首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 15 毫秒
1.
The literature on incised river valley sedimentology is dominated by studies of sediment‐rich systems in which the valley has been filled during and/or shortly after drowning. In contrast, the Holocene evolution of the Kosi Lagoon, South Africa (an incised coastal plain river valley) took place under very low sedimentation rates which have produced a distinctive stratigraphy and contemporary sedimentary environments. The findings are based on a synthesis of the results of studies of seismic stratigraphy, sediment distribution, morphodynamics and geomorphology. Barrier migration was prevented by a high pre‐Holocene dune barrier against which Holocene coastal deposits accumulated in an aggradational sequence. Holocene evolution of the back barrier involved: (i) drowning of the incised valley; (ii) wave‐induced modification of the back‐barrier shoreline leading to segmentation during the highstand; and (iii) marine sedimentation adjacent to the tidal inlet. Segmentation has divided the estuary into a series of geochemically and sedimentologically distinctive basins connected by channels in the estuarine barriers. The seismic stratigraphy of the back barrier essentially lacks a transgressive systems tract, shoreline modification and deposition having been accomplished during the highstand. The lack of historical geomorphological change suggests that the system has achieved morphological equilibrium with ambient energy conditions and low sediment supply. This study presents a classification for estuarine incised valley fills based on the balance between sea‐level rise and sedimentation in which Kosi represents a ‘give‐up’ estuary where much of the relict incised channel form is drowned and preserved. It exhibits a fundamentally different set of evolutionary processes and stratigraphic sequences to those of the better known incised valley systems in which sedimentation either keeps pace with sea‐level (‘keep‐up’ estuaries) or occurs after initial drowning (‘catch‐up’ estuaries).  相似文献   

2.
Models of glacio‐hydroisostatic sea‐level change have been published for the British Isles that are broadly consistent with the observational evidence, as well as with glaciological constraints. It has been argued, however, that the models fail to represent sea‐level change along the Irish Sea margins and in southern Ireland for the post‐deglaciation period. The argument rests on the interpretation of the depositional environment of the elevated ‘Irish Sea Drift’ on both sides of the Irish Sea: whether this is terrestrial or glaciomarine. The isostatic models for the British Isles are consistent with the former interpretation in that sea‐levels on either side of the Irish Sea, south of about the Isle of Man, are not predicted to have risen above present sea‐level at any time since the deglaciation of the Irish Sea. This implies that ice over both the Irish Sea and Ireland was relatively thin (ca. 600–700 m over Ireland). If the glaciomarine interpretation of the elevated Irish Sea Drift is correct, then the maximum ice thickness over central and southern Ireland would have to reach 2000 m, exceeding that over Scotland. Furthermore, for the resulting sea‐level change to be consistent with the Holocene evidence, this thick ice sheet could not have extended to the eastern side of the Irish Sea. Nor could it have been very thick at its northern and western limits. If such an ice model is extreme and incompatible with glaciological observations then the alternative is to accept the interpretation of the Irish Sea Drift as terrestrial in origin. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
Seismic surveys with sub‐bottom profiler were carried out in the Manfredonia Gulf in the southern Adriatic Sea. Here, a buried surface was recognized on which three valleys, located about 80 km from the shelf edge, were deeply incised. Beneath this surface, a pre‐upper Würm seismic unit (PW) was identified. Above, two seismic units were recognized: the transgressive system tract (TST) and highstand system tract (g2). On the basis of regional correlation with onshore and offshore data, these units and their boundaries were dated and correlated with phases of the last glacial–interglacial cycle. The incised valley system was attributed to the Marine Isotopic Stage (MIS) 2. The TST and g2 units fill the valleys and were attributed to the post‐glacial sea‐level rise and highstand. The incised valleys are anomalous with respect to published models; despite having many characteristics that would have limited the fluvial incision (the lowstand shoreline that remained on the shelf, the low gradient of the shelf, the subsidence that affected the study area since MIS 5), the valleys appear to be deeply incised on the shelf, with valley flanks that can exceed 40 m in height. The model to explain the formation of the valleys comprises enhanced river discharge as the key factor in increasing river energy and promoting erosion across the low gradient shelf. