首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
锗、银、金大型超大型矿床的有机地球化学研究   总被引:3,自引:0,他引:3  
锗、银、金大型超大型矿床的有机地球化学研究庄汉平(中国科学院地球化学研究所,贵阳550002)关键词有机质—金属相互作用褐煤型超大型锗矿床黑色页岩型银钒矿床卡林型金矿床有机地球化学有机质—金属相互作用是有关超大型矿床基础理论研究的重要内容之一。在以往...  相似文献   

2.
坑头金矿位于贵州黔东南金矿带,前人对该金矿带石英脉型金矿进行了广泛研究,认为深部可能有蚀变岩型金矿存在,但都未证实。近期经综合研究,在坑头金矿施工钻孔发现坑头金矿的深部存在蚀变岩型矿体,含金量最高达6. 65 g/t。蚀变岩型金矿矿石中金的赋存状态以裂隙金为主,主要载金矿物为毒砂。硅化蚀变及断层与金矿化关系密切,金矿体位于硅化蚀变发育的构造破碎带中。目前,黔东南金矿的开采目标多为300 m以浅的石英脉型金矿体,因此该发现对黔东南地区金矿深部勘查工作具有重要意义。  相似文献   

3.
<正>Red clay type gold deposits,located in the south of China,are situated not only in orogenic belts,but also in inner cratons,where climate is tropical-subtropical with clear arid and humid.The lateritic weathering crust often can be divided into five zones,including topsoil,siliceous duricrust zone,multi-color zone(or red clay zone in some deposits),pallid zone and saprolite zone from surface to the base rock,several of which are absent in some deposits.The base rocks are composed mainly of carbonate rocks with minor clastic rocks,intermediate-basic volcanic rocks and intermediate-acid and alkalic intrusions.The orebodies are mainly located in the multi-color zone with part of them in the pallid and saprolite zones.The ore sources include orebodies of Carlin-type gold deposits and porphyry gold deposits,as well as gold-rich base rocks.The red clay type gold deposits experienced early-stage endogenic gold mineralization and laterization during the Tertiary and Quaternary.The areas with endogenic gold deposits,especially Carlin-type gold deposits and porphyry gold deposits in karst depressions on the plateau,structual erosional platforms in the middle-lower mountains,and intermountain basins in southern China are well worth studying to trace red clay type gold deposits.  相似文献   

4.
中国东部中生代浅成热液金矿可以划分为与花岗岩和与碱性岩有关的两种类型;也可以分为高硫型和低硫型两大类,而且以后一种为主。这些金矿的形成和分布受区域构造制约,具体地说是受破火山口、火山角砾岩筒以及与火山机构有关的断裂控制。成矿围岩为火山岩类及同源花岗质岩石和周围地层。主要的蚀变组合为冰长石一玉髓一绢云母或明矾石一高岭石一石英(玉髓)。成矿年龄分布在180~188Ma,135~144Ma,127~115Ma和94~105Ma四个区间,前三组年龄分别响应于中生代华北板块与扬子克拉通的造山碰撞后陆内造山的伸展过程、构造体制大转折以及岩石圈大减薄,后一组为华南地区岩石圈再一次强烈伸展期间的产物。虽然这些矿床的形成时间有差异,但都是发育于大陆伸展环境中。  相似文献   

5.
Mesozoic epithermal gold deposits in eastern China are divided into calc‐alkaline and alkaline magma‐related gold deposits, and are also grouped as low‐sulfidation, intermediate‐sulfidation and high‐sulfidation types, of which the first two predominate. These gold deposits are distributed in the Tianshan–Yinshan–Great Xing’anling Variscan fold belt of North China craton, Qinling‐Dabie Indo‐Sinian fold belt of Yangtze craton, and South China fold belt or Cathaysian block, from north to south along the eastern China continent. Most of the epithermal gold orebodies are hosted either in volcanic rocks or their related granitoids, and volcanic breccia pipes. These orebodies are mainly associated with adularia–chalcedony–sericite, and alunite–kaolinite–quartz alteration. These orebodies formed in four mineralization pulses at 175, 145–135, 127–115, and 110–94 Ma. The first three pulses correspond to the post‐collision period between the North China and Yangtze cratons, an extension period during late‐stage rotation of the principal compressional stress from N‐S to E‐W, and a dramatic thinning period of the lithosphere, respectively. The last mineralizing pulse was the result of another extension in South China. Although the mineralizing pulses occurred at different times, they all occurred in extensional settings and were accompanied by crust and the mantle interaction.  相似文献   

