首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Chalukou giant Mo deposit in the Heilongjiang Province, northeastern China, is a porphyry deposit hosted in an intermediate‐felsic complex surrounded by Mesozoic volcano–sedimentary rocks. The mineralization process is composed of four stages, including quartz + K‐feldspar (Stage I), quartz + molybdenite (Stage II), pyrite + chalcopyrite + quartz ± other sulphides (Stage III) and carbonate ± fluorite ± quartz (Stage IV). The mineralization is generally associated with intense K‐feldspar‐, fluorite‐, phyllic‐ and propylitic alteration. Primary fluid inclusions (FIs) in quartz include four compositional types, i.e. pure carbonic (PC‐type), aqueous‐carbonic (C‐type), daughter mineral‐bearing (S‐type) and aqueous (W‐type) inclusions. Halite, sylvite and hematite are recognized as the daughter minerals in Stage I S‐type FIs, whereas molybdenite and chalcopyrite occur as daughter minerals in Stage II S‐type FIs. High‐salinity and high pressure (>220 MPa) FIs exist in Stage I quartz veins, characterized by homogenization through halite dissolution at temperatures of 324 to 517 °C. The paucity of coexisting vapour‐rich FIs with similar homogenization temperatures at this stage indicates that the initial S‐type inclusions have directly exsolved from the magma rather than boiling off of a low‐salinity vapour. Stage I quartz has captured the C‐ and W‐type FIs, which have totally homogenized at 270–530 °C with salinities of 1.6–17.0 wt.% NaCl equiv. At Stage II, the coexistence of all FI types were only observed at pressures of 150–218 MPa and temperatures of 352–375 °C, with two salinity clusters of 0.9–16.6 wt.% NaCl equiv. and 37–56 wt.% NaCl equiv. Stage III quartz contains W‐type FIs with homogenization temperatures of 158–365 °C, salinities of 0.5–9.0 wt.% NaCl equiv., and minimum pressures of 12–116 MPa; whilst Stage IV fluorite or calcite only contains W‐type FIs with homogenization temperatures of 121–287 °C, salinities of 0.5–5.3 wt.% NaCl equiv., and minimum pressures of 10–98 MPa. The estimated trapping pressure from Stages II to III suggests an alternating lithostatic–hydrostatic fluid‐system caused by fluid boiling. Ore fluids at the Chalukou Mo deposit may have been evolved from a CO2‐rich, high‐salinity, and high‐oxygen fugacity (fO2) magma system, to a CO2‐poor, low‐salinity, and low‐fO2 epithermal system. Two key points may have contributed to the formation of the Chalukou giant Mo deposit: The magmatic origin and fluid boiling that has resulted in decompression and rapid precipitation of metals. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
The Tongcun Mo(Cu) deposit in Kaihua city of Zhejiang Province,eastern China,occurs in and adjacent to the Songjiazhuang granodiorite porphyry and is a medium-sized and important porphyry type ore deposit.Two irregular Mo(Cu) orebodies consist of various types of hydrothermal veinlets.Intensive hydrothermal alteration contains skarnization,chloritization,carbonatization,silicification and sericitization.Based on mineral assemblages and crosscutting relationships,the oreforming processes are divided into five stages,i.e.,the early stage of garnet + epidote ± chlorite associated with skarnization and K-feldspar + quartz ± molybdenite veins associated with potassicsilicic alteration,the quartz-sulfides stage of quartz + molybdenite ± chalcopyrite ± pyrite veins,the carbonatization stage of calcite veinlets or stockworks,the sericite + chalcopyrite ± pyrite stage,and the late calcite + quartz stage.Only the quartz-bearing samples in the early stage and in the quartzsulfides stage are suitable for fluid inclusions(FIs) study.Four types of FIs were observed,including1) CO_2-CH_4 single phase FIs,2) CO_2-bearing two- or three-phase FIs,3) Aqueous two-phase FIs,and4) Aqueous single phase FIs.FIs of the early stages are predominantly CO_2- and CH_4-rich FIs of the CO_2-CH4-H_2O-NaCl system,whereas minerals in the quartz-sulfides stage contain CO_2-rich FIs of the CO_2-H_2O-NaCl system and liquid-rich FIs of the H_2O-NaCl system.For the CO_2-CH_4 single phase FIs of the early mineralization stage,the homogenization temperatures of the CO_2 phase range from 15.4 ℃ to 25.3 ℃(to liquid),and the fluid density