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Regionally extensive parasequences in the upper McMurray Formation, Grouse Paleovalley, north‐east Alberta, Canada, preserve a shift in depositional processes in a paralic environment from tide domination, with notable fluvial influence, through to wave domination. Three stacked parasequences form the upper McMurray Formation and are separated by allogenic flooding surfaces. Sediments within the three parasequences are grouped into three facies associations: wave‐dominated/storm‐dominated deltas, storm‐affected shorefaces to sheltered bay‐margin and fluvio‐tidal brackish‐water channels. The two oldest parasequences comprise dominantly tide‐dominated, wave‐influenced/fluvial‐influenced, shoreface to bay‐margin deposits bisected by penecontemporaneous brackish‐water channels. Brackish‐water channels trend approximately north‐west/south‐east, which is perpendicular to the interpreted shoreline trend; this implies that the basinward and progradational direction was towards the north‐west during deposition of the upper McMurray Formation in Grouse Paleovalley. The youngest parasequence is interpreted as amalgamated wave‐dominated/storm‐dominated delta lobes. The transition from tide‐dominated deposition in the oldest two parasequences to wave‐dominated deposition in the youngest is attributed mainly to drowning of carbonate highlands to the north and north‐west of the study area, and potentially to relative changes in accommodation space and deposition rate. The sedimentological, ichnological and regional distribution of the three facies associations within each parasequence are compared to modern and Holocene analogues that have experienced similar shifts in process dominance. Through this comparison it is possible to consider how shifts in depositional processes are expressed in the rock record. In particular, this study provides one of few ancient examples of preservation of depositional process shifts and showcases how topography impacts the character and architecture of marginal‐marine systems.  相似文献   

5.
Blocked‐valley lakes are formed when tributaries are impounded by the relatively rapid aggradation of a large river and its floodplain. These features are common in the landscape, and have been identified in the floodplains of the Solimões‐Amazon (Brazil) and Fly‐Strickland Rivers (Papua New Guinea), for example, but their inaccessibility has resulted in studies being limited to remotely sensed image analysis. This paper documents the sedimentology and geomorphic evolution of a blocked‐valley lake, Lake Futululu on the Mfolozi River floodplain margin, in South Africa, while also offering a context for the formation of lakes and wetlands at tributary junctions. The study combines aerial photography, elevation data from orthophotographs and field survey, and longitudinal sedimentology determined from a series of cores, which were sub‐sampled for organic content and particle size analysis. Radiocarbon dating was used to gauge the rate and timing of peat accumulation. Results indicate that following the last glacial maximum, rising sea‐levels caused aggradation of the Mfolozi River floodplain. By 3980 years bp , aggradation on the floodplain had impounded the Futululu drainage line, creating conditions suitable for peat formation, which has since occurred at a constant average rate of 0·13 cm year?1. Continued aggradation on the Mfolozi River floodplain has raised the base level of the Futululu drainage line, resulting in a series of back‐stepping sedimentary facies with fluvially derived sand and silt episodically prograding over lacustrine peat deposits. Blocked‐valley lakes form where the trunk river has a much larger sediment load and catchment than the tributary stream. Similarly, when the relative difference in sediment loads is less, palustrine wetlands, rather than lakes, may be the result. In contrast, where tributaries drain a steep, well‐connected catchment, they may impound much larger trunk rivers, creating lakes or wetlands upstream.  相似文献   

6.