6.
The Jinwozi lode gold deposit in the eastern Tianshan Mountains of China includes auriferous quartz veins and network quartz veins that are exemplified by the Veins 3 and 210, respectively. This paper presents H‐, O‐isotope compositions and gas compositions of fluid inclusions hosted in sulfides and quartz, and S‐, Pb‐isotope compositions of sulfide separates collected from the principal Stage 2 ores in Veins 3 and 210. Fluid inclusions trapped in quartz and sphalerite are pseudo‐secondary and primary. They were trapped from the fluids during the successive or alternate precipitation of quartz with sulfides. H‐ and O‐isotope compositions of fluid inclusion of three pyrite and one quartz separates from Vein 210 plot within the field of degassed melt, which is evidence for the incorporation of magmatic fluid as well with some possibility of contribution of metamorphic water to the hydrothermal system since the two datasets show a higher oxygen isotopic ratio than those of degassed melt. However, δD and δ18O values of fluid inclusions hosted in sulfides and quartz from Vein 3 are distinctly lower than those from Vein 210. In addition, salinities of fluid inclusion from Vein 3, approximately 3 to 6 wt% NaCl equivalent, are considerably lower than those from Vein 210, which are approximately 8 to 14 wt% NaCl equivalent. Ore‐forming fluids of Veins 3 and 210 have migrated through the relatively high and low levels in the imbricate‐thrust column where rock deformation is characterized by dilatancy or ductile–brittle transition, respectively. Therefore, the ore‐forming fluid of Vein 3 is interpreted to have mixed with greater amounts of meteoric‐derived groundwater than that of Vein 210. Fluid inclusions hosted in sulfides contain considerably higher abundances of gaseous species of CO2, N2, H2S, and so on, than those hosted in quartz. Many of these gaseous species exhibit linear correlations with H2O. These linear trends are interpreted in terms of mixing between magmatic fluid and groundwater. The relative enrichment of gaseous species in fluid inclusions hosted in sulfides, coupled with the banded ore structure, suggests that the magmatic fluid was involved with the ore‐forming fluid in pulsation. Lead isotope compositions of 21 pyrite and galena separates form a linear trend, suggesting mixing of metallic materials from diverse reservoirs. The δ34S values of pyrite and galena range from +5.6‰ to +7.9‰ and from +3.1‰ to +6.3‰, respectively, indicating sulfur of the Jinwozi deposit has been leached mainly from the granodiorite and partly from the Jinwozi Formation by the circulating ore‐forming fluid.  相似文献   

7.
Whole‐rock geochemistry, zircon U–Pb and molybdenite Re–Os geochronology, and Sr–Nd–Hf isotopes analyses were performed on ore‐related dacite porphyry and quartz porphyry at the Yongping Cu–Mo deposit in Southeast China. The geochemical results show that these porphyry stocks have similar REE patterns, and primitive mantle‐normalized spectra show LILE‐enrichment (Ba, Rb, K) and HFSE (Th, Nb, Ta, Ti) depletion. The zircon SHRIMP U–Pb geochronologic results show that the ore‐related porphyries were emplaced at 162–156 Ma. Hydrothermal muscovite of the quartz porphyry yields a plateau age of 162.1 ± 1.4 Ma (2σ). Two hydrothermal biotite samples of the dacite porphyry show plateau ages of 164 ± 1.3 and 163.8 ± 1.3 Ma. Two molybdenite samples from quartz+molybdenite veins contained in the quartz porphyry yield Re–Os ages of 156.7 ± 2.8 Ma and 155.7 ± 3.6 Ma. The ages of molybdenite coeval to zircon and biotite and muscovite ages of the porphyries within the errors suggest that the Mo mineralization was genetically related to the magmatic emplacement. The whole rocks Nd–Sr isotopic data obtained from both the dacite and quartz porphyries suggest partial melting of the Meso‐Proterozoic crust in contribution to the magma process. The zircon Hf isotopic data also indicate the crustal component is the dominated during the magma generation.  相似文献   