varies from 0.7 g/cm~3 to 0.8 g/cm~3;for two- or three-phase FIs of the CO_2-CH_4-H_2O-NaCl system,the homogenization temperatures,salinities and densities range from 312℃ to 412℃,7.7 wt%NaCl eqv.to 10.9 wt%NaCl eqv.,and 0.9 g/cm~3 to 1.0 g/cm~3,respectively.For CO_2-H_2O-NaCI two- or threephase FIs of the quartz-sulfides stage,the homogenization temperatures and salinities range from255℃ to 418℃,4.8 wt%NaCl eqv.to 12.4 wt%NaCl eqv.,respectively;for H_2O-NaCl two-phase FIs,the homogenization temperatures range from 230 ℃ to 368 ℃,salinities from 11.7 wt%NaCl eqv.to16.9 wt%NaCl eqv.,and densities from 0.7 g/cm~3 to 1.0 g/cm~3.Microthermometric measurements and Laser Raman spectroscopy analyses indicate that CO_2 and CH_4 contents and reducibility(indicated by the presence of CH_4) of the fluid inclusions trapped in quartz-sulfides stage minerals are lower than those in the early stage.Twelve molybdenite separates yield a Re-Os isochron age of 163 ± 2.4 Ma,which is consistent with the emplacement age of the Tongcun,Songjiazhuang,Dayutang and Huangbaikeng granodiorite porphyries.The S18OSMow values of fluids calculated from quartz of the quartz-sulfides stage range from 5.6‰ to 8.6‰,and the JDSMOw values of fluid inclusions in quartz of this stage range from-71.8‰ to-88.9‰,indicating a primary magmatic fluid source.534SV-cdt values of sulfides range from+1.6‰ to +3.8‰,which indicate that the sulfur in the ores was sourced from magmatic origins.Phase separation is inferred to have occurred from the early stage to the quartz-sulfides stage and resulted in ore mineral precipitation.The characteristics of alteration and mineralization,fluid inclusion,sulfur and hydrogen-oxygen isotope data,and molybdenite Re-Os ages all suggest that the Tongcun Mo(Cu) deposit is likely to be a reduced porphyry Mo(Cu) deposit associated with the granodiorite porphyry in the Tongcun area.  相似文献   

3.
The Haobugao deposit, located in the southern segment of the Great Xing'an Range, is a famous skarn‐related Pb‐Zn‐(Cu)‐(Fe) deposit in northern China. The results of our fluid inclusion research indicate that garnets of the early stage (I skarn stage) contain three types of fluid inclusions (consistent with the Mesozoic granites): vapor‐rich inclusions (type LV, with VH2O/(VH2O + LH2O) < 50 vol %, and the majority are 5–25 vol %), liquid‐rich two‐phase aqueous inclusions (type VL, with VH2O/(VH2O + LH2O) > 50 vol %, the majority are 60–80 vol %), and halite‐bearing multiphase inclusions (type SL). These different types of fluid inclusions are totally homogenized at similar temperatures (around 320–420°C), indicating that the ore‐forming fluids of the early mineralization stage may belong to a boiling fluid system. The hydrothermal fluids of the middle mineralization stage (II, magnetite‐quartz) are characterized by liquid‐rich two‐phase aqueous inclusions (type VL, homogenization temperatures of 309–439°C and salinities of 9.5–14.9 wt % NaCl eqv.) that coexist with vapor‐rich inclusions (type LV, homogenization temperatures of 284–365°C and salinities of 5.2–10.4 wt % NaCl eqv.). Minerals of the late mineralization stage (III sulfide‐quartz stage and IV sulfide‐calcite stage) only contain liquid‐rich aqueous inclusions (type VL). These inclusions are totally homogenized at temperatures of 145–240°C, and the calculated salinities range from 2.0 to 12.6 wt % NaCl eqv. Therefore, the ore‐forming fluids of the late stage are NaCl‐H2O‐type hydrothermal solutions of low to medium temperature and low salinity. The δD values and calculated δ18OSMOW values of ore‐forming fluids of the deposit are in the range of ?4.8 to 2.65‰ and ?127.3‰ to ?144.1‰, respectively, indicating that ore‐forming fluids of the Haobugao deposit originated from the mixing of magmatic fluid and meteoric water. The S‐Pb isotopic compositions of sulfides indicate that the ore‐forming materials are mainly derived from underlying magma. Zircon grains from the mineralization‐related granite in the mining area yield a weighted 206Pb/238U mean age of 144.8 ±0.8 Ma, which is consistent with a molybdenite Re‐Os model age (140.3 ±3.4 Ma). Therefore, the Haobugao deposit formed in the Early Cretaceous, and it is the product of a magmatic hydrothermal system.  相似文献   

4.