While contributing <1 m equivalent eustatic sea‐level rise the British Isles ice sheet produced glacio‐isostatic rebound in northern Britain of similar magnitude to eustatic sea‐level change, or global meltwater influx, over the last 18 000 years. The resulting spatially variable relative sea‐level changes combine with observations from far‐field locations to produce a rigorous test for quantitative models of glacial isostatic adjustment, local ice‐sheet history and global meltwater influx. After a review of the attributes of relative sea‐level observations significant for constraining large‐scale models of the isostatic adjustment process we summarise long records of relative sea‐level change from the British Isles and far‐field locations. We give an overview of different global theoretical models of the isostatic adjustment process before presenting intercomparisons of observed and predicted relative sea levels at sites in the British Isles and far‐field for a range of Earth and ice model parameters in order to demonstrate model sensitivity and the resolving power available from using evidence from the British Isles. For the first time we show a good degree of fit between relative sea‐level observations and predictions that are based upon global Earth and ice model parameters, independently derived from analysis of far‐field data, with a terrain‐corrected model of the British Isles ice sheet that includes extensive glaciation of the North Sea and western continental shelf, that does not assume isostatic equilibrium at the Last Glacial Maximum and keeps to trimline constraints of ice surface elevation. We do not attempt to identify a unique solution for the model lithosphere thickness parameter or the local‐scale detail of the ice model in order to provide a fit for all sites, but argue that the next stage should be to incorporate an ice‐sheet model that is based on quantitative, glaciological model simulations. We hope that this paper will stimulate this debate and help to integrate research in glacial geomorphology, glaciology, sea‐level change, Earth rheology and quantitative modelling. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
Spatial and quantitative analysis of infilling processes of the tide‐dominated incised valleys beneath the Tokyo Lowland during the last 14 kyr was undertaken by using data from 18 sediment cores, 467 radiocarbon dates and 6100 borehole logs. The post‐Last Glacial Maximum valley fills consist of braided river, meandering river, estuary, spit and delta systems in ascending order. The boundary between the estuary and delta systems is regarded as the maximum flooding surface. The maximum flooding surface beneath the Tokyo Lowland is dated at 8 ka in the Arakawa Valley and 7 ka in the Nakagawa Valley. This age difference is due to the migration of the Tone River from the Arakawa Valley to the Nakagawa Valley at 5 ka, and suggests that the widely held view that the global initiation of deltas coincided with the abrupt rise of sea‐level at 9 to 8 ka is true only where there has been steady sediment supply from major rivers. The meandering river system is dominated by sheet‐like sands that were deposited during lateral migration of channels during the Younger Dryas and isolated vertical sands within muds that reflect vertical aggradation of channels before and after the Younger Dryas. The transition between these channel geometries is controlled by a threshold sea‐level rise of 4 to 7 mm yr?1. Before migration of the Tone River at 5 ka, the tide‐dominated bay in the Nakagawa Valley was filled by upward‐fining laterally accreting muds. The muds accreted from the margin to the axis of the bay. Such lateral accretion of suspended particles derived from outside the bay has been documented in other tide‐dominated coastal environments and is probably common in other similar settings. After the migration of the Tone River, the bay was filled by upward‐coarsening deltaic sediments.  相似文献   

8.
Understanding the stratigraphic fill and reconstructing the palaeo‐hydrology of incised valleys can help to constrain those factors that controlled their origin, evolution and regional significance. This condition is addressed through the analysis of a large (up to 18 km wide by 80 m deep) and exceptionally well‐imaged Late Pleistocene incised valley from the Sunda Shelf (South China Sea) based on shallow three‐dimensional seismic data from a large (11 500 km2), ‘merge’ survey, supplemented with site survey data (boreholes and seismic). This approach has enabled the characterization of the planform geometry, cross‐sectional area and internal stratigraphic architecture, which together allow reconstruction of the palaeo‐hydrology. The valley‐fill displays five notable stratigraphic features: (i) it is considerably larger than other seismically resolvable channel forms and can be traced for at least 180 km along its length; (ii) it is located in the axial part of the Malay Basin; (iii) the youngest part of the valley‐fill is dominated by a large (600 m wide and 23 m deep), high‐sinuosity channel, with well‐developed lateral accretion surfaces; (iv) the immediately adjacent interfluves contain much smaller, dendritic channel systems, which resemble tributaries that drained into the larger incised valley system; and (v) a ca 16 m thick, shell‐bearing, Holocene clay caps the valley‐fill. The dimension, basin location and palaeo‐hydrology of this incised valley leads to the conclusion that it represents the trunk river, which flowed along the length of the Malay Basin; it connected the Gulf of Thailand in the north with the South China Sea in the south‐east. The length of the river system (>1200 km long) enables examination of the upstream to downstream controls on the evolution of the incised valley, including sea‐level, climate and tectonics. The valley size, orientation and palaeo‐hydrology suggest close interaction between the regional tectonic framework, low‐angle shelf physiography and a humid‐tropical climatic setting.  相似文献   

9.
