (DS‐1 and DS‐2), incorporating three system tracts in a lowstand to transgressive to highstand system tract succession (LST–TST–HST). These sequences are composed of fluvial systems at the base with palaeocurrents that flowed westward and south‐westward. The upper part of DS‐1 (Late Albian–Middle Turonian) shows evidence of intertidal to subtidal and offshore deposits. DS‐2 (Late Turonian–Campanian) comprises intertidal to subtidal, tidal flat, shallow marine and lacustrine deposits and interbedded fluvial deposits. Two regressive–transgressive cycles occurred in the area related to eustatic controls. The evolution of the basin can be explained by base‐level changes and associated shifts in depositional trends of successive retrogradational episodes. By using isobath and isopach maps, the main palaeogeographic features of DS‐1 and DS‐2 were constrained, namely coastline positions, the existence and orientation of corridors through which fluvial networks were channelled and the location of the main depocentres of the basin. Sedimentation on the Upper Cretaceous marine platform was mainly controlled by (i) oscillations of sea level and (ii) the orientation of Mesozoic faults, which induced sedimentation along depocentres. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
16.
17.
TOHRU OHTA 《Sedimentology》2008,55(6):1687-1701
The present study examines the provenance of the Jurassic Ashikita Group distributed in south‐west Japan, which is composed of the Idenohana, Kyodomari and Sakamoto Formations. Two geochemical diagrams for provenance analysis were utilized, which incorporate full consideration of compositional modifications resulting from weathering (MFW diagram) and hydraulic sorting processes (SiO2/Al2O3–Na2O/K2O diagram). The MFW diagram delineates weathering trends of sedimentary rocks and allows estimation of the original source rock composition by tracing the weathering trends backwards to an unweathered domain. Weathering trends of the Idenohana and Kyodomari Formations extend backward to the domain of intermediate and felsic igneous rocks. In contrast, sediments of the Sakamoto Formation do not fit into a linear weathering trend, indicating that the source rock cannot be approximated to igneous rocks. On the SiO2/Al2O3–Na2O/K2O diagram, sediments are organized into compositional trends, in which the range reflects compositional variations induced by the hydraulic sorting effect. On this diagram, sediments derived from the igneous and recycled sedimentary provenances can be distinguished by reading the inclination of the trend. By utilizing this principle, source rocks of the Idenohana and Kyodomari Formations are interpreted as igneous rocks and those of the Sakamoto Formation are interpreted as recycled sedimentary rocks. Therefore, these diagrams concurrently estimate the source rock composition through quantifying and adjusting the weathering and sorting effects, and reveal a systematic transition in the provenance of the Ashikita Group. The Idenohana and Kyodomari Formations were supplied chiefly from an igneous provenance, which shifted from intermediate to felsic compositions in stratigraphic order. Whereas, sediments of the Sakamoto Formation were sourced primarily from a recycled sedimentary provenance.  相似文献   

18.
Based on six consistent radiocarbon dates from the isolation basins Grødheimsvatnet and Kringlemyr, we estimate a minimum deglaciation age for southern Karmøy, an island in outer Boknafjorden (south‐west Norway), of around 18 000 calibrated years before present (18k cal a bp ). We use microscopic phytoplankton, macrofossils, lithostratigraphic evidence and X‐ray fluorescence data to identify the isolation contacts in the basins, and date them to 17.52–17.18k cal a bp in Grødheimsvatnet [15.57 m above present mean sea level (MSL)] and 16.19–15.80k cal a bp in Kringlemyr (11.99 m above MSL). Combining these data with previous studies, we construct a relative sea‐level (RSL) curve from 18k cal a bp until the present, which is ~3 ka longer than any previous RSL reconstruction from southern Norway. Following deglaciation, southern Karmøy has experienced a net emergence of around 16–19 m, although with significant RSL fluctuations. This includes two RSL minima well below present MSL around ~13.8 and ~10k cal a bp , and two maxima that culminated around 5–7 m above MSL during the Younger Dryas and early to mid‐Holocene, respectively. Considering eustatic sea level and modelled gravitational deformation of the geoid, we estimate a net postglacial isostatic uplift of ~120 m. © 2019 John Wiley & Sons, Ltd  相似文献   

19.
Sedimentological, micropalaeontological (benthic foraminifers and dinoflagellate cysts), stable isotope data and AMS 14C datings on cores and surface samples, in addition to acoustic data, have been obtained from Voldafjorden, western Norway. Based on these data the late glacial and Holocene sedimentological processes and variability in circulation and fjord environments are outlined. Glacial marine sedimentation prevailed in the Voldafjorden between 11.0 kyr and 9.2 kyr BP (radiocarbon years). In the later part of the Allerød period, and for the rest of the Holocene, there was deposition of fine‐grained normal marine sediments in the fjord basin. Turbidite layers, recorded in core material and on acoustic profiles, dated to ca. 2.1, 6.9–7.6, ca. 9.6 and ca. 11.0 kyr BP, interrupted the marine sedimentation. The event dated to between 6.9 and 7.6 kyr BP probably corresponds to a tsunami resulting from large‐scale sliding on the continental margin off Norway (the Storegga Tsunami). During the later part of the Allerød period, Voldafjorden had a strongly stratified water column with cold bottom water and warm surface water, reaching interglacial temperatures during the summer seasons. During the Younger Dryas cold event there was a return to arctic sea‐surface summer temperatures, possibly with year‐round sea‐ice cover, the entire benthic fauna being composed of arctic species. The first strong Holocene warming, observed simultaneously in bottom and sea‐surface temperature proxies, occurred at ca. 10.1 kyr BP. Bottom water proxies indicate two cold periods, possibly with 2°C lowering of temperatures, at ca. 10.0 (PBO 1) and at 9.8 kyr BP (PBO 2). These events may both result from catastrophic outbursts of Baltic glacial lake water. The remainder of the Holocene experienced variability in basin water temperature, indicated by oxygen isotope measurements with an amplitude of ca. 2°C, with cooler periods at ca. 8.4–9.0, 5.6, 5.2, 4.6, 4.2, 3.5, 2.2, 1.2 and 0.4–0.8 kyr BP. Changes in the fjord hydrology through the past 11.3 kyr show a close correspondence, both in amplitude and timing of events, recorded in cores from the Norwegian Sea region and the North Atlantic. These data suggest a close relationship between fjord environments and variability in large‐scale oceanic circulation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号