8.
This paper presents the results of a study on the variation of Re in the Sar Cheshmeh porphyry copper‐molybdenum deposit in Iran. The Re content was determined in monomineralic molybdenite separates from veinlets and from molybdenum milled floatation concentrates. Mineralogical data and chemical analyses indicate two generations of veinlet molybdenites in the Sar Cheshmeh deposit. The first generation (molybdenite I), which contains low Re, is found as intergrowth with quartz in silicified rocks with low total sulfide content, and the second generation (molybdenite II), which contains high Re, is found in veinlets with low quartz content. There is a positive correlation between the elevation of molybdenite deposition and Re content. Decrease in the temperature and pH of the hydrothermal fluids are effective for the accumulation Re in molybdenite. X‐ray diffraction study of 14 molybdenite samples indicate that the molybdenites are of the 2H polytype.  相似文献   

9.
The Zimudang gold deposit is a large Carlin‐type gold deposit in the Southwest Guizhou Province, China, with an average Au content of 6.2 g/t. Gold is mainly hosted in the fault zone and surrounding strata of the F1 fault and Permian Longtan Formation, and the ore bodies are strictly controlled by both the faults and strata. Detailed mineralogy and geochemistry studies are conducted to help judge the nature of ore‐forming fluids. The results indicate that the Au is generally rich in the sulfides of both ores and wall rocks in the deposit, and the arsenian pyrite and arsenopyrite are the main gold‐bearing sulfides. Four subtypes of arsenian pyrite are found in the deposit, including the euhedral and subhedral pyrite, framboidal pyrite, pyrite aggregates and pyrite veins. The euhedral and subhedral pyrite, which can take up about 80% of total pyrite grains, is the dominant type. Au distributed unevenly in the euhedral and subhedral pyrite, and the content of the Au in the rim is relatively higher than in the core. Au in the pyrite veins and pyrite aggregates is lower than the euhedral and subhedral pyrite. No Au has been detected in the points of framboidal pyrites in this study. An obvious highly enriched As rim exists in the X‐ray images of euhedral pyrites, implying the ore‐forming fluids may be rich in As. The relationship between Au and As reveals that the Au may host as a solid solution (Au+) and nanoparticles of native gold (Au0) in the sulfides. The high Co/Ni ratio (>1) of sulfides and the enrichment of W in the ores all reflect that the gold‐bearing minerals and ore‐forming process were mainly related to the hydrothermal fluids, but the magmatic and volcanic activities cannot be neglected. The general existence of Au and As in the sulfides of both ores and wall rocks and the REE results suggest that the ore‐forming fluids may mainly be derived from the basin itself. The enrichment of Tl suggests that the ore‐forming fluids may be enriched in Cl. The Ce and Eu show slightly or apparently negative anomalies, which means the ore fluids were probably formed under reducing environment. The Y/Ho ratios of ore samples fluctuate around 28, implying the bicarbonate complexation and fluorine were both involved in the ore‐forming process. Combined with the previous studies and our results, we infer that the ore‐forming fluids enriched Au, As, HS? and halogen (F, Cl) were derived from the mixture of reducing basinal fluids and magmatic or volcanic hydrothermal fluids.  相似文献   

10.
造山型金矿床是世界上最重要的金矿类型之一。非洲东南部地区发育有大规模的该类型矿床,因此对该地区造山型金矿床的研究具有重要意义。本文通过对非洲东南部地区大地构造格架及演化、造山型金矿床的时空分布、成矿环境及矿床地质特征的总结整理,并结合对该地区典型造山型金矿床的剖析,认为该地区造山型金矿的形成与克拉通及克拉通之间造山带的演化密切相关,空间上主要分布在各克拉通内的绿岩带及克拉通之间造山带内,时间上主要集中于3.20~3.00、2.70~2.55和2.10~1.80 Ga 3个时期。在此基础上,对非洲东南部地区划分出基巴拉、乌本迪、泛非、林波波4个主要的造山型金矿成矿潜力区。  相似文献   