《Sedimentology》2018,65(6):1891-1917
Coastal back‐barrier perched lakes are freshwater bodies that are elevated over sea‐level and are not directly subjected to the inflow of seawater. This study provides a detailed reconstruction of the Doniños back‐barrier perched lake that developed at the end of a small river valley in the rocky coast of the north‐west Iberian Peninsula during the Holocene transgression. Its sequence stratigraphy was reconstructed based on a core transect across the system, the analyses of its lithofacies and microfossil assemblages, and a high‐resolution radiocarbon‐based chronology. The Doniños perched lake was formed ca 4·5 ka bp . The setting of the perched lake was favoured by Late Holocene sea‐level stabilization and the formation of a barrier and back‐barrier basin, which was contemporaneous with the high systems tract period. This basin developed over marine and lagoonal sediments deposited between 10·2 ka bp and 8·0 ka bp , during rapidly rising sea‐level characteristic of the transgressive systems track period. At 1·1 ka bp , the barrier was breached and the perched lake was partially emptied, causing the erosion of the back‐barrier basin sediments and a significant sedimentary hiatus. Both enhanced storminess and human intervention were likely to be responsible for this event. After 1 ka bp , the barrier reclosed and the present‐day lake was reformed, with the water level reaching as high as 5 m above mean sea‐level. The depositional evolution of the Doniños system serves as a model of coastal back‐barrier perched lakes in coastal clastic systems that have developed over gently seaward‐dipping rugged substrates at small distances from the shoreline and under conditions of rising sea‐level and high sediment supply. A review of estuaries, back‐barrier lagoons, pocket beaches and back‐barrier perched lakes in the rocky coast of north‐west Spain shows that the elevation of the bedrock is the main factor controlling the origin and evolution of these systems.  相似文献   

10.
The Late Pleistocene/Holocene Tiber delta succession represents the most recent and one of the best preserved, high‐frequency/low‐rank depositional sequences developed along the Latium continental margin of the Italian peninsula. Several previous studies have established a robust data set from which it has been possible to describe the stratigraphic architecture of the entire Tiber depositional sequence from the landward to seaward sectors and over a distance of 60 km. The Tiber depositional sequence shows many characteristics found in other Late Pleistocene to Holocene deltaic and coastal successions of the Mediterranean area. The stratigraphic architecture of the Tiber depositional sequence is controlled mainly by glacioeustasy, although factors such as tectonic uplift, volcanism and subsidence, exert an influence at a local scale. The resulting depositional model allowed discussion of some important points such as: (1) the genesis of the Tiber mixed bedrock‐alluvial valley, extending from the coastal plain to the innermost portion of the shelf, recording (i) multiple episodes of incision during relative sea‐level fall, and (ii) a downstream increase of depth and width of the valley during the base‐level fall and the subsequent base‐level rise; (2) the different physical expression of the Tiber depositional sequence boundary from landward to seaward, and its diachronous and composite character; (3) the maximum depth reached by the Tiber early lowstand delta at the end of the sea‐level fall is estimated at ca 90 m below the present sea‐level and not at 120 m as suggested by previous works; (4) the backward position of the Tiber late lowstand delta relative to the deposit of early lowstand; (5) the change of the channel pattern and of the stacking pattern of fluvial deposits within the Lowstand Systems Tract, Transgressive Systems Tract and Highstand Systems Tract. All of these features indicate that the Late Pleistocene/Holocene Tiber delta succession, even if deposited in a short period of time from a geological point of view, represents the result of the close interaction among many autogenic and allogenic factors. However, global eustatic variations and sediment supply under the control of climatic changes can be considered the main factors responsible for the stratigraphic architecture of this sedimentary succession, which has been heavily modified by human activity only in the last 3000 years.  相似文献   

11.