《地学前缘(英文版)》2020,11(4):1145-1161
The Budunhua Cu deposit is located in the Tuquan ore-concentrated area of the southern Great Xing'an Range,NE China.This deposit includes the southern Jinjiling and northern Kongqueshan ore blocks,separated by the Budunhua granitic pluton.Cu mineralization occurs mainly as stockworks or veins in the outer contact zone between tonalite porphyry and Permian metasandstone.The ore-forming process can be divided into four stages involving stage Ⅰ quartz-pyrite-arsenopyrite;stage Ⅱ quartz-pyrite-chalcopyrite-pyrrhotite;stage Ⅲ quartz--polynetallic sulfides;and stage IV quartz-calcite.Three types of fluid inclusions(FIs) can be distinguished in the Budunhua deposit:liquid-rich two-phase aqueous FIs(L-type),vapour-rich aqueous FIs(V-type),and daughter mineral-bearing multi-phase FIs(S-type).Quartz of stages Ⅰ-Ⅲ contains all types of FIs,whereas only L-type FIs are evident in stage Ⅳ veins.The coexisting V-and S-type FIs of stages Ⅰ-Ⅲ have similar homogenization temperatures but contrasting salinities,which indicates that fluid boiling occurred.The FIs of stages Ⅰ,Ⅱ,Ⅲ,and Ⅳyield homogenization temperatures of 265-396℃,245-350℃,200-300℃,and 90-228℃ with salinities of3.4-44.3 wt.%,2.9-40.2 wt.%,1.4-38.2 wt.%,and 0.9-9.2 wt.% NaCl eqv.,respectively.Ore-forming fluids of the Budunhua deposit are characterized by high temperatures,moderate salinities,and relatively oxidizing conditions typical of an H_2 O-NaCl fluid system.Mineralization in the Budunhua deposit occurred at a depth of0.3-1.5 km,with fluid boiling and mixing likely being responsible for ore precipitation.C-H-O-S-Pb isotope studies indicate a predominantly magmatic origin for the ore-forming fluids and materials.LA-ICP-MS zircon U-Pb analyses indicate that ore-forming tonalite porphyry and post-ore dioritic porphyrite were formed at 151.1±1.1 Ma and 129.9±1.9 Ma,respectively.Geochemical data imply that the primary magma of the tonalite porphyry formed through partial melting of Neoproterozoic lower crust.On the basis of available evidence,we suggest that the Budunhua deposit is a porphyry ore system that is spatially,temporally,and genetically associated with tonalite porphyry and formed in a post-collision extensional setting following closure of the Mongol-Okhotsk Ocean.  相似文献   

5.