11.
A great number of magmatic Cu-Ni deposits(including Kalatongke in Xinjiang and Hongqiling in Jilin) are distributed over a distance of almost 3000 km across the Tianshan-Xingmeng Orogenic Belt, from Tianshan Mountains in Xinjiang in the west, to Jilin in eastern China in the east. These deposits were formed during a range of magmatic episodes from the Devonian to the Triassic. Significant magmatic Cu-Ni-Co-PGE deposits were formed from the Devonian period in the Nalati arc(e.g. Jingbulake Cu-Ni in Xinjiang), Carboniferous period in the Puerjin-Ertai arc(e.g. Kalatongke Cu-Ni-Co-PGE in Xinjiang), Carboniferous period in the Dananhu-Touquan arc(e.g. Huangshandong, Xiangshan and Tulaergen in estern Tianshan, Xinjiang) to Triassic period in the Hulan arc(e.g. Hongqiling Cu-Ni in Jilin). In addition to the overall tectonic, geologic and distribution of magmatic Cu-Ni deposits in the Tianshan-Xingmeng Orogenic Belt, the metallogenic setting, deposit geology and mineralization characteristics of each deposit mentioned above are summarized in this paper. Geochronologic data of Cu-Ni deposits indicate that, from west to east, the metallogenic ages in the Tianshan-Xingmeng Orogenic Belt changed with time, namely, from the Late Caledonian(~440 Ma), through the Late Hercynian(300–265 Ma) to the Late Indosinian(225–200 Ma). Such variation could reflect a gradual scissor type closure of the paleo Asian ocean between the Siberia Craton and the North China Craton from west to east.  相似文献   

12.
The world‐class Far Southeast (FSE) porphyry system, Philippines, includes the FSE Cu–Au porphyry deposit, the Lepanto Cu–Au high‐sulfidation deposit and the Victoria–Teresa Au–Ag intermediate‐sulfidation veins, centered on the intrusive complex of dioritic composition. The Lepanto and FSE deposits are genetically related and both share an evolution characterized by early stage 1 alteration (deep FSE potassic, shallow Lepanto advanced argillic‐silicic, both at ~1.4 Ma), followed by stage 2 phyllic alteration (at ~1.3 Ma); the dominant ore mineral deposition within the FSE porphyry and the Lepanto epithermal deposits occurred during stage 2. We determined the chemical and S isotopic composition of sulfate and sulfide minerals from Lepanto, including stage 1 alunite (12 to 28 permil), aluminum–phosphate–sulfate (APS) minerals (14 to 21 permil) and pyrite (?4 to 2 permil), stage 2 sulfides (mainly enargite–luzonite and some pyrite, ?10 to ?1 permil), and late stage 2 sulfates (barite and anhydrite, 21 to 27 permil). The minerals from FSE include stage 2 chalcopyrite (1.6 to 2.6 permil), pyrite (1.1 to 3.4 permil) and anhydrite (13 to 25 permil). The whole‐rock S isotopic composition of weakly altered syn‐mineral intrusions is 2.0 permil. Stage 1 quartz–alunite–pyrite of the Lepanto lithocap, above about 650 m elevation, formed from acidic condensates of magmatic vapor at the same time as hypersaline liquid formed potassic alteration (biotite) near sea level. The S isotopic composition of stage 1 alunite–pyrite record temperatures of approximately 300–400°C for the vapor condensate directly over the porphyry deposit; this cooled to <250°C as the acidic condensate flowed to the NW along the Lepanto fault where it cut the unconformity at the top of the basement. Stage 1 alunite at the base of the advanced argillic lithocap over FSE contains cores of APS minerals with Sr, Ba and Ca; based on back‐scattered electron images and ion microprobe data, these APS minerals show a large degree of chemical and S‐isotopic heterogeneity within and between samples. The variation in S isotopic values in these finely banded stage 1 alunite and APS minerals (16 permil range), as well as that of pyrite (6 permil range) was due largely to changes in temperature, and perhaps variation in redox conditions (average ~ 2:1 H2S:SO4). Such fluctuations could have been related to fluid pulses caused by injection of mafic melt into the diorite magma chamber, supported by mafic xenoliths hosted in diorite of an earlier intrusion. The S isotopic values of stage 2 minerals indicate temperatures as high as 400°C near sea level in the porphyry deposit, associated with a relatively reduced fluid (~10:1 H2S:SO4) responsible for deposition of chalcopyrite. Stage 2 fluids were relatively oxidized in the Lepanto lithocap, with an H2S:SO4 ratio of about 4. The oxidation resulted from cooling, which was caused by boiling during ascent and then dilution with steam‐heated meteoric water in the lithocap. This cooling also resulted in the sulfidation state of minerals increasing from chalcopyrite stability in the porphyry deposit to that of enargite in the lithocap‐hosted high‐sulfidation deposit. The temperature at the base of the lithocap during stage 2 was ≥300°C, cooling to <250°C within the main lithocap, and about 200°C towards the limit of the Lepanto orebody, approximately 2 km NW of the porphyry deposit. Approximate 300°C and 200°C isotherms, estimated from S isotopic and fluid inclusion temperatures during stage 1 and stage 2, shifted towards the core of the FSE porphyry deposit with time. This general retreat in isotherms was more than 500 m laterally within Lepanto and 500 m vertically within FSE as the magmatic–hydrothermal system evolved and collapsed over the magmatic center. During this evolution, there is also evidence recorded by large S isotopic variations in individual crystals for sharp pulses of higher temperature, relatively reduced fluid injected into the porphyry deposit.  相似文献   