This study from the southern margin of the Gulf of Corinth documents a Late Pleistocene incised valley‐fill succession that differs from the existing facies models, because it comprises gravelly shoal‐water and Gilbert‐type deltaic deposits, shows strong wave influence and lacks evidence of tidal activity. The valley‐fill is at least 140 m thick, formed in 50 to 100 ka between the interglacials Marine Isotope Stage 9a and Marine Isotope Stage 7c. The relative sea‐level rise left its record both inside and outside the incised valley, and the age of the valley‐fill is estimated from a U/Th date of coral‐bearing deposits directly outside the palaeovalley outlet. Tectonic up‐warping due to formation of a valley‐parallel structural relay ramp contributed to the valley segmentation and limited the landward extent of marine invasions. The valley segment upstream of the ramp crest was filled with a gravelly alluvium, whereas the downstream segment accumulated fluvio‐deltaic deposits. The consecutive deltaic systems nucleated in the ramp‐crest zone, forming a bathymetric gradient that promoted the ultimate growth of thick Gilbert‐type delta. The case study contributes to the spectrum of conceptual models for incised valley‐fill architecture. Four key models are discussed with reference to the rates of sediment supply and accommodation development, and it is pointed out that not only similarity, but also all departures of particular field cases from these end‐member models may provide valuable information on the system formative conditions. The Akrata incised valley‐fill represents conditions of high sediment supply and a rapid, but stepwise development of accommodation that resulted from the spatiotemporal evolution of normal faulting at the rift margin and overprinted glacioeustatic signals. This study adds to an understanding of valley‐fill architecture and provides new insights into the Pleistocene tectonics and palaeogeography of the Corinth Rift margin.  相似文献   

12.
The growth and decay of the end‐Ordovician Gondwanan glaciation is globally reflected by facies changes in sedimentary sequences, which record a major eustatic fall and subsequent rise in the Hirnantian Stage at the end of the Ordovician. However, there are different reported estimates of the magnitude and pattern of sea‐level change. Particularly good evidence for end‐Ordovician sea‐level change comes from a sequence at Meifod in central Wales, which has a karstified limestone unit within a channel incised into marine shelf sediments. Pre‐glacial (Rawtheyan) mudstones have a diverse fauna suggesting a mid‐to‐deep‐shelf water depth of c. 60 m. The channel, 20 m deep, was incised into these mudstones and partially filled with a mixture of fine sand and detrital carbonate. The taphonomy of bioclasts and intraclasts indicates that many had a long residence time on the sea floor or suffered diagenesis after shallow burial before being resedimented into the channel. The presence of carbonates on the Welsh shelf is atypical and they are interpreted as having accumulated as patches during a minor regression prior to the main glacio‐eustatic fall. Comparison of the carbon stable‐isotopic values of the bioclast material with the global isotopic record confirms that most of the material is of Rawtheyan age, but that some is Hirnantian. The resedimented carbonates lithified rapidly and formed a limestone, several metres thick, in the deepest parts of the channel. As sea‐level fell, this limestone was exposed and eroded into karstic domes and pillars with a relief of over 2 m. The overall, glacio‐eustatic, sea‐level fall is estimated to be in excess of 80 m. A succeeding sea‐level rise estimated to be 40–50 m is recorded in the laminated crust that mantles the karstic domes and pillars. The crust is formed of encrusting bryozoans, associated cystoids, crinoid holdfasts and clusters of the brachiopod Paromalomena, which is normally associated with mid‐shelf environments. Fine sands buried the karst topography and accumulated to fill the channel. In the sandstones at the base of the channel there is a Hirnantia fauna, while in the sandstones high in the channel‐sequence there is cross‐stratification characteristic of mid‐shoreface environments. This would indicate a fall of sea‐level of c. 30 m. The subsequent major transgression marking the end of the glaciation is not recorded at the Meifod locality, but nearby exposures of mudstones suggest a return to mid‐to‐deep‐shelf environments, similar to those that prevailed before the Hirnantian regression. The Meifod sequence provides strong evidence for the magnitude of the Hirnantian sea‐level changes and by implication confirm larger estimates for the size of the ice sheets. Smaller oscillations in relative sea‐level seen at Meifod may be local phenomena or may reflect eustatic changes that have not been widely reported elsewhere. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