The late Triassic Baolun gold deposit hosted by Silurian phyllites is a large‐scale high‐grade gold deposit in Hainan Island, South China. The ores can be classified into quartz‐vein dominated type and less altered rock type. Three mineralization stages were recognized by mineral assemblages. The early stage, as the most important mineralization stage, is characterized by a quartz–native gold assemblage. The muscovite?quartz?pyrite?native gold assemblage is related to the intermedium mineralization stage. In late mineralization stage, native gold and Bi‐bearing minerals are paragenetic minerals. Microthermometry analyses show that the early mineralization stage is characterized by two types of fluid inclusions, including CO2‐rich inclusions (C‐type) and aqueous inclusions (W‐type). C‐type inclusions homogenize at 276–335°C with an averaged value of 306°C and have salinities of 1.0–10.0 wt% NaCl equivalent (mean value of 4.9 wt% NaCl equivalent). W‐type inclusions homogenize at 252–301°C (mean value of 278°C) with salinity of 4.0–9.7 wt% NaCl equivalent (mean value of 7.4 wt% NaCl equivalent). In intermedium mineralization stage, C‐type and W‐type inclusions homogenize at 228–320°C (mean value of 283°C) and 178–296°C (mean value of 241°C), with salinities of 2.4–9.9 wt% NaCl equivalent (mean value of 6.5 wt% NaCl equivalent) and 3.7–11.7 wt% NaCl equivalent (mean value of 7.7 wt% NaCl equivalent), respectively. No suitable mineral, such as quartz or calcite, was found for fluid inclusion study from late mineralization stage. In contrast, only aqueous inclusions were found from post‐ore barren veins, which yielded lower homogenization temperatures ranging from 168–241°C (mean value of 195°C) and similar salinities (2.6–12.6 wt% NaCl equivalent with averaged value of 7.2 wt% NaCl equivalent). The different homogenization temperatures and similar salinities of C‐type and W‐type from each mineralization stage indicate that fluid immiscibility and boiling occurred. The Baolun gold deposit was precipitated from a CO2‐bearing mesothermal fluid, and formed at a syn‐collision environment following the closure of the Paleo‐Tethys.  相似文献   

6.
The western Qinling orogen (WQO) is one of the most important prospective gold provinces in China. The Maanqiao gold deposit, located on the southern margin of the Shangdan suture, is a representative gold deposit in the WQO. The Maanqiao deposit is hosted by the metasedimentary rocks of the Upper Devonian Tongyusi Formation. The EW-trending brittle-ductile shear zone controls the orebodies; they occur as disseminated, and auriferous quartz–sulfide vein. The ore-related hydrothermal alteration comprises silicification, sulfidation, sericitization, chloritization, and carbonatization. Native gold is visible and mainly associated with pyrite and pyrrhotite. Mineralization can be classified into the following three stages: bedding-parallel barren quartz–pyrite–(pyrrhotite) (early-stage), auriferous quartz–polymetallic (middle-stage), and carbonate–(quartz)–sulfide (late-stage).Detailed fluid inclusion (FI) studies revealed three types of inclusions in quartz and calcite: aqueous (W-type), CO2–H2O (C-type), and pure carbonic (PC-type) FIs. The primary FIs in the early-stage quartz are C- and PC-type, in the middle-stage quartz are mainly W- and C-type, and in the late-stage calcite are only W-type. During gold mineralization, the total FI homogeneous temperatures evolved from 189–375 °C (mostly 260–300 °C) to 132–295 °C (mostly 180–240 °C) to 123–231 °C (mostly 130–150 °C), and the salinities varied among 2.2–9.1 wt.% NaCl equiv. (mostly 5–8 wt.%) to 0.2–9.0 wt.% NaCl equiv. (mostly 3–6 wt.%) to 0.3–3.6 wt.% NaCl equiv. (mostly 2–4 wt.%). The ore-forming fluid was characterized as an H2O–NaCl−CO2−CH4–(N2) system with medium-low temperature and low salinity. The fluid immiscibility and fluid-rock interaction may be responsible for the precipitation of the sulfides and gold at the Maanqiao gold deposit. Three types of pyrite corresponding to the three mineralization stages, as well as pyrrhotite and arsenopyrite in the middle stage, are micro-analyzed for in-situ sulfur isotopic composition by LA-ICP-MS. Py1 yield near-zero δ34S values of −2.5‰ to 3.0‰, which are somewhat lower than that of the granite hosted pyrites (Py-g, 4.8‰ to 6.6‰). The result suggests a mixed sulfur source from magmatic-hydrothermal fluids and the metamorphism of diagenetic pyrite. Pyrite + pyrrhotite + arsenopyrite assemblages in the middle-stage have relatively higher δ34S values (6.6‰ to 12.3‰) and are mainly developed due to the metamorphism of the ore-host and underlying Devonian sedimentary sequences. The low δ34S values of the late-stage fracture-filled Py3 (−21.9‰ to −17.0‰) resulted from an increasing oxygen fugacity, which was caused by the inflow of oxidized meteoric waters.Based on our studies, the Maanqiao gold deposit is considered to be an orogenic type and closely related to the Indosinian Qinling orogeny.  相似文献   

7.