13.
In order to elucidate the formation mechanism of low‐sulfidation epithermal gold deposit, the adsorption of [Au(S2O3)2]3? (a model compound for gold(I) complex ion) on alumina gel (a model compound for the aluminum‐bearing minerals) and change in chemical state of [Au(S2O3)2]3? after adsorption on the surface of alumina gel were investigated as a basic model experiment. In the pH range from 4 to 6, the amount of [Au(S2O3)2]3? adsorbed on alumina gel decreased with increasing pH and decreased drastically between pH 6 and 7, and then approached zero above pH 8 at 30°C. At 60°C, the amount of gold adsorbed above pH 7 was enhanced compared with that at 30°C. This adsorption tendency indicates that [Au(S2O3)2]3? is mainly adsorbed by electrostatic interaction between negative charges of [Au(S2O3)2]3? and positive charges of alumina gel because of its isoelectric point around pH 9. The chemical state of gold after adsorption of [Au(S2O3)2]3? on alumina gel was examined using X‐ray absorption near edge structure (XANES). The result showed that [Au(S2O3)2]3? was spontaneously reduced to elemental gold even in the absence of specific reducing agents after adsorption on alumina gel. This reduction reaction might occur by two steps: (i) disproportionation of the adsorbed [Au(S2O3)2]3? at the surface of alumina gel, and (ii) spontaneous reduction of the resulting gold(III) complex ions on the surface of alumina gel. The experimental results suggest that aluminum plays an important role in the concentration of gold(I) complex ions and subsequent reduction of gold during the formation of low‐sulfidation epithermal gold deposits.  相似文献   

14.
秦岭造山带是世界第二大卡林-类卡林型金矿省,其地质背景与美国西部卡林-类卡林型金矿省明显不同,位于大陆内部的碰撞造山带,而非活动大陆边缘的盆岭省。秦岭卡林-类卡林型金矿主要赋存于板块缝合带及其前陆冲断带的海西-印支构造层中,以泥盆系和三叠系为主,主要岩性为瀉湖-浅海相的含碳细碎屑岩-碳酸盐岩建造,即碳硅泥岩系;成矿元素为Au-As-Sb-Hg-Ag,缺乏T1,共生矿种为Sb,Hg,Ag,U和重晶石等;成矿温度为160~300℃,流体盐度为4%~10%(NaClcq),压力为5~50MPa,深度约0.5~5km,属于中低温中浅成热液矿床,与内华达卡林-类卡林型金矿一致。成矿流体具有建造水特点,C2H6含量较高,显示了有机流体参与成矿。成矿同位素年龄介于220~100Ma之间,以170Ma为高峰,地球动力学背景属碰撞造山过程挤压-伸展转变期的减压增温体制,成矿构造模式为碰撞造山成岩成矿和流体作用模式。陆陆碰撞过程中,沿龙门山、阿坝-黑水-平青、若尔盖-文县、玛曲-勉县-略阳、白龙江、双河-公馆、凤县-镇安、安康等大型断裂带的陆内俯冲作用不仅导致了西秦岭地壳缩短增厚隆升,而且使俯冲板片变质脱水、熔融,派生成矿流体和相关熔体,流体和熔体的上升到仰冲板片次级构造带,形成了卡林-类卡林型和造山型金矿成矿系统。据此提出,西秦岭深部可能存在潜力巨大的造山型金矿省。  相似文献   