《Sedimentology》2018,65(1):151-190
This study documents the character and occurrence of hybrid event beds (HEBs) deposited across a range of deep‐water sub‐environments in the Cretaceous–Palaeocene Gottero system, north‐west Italy. Detailed fieldwork (>5200 m of sedimentary logs) has shown that hybrid event beds are most abundant in the distal confined basin‐plain domain (>31% of total thickness). In more proximal sectors, hybrid event beds occur within outer‐fan and mid‐fan lobes (up to 15% of total thickness), whereas they are not observed in the inner‐fan channelized area. Six hybrid event bed types (HEB‐1 to HEB‐6) were differentiated mainly on basis of the texture of their muddier and chaotic central division (H3). The confined basin‐plain sector is dominated by thick (maximum 9·57 m; average 2·15 m) and tabular hybrid event beds (HEB‐1 to HEB‐4). Their H3 division can include very large substrate slabs, evidence of extensive auto‐injection and clast break‐up, and abundant mudstone clasts set in a sandy matrix (dispersed clay ca 20%). These beds are thought to have been generated by highly energetic flows capable of delaminating the sea floor locally, and carrying large rip‐up clasts for relatively short distances before arresting. The unconfined lobes of the mid‐fan sector are dominated by thinner (average 0·38 m) hybrid event beds (HEB‐5 and HEB‐6). Their H3 divisions are characterized by floating mudstone clasts and clay‐enriched matrices (dispersed clay >25%) with hydraulically fractionated components (mica, organic matter and clay flocs). These hybrid event beds are thought to have been deposited by less energetic flows that underwent early turbulence damping following incorporation of mud at proximal locations and by segregation during transport. Although there is a tendency to look to external factors to account for hybrid event bed development, systems like the Gottero imply that intrabasinal factors can also be important; specifically, the type of substrate available (muddy or sandy) and where and how erosion is achieved across the system producing specific hybrid event bed expressions and facies tracts.  相似文献   

14.
Un‐fragmented stratigraphic records of late Quaternary multiple incised valley systems are rarely preserved in the subsurface of alluvial‐delta plains due to older valley reoccupation. The identification of a well‐preserved incised valley fill succession beneath the southern interfluve of the Last Glacial Maximum Arno palaeovalley (northern Italy) represents an exceptional opportunity to examine in detail evolutionary trends of a Mediterranean system over multiple glacial–interglacial cycles. Through sedimentological and quantitative meiofauna (benthic foraminifera and ostracods) analyses of two reference cores (80 m and 100 m long) and stratigraphic correlations, a mid‐Pleistocene palaeovalley, 5 km wide and 50 m deep, was reconstructed. Whereas valley filling is chronologically constrained to the penultimate interglacial (Marine Isotope Stage 7) by four electron spin resonance ages on bivalve shells (Cerastoderma glaucum), its incision is tentatively correlated with the Marine Isotope Stage 8 sea‐level fall. Above basal fluvial‐channel gravels, the incised valley fill is formed by a mud‐prone succession, up to 44 m thick, formed by a lower floodplain unit and an upper unit with brackish meiofauna that reflects the development of a wave‐dominated estuary. Subtle meiofauna changes towards less confined conditions record two marine flooding episodes, chronologically linked to the internal Marine Isotope Stage 7 climate‐eustatic variability. After the maximum transgressive phase, recorded by coastal sands, the interfluves were flooded around 200 ka (latest Marine Isotope Stage 7). The subsequent shift in river incision patterns, possibly driven by neotectonic activity, prevented valley reoccupation guiding the northward formation of the Last Glacial Maximum palaeovalley. The applied multivariate approach allowed the sedimentological characterization of the Marine Isotope Stage 7 and Marine Isotope Stage 1 palaeovalley fills, including shape, size and facies architecture, which revealed a consistent river‐coastal system response over two non‐consecutive glacial–interglacial cycles (Marine Isotope Stages 8 to 7 and Marine Isotope Stages 2 to 1). The recurring stacking pattern of facies documents a predominant control exerted on stratigraphy by Milankovitch and sub‐Milankovitch glacio‐eustatic oscillations across the late Quaternary period.  相似文献   

15.