The Berezitovoe deposit is a large-sized Au-Ag-Zn-Pb deposit in the east of the SelengaStanovoi superterrane, Russia. Au-Ag orebodies are hosted by tourmaline-garnet-quartz-muscovite metasomatic rocks; Zn-Pb orebodies are hosted by granodiorites, porphyritic granites and tourmalinegarnet-quartz-muscovite metasomatic rocks. These orebodies are surrounded by wall rocks dominated by the Tukuringra Complex granodiorites, porphyritic granites, and gneissic granodiorites. The alteration includes silicification and garnet, sericitization chloritization, carbonatization and kaollinization. LA-ICP-MS U-Pb zircon dating indicates that the gold mineralization can be divided into two stages in the Berezitovoe polymetallic gold deposit(at 363.5 ± 1.5 Ma, and133.4± 0.5).Hornblende-plagioclase gneisses of the Mogocha Group in the study area underwent Paleoproterozoic metamorphism(at 1870 ± 7.8 and 2400 ± 13 Ma), gneissic granodiorite of the Tukuringra Complex yields a late Paleozoic magmatic age(at 379.2 ± 1.1 Ma),and subalkaline porphyritic granitoid of the Amudzhikan Complex yield late Mesozoic magmatic ages(133-139 and 150-163 Ma). Granodiorites of the Tukuringra Complex in the study area have high concentrations of SiO_2(average of 60.9 wt%), are aluminum-oversaturated(average A/CNK of 1.49), are enriched in the large ion lithophile elements(e.g.,K, Rb, and Ba), U, Th, and Pb, are depleted in high field strength elements(e.g., Ta, Nb, and Ti), and have slightly negative Eu and no Ce anomalies in chondrite-normalized rare earth element diagrams.Fluid inclusions from quartz veins include three types: aqueous two-phase, CO_2-bearing three-phase,and pure CO_2. Aqueous two-phase inclusions homogenize at 167℃-249℃ and have salinities of 4.32%-9.47% NaCl equivalent, densities of 0.86-0.95 g/cm~3, and formed at depths of 0.52-0.94 km. In comparison, the C0_2-bearing three-phase inclusions have homogenization temperatures of 265℃-346℃,salinities of 7.14%-11.57% NaCl equivalent, and total densities of 0.62-0.67 g/cm~3. The geochemical and zircon U-Pb data and the regional tectonic evolution of the study area, show that the Berezitovoe polymetallic gold deposit formed in an island arc or active continental margin setting, most probably related to late Paleozoic subduction of Okhotsk Ocean crust beneath the Siberian Plate.  相似文献   

8.
陕西省华县金堆城斑岩型钼矿床流体包裹体研究   总被引:1,自引:7,他引:1  
杨永飞  李诺  倪智勇 《岩石学报》2009,25(11):2983-2993
陕西省华县金堆城钼矿床位于东秦岭钼矿带西部,形成于燕山期大陆碰撞体制.矿体产出于金堆城花岗斑岩体内部及其内外接触带.流体成矿过程包括早、中、晚3个阶段,分别以石英-钾长石组合、石英-(钾长石)-多金属硫化物-(碳酸盐)组合和石英-碳酸盐组合为标志,矿石矿物主要沉淀于中阶段.早、中阶段石英中可见纯CO_2包裹体(PC型)、CO_2-H_2O型包裹体(C型)、水溶液包裹体(W型)和含子晶多相包裹体(S型),但晚阶段只发育水溶液包裹体(W型).早阶段C型和W型包裹体均一温度集中于280~370℃,盐度为5.68~11.05 wt%NaCl.eqv;中阶段C型和W型流体包裹体均一温度集中于170~270℃,盐度为5.14~12.63 wt%NaCl.eqv.早、中阶段石英中见S型包裹体,加热过程中子矿物不溶.晚阶段流体包裹体均一温度集中于110~1900C,盐度介于7.17%~11.22 wt%NaCl.eqv之间.估算的早、中阶段流体捕获压力分别为143~243MPa和22~115MPa,推测成矿深度约为2.2~8.1km.金堆城钼矿的成矿流体以富CO_2、贫Cl~-为特征.  相似文献   

9.