15.
The Xiuwenghala gold deposit is located in the Beishan Orogen of the southern Central Asian Orogenic Belt. The vein/lenticular gold orebodies are controlled by Northeast‐trending faults and are hosted mainly in the brecciated/altered tuff and rhyolite porphyry of the Lower Carboniferous Baishan Formation. Metallic minerals include mainly pyrite and minor chalcopyrite, arsenopyrite, galena, and sphalerite, whilst nonmetallic minerals include quartz, chalcedony, sericite, chlorite, and calcite. Hydrothermal alterations consist of silicic, sericite, chlorite, and carbonate. Alteration/mineralization processes comprise three stages: pre‐ore silicic alteration (Stage I), syn‐ore quartz‐chalcedony‐polymetallic sulfide mineralization (Stage II), and post‐ore quartz‐calcite veining (Stage III). Fluid inclusions (FIs) in quartz and calcite are dominated by L‐type with minor V‐type and lack any daughter mineral‐bearing or CO2‐rich/‐bearing inclusions. From Stages I to III, the FIs homogenized at 240–260°C, 220–250°C, and 150–190°C, with corresponding salinities of 2.9–10.9, 3.2–11.1, and 2.9–11.9 wt.% NaCl eqv., respectively. The mineralization depth at Xiuwenghala is estimated to be relatively shallow (<1 km). FI results indicate that the ore‐forming fluids belong to a low to medium‐temperature, low‐salinity, and low‐density NaCl‐H2O system. The values decrease from Stage I to III (3.7‰, 1.7–2.4‰, and ?1.7 to 0.9‰, respectively), and a similar trend is found for their values (?104 to ?90‰, ?126 to ?86‰, and ?130 to ?106‰, respectively). This indicates that the fluid source gradually evolved from magmatic to meteoric. δ34S values of the hydrothermal pyrites (?3.0 to 0.0‰; avg. ?1.1‰) resemble those of typical magmatic/mantle‐derived sulfides. Pyrite Pb isotopic compositions (206Pb/204Pb = 18.409–18.767, 207Pb/204Pb = 15.600–15.715, 208Pb/204Pb = 38.173–38.654) are similar to those of the (sub)volcanic ore host, indicating that the origin of ore‐forming material was mainly the upper crustal (sub)volcanic rocks. Integrating evidence from geology, FIs, and H–O–S–Pb isotopes, we suggest that Xiuwenghala is best classified as a low‐sulfidation epithermal gold deposit.  相似文献   

16.
《Resource Geology》2018,68(4):373-394
The Jiadi gold deposit is a newly discovered Carlin‐type gold deposit in the Guizhou Province, Southwest China. This deposit is structurally controlled by a shallow fold–fault superimposed system along the Lianhuashan trend. Field geological investigations, structural analysis, and mathematical research are conducted to study its structures and hydrothermal fluid flow process. Geological investigations (i.e. sections, stope, and drill hole) indicate that the structures are dominated by NE‐trending folds, NWW‐trending folds, and faults. A trend‐surface analysis of the low interformational fracture zone suggests that the overall distribution of the Lianhuashan trend is controlled by the NE‐trending Lianhuashan anticline. Nearly all primary Carlin‐type gold deposits are distributed along the southeastern flank where the fold axis changes from NE to EW. Gold orebodies are hosted by the interformational fracture zones and primarily situated at the transitions from the high‐value areas to the low‐value areas of the interformational fracture zones. A stress analysis on the hydrothermal veins indicates that they are of tenso‐shear properties. The ore‐forming elements (Au, As, Sb, Hg, and Tl) of the hydrothermal veins from the interformational fracture zones and intrusive breccia body present strong positive anomalies compared with those from the adjacent wall rocks. According to the development patterns of the ore‐forming elements and hydrothermal veins, a migration process of the ore‐forming fluids is proposed: the deeply sourced ore‐forming fluids migrated vertically to shallow crust along an intrusive breccia body, subsequently flowed horizontally along the interformational fracture zones accompanied by gold precipitation in the early stage, and finally migrated outward along steep micro‐fractures during following stages.  相似文献   