16.
The evolution and the internal architecture of an estuary type sand ridge has been studied with a set of bathymetric data recorded during the last two centuries and with a dense grid of recent very high resolution seismic profiles. Bathymetric data of the so-called, Longe de Boyard sand ridge, displays sand losts due to wave and tide erosion. Internal geometry, through seismic profile analysis, indicates two main phases of deposition recording both, a recent high energy environment and an older low energy one, respectively. Such an evolution is believed to record changes in sedimentation processes mainly related to the end of the Holocene transgression (8 000–5 000 yr BP). To cite this article: É. Chaumillon et al., C. R. Geoscience 334 (2002) 119–126.  相似文献   

17.
18.
Autochthonous red algal structures known as coralligène de plateau occur in the modern warm‐temperate Mediterranean Sea at water depths from 20 to 120 m, but fossil counterparts are not so well‐known. This study describes, from an uplifted coastal section at Plimiri on the island of Rhodes, a 450 m long by 10 m thick Late Pleistocene red algal reef (Coralligène Facies), interpreted as being a coralligène de plateau, and its associated deposits. The Coralligène Facies, constructed mainly by Lithophyllum and Titanoderma, sits unconformably upon the Plio‐Pleistocene Rhodes Formation and is overlain by a Maerl Facies (2 m), a Mixed Siliciclastic‐Carbonate Facies (0·2 m) and an Aeolian Sand Facies (2·5 m). The three calcareous facies, of Heterozoan character, are correlated with established members in the Lindos Acropolis Formation in the north of the island, while the aeolian facies is assigned to the new Plimiri Aeolianite Formation. The palaeoenvironmental and genetic‐stratigraphic interpretations of these mixed siliciclastic‐carbonate temperate water deposits involved consideration of certain characteristics associated with siliciclastic shelf and tropical carbonate shelf models, such as vertical grain‐size trends and the stratigraphic position of zooxanthellate coral growths. Integration of these results with electron spin resonance dates of bivalve shells indicates that the Coralligène Facies was deposited during Marine Isotope Stage 6 to 5e transgressive event (ca 135 to 120 ka), in water depths of 20 to 50 m, and the overlying Maerl Facies was deposited during regression from Marine Isotope Stage 5e to 5d (ca 120 to 110 ka), at water depths of 25 to 40 m. The capping Aeolian Sand Facies, involving dual terrestrial subunits, is interpreted as having formed during each of the glacial intervals Marine Isotope Stages 4 (71 to 59 ka) and 2 (24 to 12 ka), with soil formation during the subsequent interglacial periods of Marine Isotope Stages 3 and 1, respectively. Accumulation rates of about 0·7 mm year?1 are estimated for the Coralligène Facies and minimum accumulation rates of 0·2 mm year?1 are estimated for the Maerl Facies. The existence of older red algal reefs in the Plimiri region during at least Marine Isotope Stages 7 (245 to 186 ka) and 9 (339 to 303 ka) is inferred from the occurrence of reworked coralligène‐type lithoclasts in the basal part of the section and from the electron spin resonance ages of transported bivalve shells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号