The Xiuwenghala gold deposit is located in the Beishan Orogen of the southern Central Asian Orogenic Belt. The vein/lenticular gold orebodies are controlled by Northeast‐trending faults and are hosted mainly in the brecciated/altered tuff and rhyolite porphyry of the Lower Carboniferous Baishan Formation. Metallic minerals include mainly pyrite and minor chalcopyrite, arsenopyrite, galena, and sphalerite, whilst nonmetallic minerals include quartz, chalcedony, sericite, chlorite, and calcite. Hydrothermal alterations consist of silicic, sericite, chlorite, and carbonate. Alteration/mineralization processes comprise three stages: pre‐ore silicic alteration (Stage I), syn‐ore quartz‐chalcedony‐polymetallic sulfide mineralization (Stage II), and post‐ore quartz‐calcite veining (Stage III). Fluid inclusions (FIs) in quartz and calcite are dominated by L‐type with minor V‐type and lack any daughter mineral‐bearing or CO2‐rich/‐bearing inclusions. From Stages I to III, the FIs homogenized at 240–260°C, 220–250°C, and 150–190°C, with corresponding salinities of 2.9–10.9, 3.2–11.1, and 2.9–11.9 wt.% NaCl eqv., respectively. The mineralization depth at Xiuwenghala is estimated to be relatively shallow (<1 km). FI results indicate that the ore‐forming fluids belong to a low to medium‐temperature, low‐salinity, and low‐density NaCl‐H2O system. The values decrease from Stage I to III (3.7‰, 1.7–2.4‰, and ?1.7 to 0.9‰, respectively), and a similar trend is found for their values (?104 to ?90‰, ?126 to ?86‰, and ?130 to ?106‰, respectively). This indicates that the fluid source gradually evolved from magmatic to meteoric. δ34S values of the hydrothermal pyrites (?3.0 to 0.0‰; avg. ?1.1‰) resemble those of typical magmatic/mantle‐derived sulfides. Pyrite Pb isotopic compositions (206Pb/204Pb = 18.409–18.767, 207Pb/204Pb = 15.600–15.715, 208Pb/204Pb = 38.173–38.654) are similar to those of the (sub)volcanic ore host, indicating that the origin of ore‐forming material was mainly the upper crustal (sub)volcanic rocks. Integrating evidence from geology, FIs, and H–O–S–Pb isotopes, we suggest that Xiuwenghala is best classified as a low‐sulfidation epithermal gold deposit.  相似文献   

10.
The Dayingezhuang gold deposit, hosted mainly by Late Jurassic granitoids on Jiaodong Peninsula in eastern China, contains an estimated 170 t of gold and is one of the largest deposits within the Zhaoping fracture zone. The orebodies consist of auriferous altered pyrite–sericite–quartz granites that show Jiaojia-type (i.e., disseminated and veinlet) mineralization. Mineralization and alteration are structurally controlled by the NE- to NNE-striking Linglong detachment fault. The mineralization can be divided into four stages: (K-feldspar)–pyrite–sericite–quartz, quartz–gold–pyrite, quartz–gold–polymetallic sulfide, and quartz–carbonate, with the majority of the gold being produced in the second and third stages. Based on a combination of petrography, microthermometry, and laser Raman spectroscopy, three types of fluid inclusion were identified in the vein minerals: NaCl–H2O (A-type), CO2–H2O–NaCl (AC-type), and pure CO2 (PC-type). Quartz crystals in veinlets that formed during the first stage contain mainly AC-type fluid inclusions, with rare PC-type inclusions. These fluid inclusions homogenize at temperatures of 251°C–403°C and have low salinities of 2.2–9.4 wt% NaCl equivalent. Quartz crystals that formed in the second and third stages contain all three types of fluid inclusions, with total homogenization temperatures of 216°C–339°C and salinities of 1.8–13.8 wt% NaCl equivalent for the second stage and homogenization temperatures of 195°C–321°C and salinities of 1.4–13.3 wt% NaCl equivalent for the third stage. In contrast, quartz crystals that formed in the fourth stage contains mainly A-type fluid inclusions, with minor occurrences of AC-type inclusions; these inclusions have homogenization temperatures of 106°C–287°C and salinities of 0.5–7.7 wt% NaCl equivalent. Gold in the ore-forming fluids may have changed from Au(HS)0 as the dominant species under acidic conditions and at relatively high temperatures and fO2 in the early stages, to Au(HS)2– under neutral-pH conditions at lower temperatures and fO2 in the later stages. The precipitation of gold and other metals is inferred to be caused by a combination of fluid immiscibility and water–rock interaction.  相似文献   

11.