17.
In the Gawler Craton, the completeness of cover concealing the crystalline basement in the region of the giant Olympic Dam Cu–Au deposit has impeded any sufficient understanding of the crustal architecture and tectonic setting of its IOCG mineral-system. To circumvent this problem, deep seismic reflection data were recently acquired from  250 line-km of two intersecting traverses, centered on the Olympic Dam deposit. The data were recorded to 18 s TWT ( 55 km). The crust consists of Neoproterozoic cover, in places more than 5 km thick, over crystalline basement with the Moho at depths of 13–14 s TWT ( 40–42 km). The Olympic Dam deposit lies on the boundary between two distinct pieces of crust, one interpreted as the Archean–Paleoproterozoic core to the craton, the other as a Meso–Neoproterozoic mobile belt. The host to the deposit, a member of the  1590 Ma Hiltaba Suite of granites, is situated above a zone of reduced impedance contrast in the lower crust, which we interpret to be source-region for its  1000 °C magma. The crystalline basement is dominated by thrusts. This contrasts with widely held models for the tectonic setting of Olympic Dam, which predict extension associated with heat from the mantle producing the high temperatures required to generate the Hiltaba Suite granites implicated in mineralization. We use the seismic data to test four hypotheses for this heat-source: mantle underplating, a mantle-plume, lithospheric extension, and radioactive heating in the lower crust. We reject the first three hypotheses. The data cannot be used to reject or confirm the fourth hypothesis.  相似文献   

18.
东南亚巽他群岛是新生代埃达克岩、类埃达克岩极其发育的地区。这些中酸性岩浆岩广泛见于几内亚岛上的中央山脉、巴布亚新几内亚的欧文-斯坦利推覆带、俾斯麦岛弧、布干维尔岛-所罗门岛弧、印度尼西亚苏拉威西、加里曼丹中部、班达岛弧,零星见于苏门答腊、爪哇等地。根据微量元素特征及REE曲线类型的特点,本区埃达克岩可以明显地划分为2种类型:第一种埃达克岩类型属于拉斑/钙-碱性系列,具有大洋岛弧的REE曲线特征(相当于O型埃达克岩);第二种埃达克岩属于高钾钙-碱性系列,归于大陆埃达克岩(相当于C型埃达克岩),形成于弧-陆碰撞带或碰撞后造山带。埃达克岩与浅成热液金属矿床和斑岩矿床的成矿作用有密切的关系,是世界级浅成热液和斑岩铜-金矿的容矿岩石。  相似文献   

19.
东南亚巽他群岛是新生代埃达克岩、类埃达克岩极其发育的地区。这些中酸性岩浆岩广泛见于几内亚岛上的中央山脉、巴布亚新几内亚的欧文-斯坦利推覆带、俾斯麦岛弧、布干维尔岛-所罗门岛弧、印度尼西亚苏拉威西、加里曼丹中部、班达岛弧,零星见于苏门答腊、爪哇等地。根据微量元素特征及REE曲线类型的特点,本区埃达克岩可以明显地划分为2种类型:第一种埃达克岩类型属于拉斑/钙-碱性系列,具有大洋岛弧的REE曲线特征(相当于O型埃达克岩);第二种埃达克岩属于高钾钙-碱性系列,归于大陆埃达克岩(相当于C型埃达克岩),形成于弧-陆碰撞带或碰撞后造山带。埃达克岩与浅成热液金属矿床和斑岩矿床的成矿作用有密切的关系,是世界级浅成热液和斑岩铜-金矿的容矿岩石。  相似文献   

20.
构造地球化学找矿方法及其在微细浸染型 金矿中的应用   总被引:6,自引:1,他引:5  
文章阐述了构造地球化学找矿研究的一些基本问题:构造地球化学找矿的发展历程、方法依据、不同类型含矿构造的地球化学特征、构造地球化学找矿的研究内容和工作程序、工作方法和方法特点.以云南富宁县那能金矿区为例,运用构造地球化学方法对微细浸染型金矿进行了找矿研究.厘定了矿区控矿构造为-右列雁行褶皱带,确定了成矿元素组合为Au、As、Ag、Mo,圈定了两个金异常带,并证实为金矿体所致.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号