The Baishan porphyry Mo deposit formed in the Middle Triassic in Eastern Tianshan, Xinjiang, northwestern China. Mo mineralization is associated with the Baishan monzogranite and granite porphyry stocks, mainly presenting as various types of hydrothermal veinlets in alerted wall rocks, with potassic, phyllic, propylitic, and fluorite alteration. The ore-forming process can be divided into four stages: stage I K-feldspar–quartz–pyrite veinlets, stage II quartz–molybdenite ± pyrite veinlets, stage III quartz–polymetallic sulfide veinlets and stage IV barren quartz–calcite veins. Four types of fluid inclusions (FIs) can be distinguished in the Baishan deposit, namely, liquid-rich two-phase (L-type), vapor-rich two-phase (V-type), solid-bearing multi-phase (S-type) and mono-phase vapor (M-type) inclusions, but only the stage I quartz contains all types of FIs. The stages II and III quartz have three types of FIs, with exception of M-type. In stage IV quartz minerals, only the L-type inclusions can be observed. The FIs in quartz of stages I, II, III and IV are mainly homogenized at temperatures of 271–468 °C, 239–349 °C, 201–331 °C and 134–201 °C, with salinities of 2.2–11.6 wt.% NaCl equiv., 1.1–10.2 wt.% NaCl equiv., 0.5–8.9 wt.% NaCl equiv. and 0.2–5.7 wt.% NaCl equiv., respectively. The ore-forming fluids of the Baishan deposit are characterized by high temperature, moderate salinity and relatively reduced condition, belonging to a H2O–NaCl ± CH4 ± CO2 system. Hydrogen and oxygen isotopic compositions of quartz indicate that the ore-forming fluids were gradually evolved from magmatic to meteoric in origin. Sulfur and lead isotopes suggest that the ore-forming materials came predominantly from a deep-seated magma source from the lower continental crust. The Mo mineralization in the Baishan deposit is estimated to have occurred at a depth of no less than 4.7 km, and the decrease in temperature and remarkable transition of the redox condition (from alkalinity to acidity) of ore-forming fluids were critical for the formation of the Baishan Mo deposit.  相似文献   

12.
The Honghuagou Au deposit is located in the Chifeng-Chaoyang region within the northern margin of the North China Craton. The auriferous quartz veins are mainly hosted in the mafic gneiss and migmatite of the Neoarchean Xiaotazigou Formation along NNW- and NE-striking faults, with pyrite as the predominant ore mineral. The gold mineralization process can be divided into two stages, involving stage I quartz-pyrite and stage II quartz-calcite-polymetallic sulfide. Three types of fluid inclusions (FIs) have been identified in the Honghuagou deposit, namely, carbonic inclusions, aqueous‑carbonic inclusions, and aqueous inclusions. Quartz of stage I contains all types of FIs, whereas only aqueous inclusions are evident in stage II veins. The FIs of stages I and II yield homogenization temperatures of 275–340 °C and 240–290 °C with salinities of 3.4–10.7 wt% and 1.4–9.7 wt% NaCl eqv., respectively. The ore-forming fluids are characterized by medium temperature and low salinity, belonging to the H2O–NaCl–CO2 system. The δ18OH2O values of the ore fluids are between 2.1‰ and 5.9‰, within the range of enriched mantle-derived fluids in the North China Craton. The carbon isotope compositions of calcite (δ13CPDB = −4.4‰ to −4‰) are also similar to mantle carbon. He-Ar isotope data (3He/4He = 0.38–0.44 Ra; 40Ar/36Ar = 330–477) of fluid inclusions in pyrite indicate a mixed crustal and mantle source for the ore-forming fluids. Whereas, S-Pb isotope compositions of sulfides reveal that ore metals are principally derived from crustal rocks. On the basis of available geological and geochemical evidence, we suggest that the Honghuagou deposit is an orogenic gold deposit.  相似文献   

13.
The Fuxing porphyry Cu deposit is a recently discovered deposit in Eastern Tianshan, Xinjiang, northwestern China. The Cu mineralization is associated with the Fuxing plagiogranite porphyry and monzogranite, mainly presenting as various types of hydrothermal veins or veinlets in alerted wall rocks, with potassic, chlorite, phyllic, and propylitic alteration developed. The ore-forming process can be divided into four stages: stage I barren quartz veins, stage II quartz–chalcopyrite–pyrite veins, stage III quartz–polymetallic sulfide veins and stage IV quartz–calcite veins. Four types of fluid inclusions (FIs) can be distinguished in the Fuxing deposit, including hypersline (H-type), vapor-rich two-phase (V-type), liquid-rich two-phase (L-type), and trace amounts of pure vapor inclusions (P-type), but only the stage I quartz contains all types of FIs. The stages II and III quartz have two types of FIs, with exception of H- and P-types. In stage IV quartz minerals, only the L-type inclusions can be observed. The FIs in quartz of stages I, II, III and IV are mainly homogenized at temperatures of 357–518 °C, 255–393 °C, 234–322 °C and 145–240 °C, with salinities of 1.9–11.6 wt.% NaCl equiv., 1.6–9.6 wt.% NaCl equiv., 1.4–7.7 wt.% NaCl equiv. and 0.9–3.7 wt.% NaCl equiv., respectively. The ore-forming fluids of the Fuxing deposit are characterized by high temperature, moderate salinity and relatively oxidized condition. Carbon, hydrogen and oxygen isotopic compositions of quartz indicate that the ore-forming fluids were gradually evolved from magmatic to meteoric in origin. Sulfur and lead isotopes suggest that the ore-forming materials were derived from a deep-seated magma source. The Cu mineralization in the Fuxing deposit occurred at a depth of ~ 1 km, and the changes of oxygen fugacity, decompression boiling, and local mixing with meteoric water were most likely critical for the formation of the Fuxing Cu deposit.  相似文献   

14.
为确定中国三江成矿带北段尕龙格玛VMS(volcanogenic massive sulfide)型矿床的成矿物理化学条件、成矿物质来源、成矿流体来源,探讨成矿机制,对矿体特征、流体包裹体显微测温和激光拉曼光谱分析以及S、Pb、H、O同位素进行了系统研究.矿体赋存于晚三叠世巴塘群英安质火山岩中,具有VMS型矿床的双层结构,由下部热液流体补给通道相的脉状-网脉状矿化系统和上部海底盆地卤水池喷气-化学沉积系统组成.通道相中流体包裹体可分为富气相包裹体和水溶液包裹体,均一温度为175.6~263.3 ℃,盐度为1.05%~6.29% NaCl eqv.,密度为0.820~0.935 g/cm3,激光拉曼光谱分析包裹体气相成分为H2O、CO2和少量N2;沉积相重晶石中仅发育水溶液包裹体,均一温度为105.2~157.1 ℃,盐度为0.18%~5.55% NaCl eqv.,密度为0.735~1.173 g/cm3,显示了流体由通道相向沉积相温度显著降低,盐度保持不变,密度变大的趋势,与典型VMS型矿床流体特征相似.氢氧同位素(δ18OH2O:0.25‰~1.75‰,δD:-103.2‰~-65.3‰)研究表明,成矿流体主要来源于岩浆水和海水的混合.综合分析前人硫同位素研究结果(δ34S:1.13‰~2.45‰,12.36‰~12.37‰)及本次获得硫同位素结果(δ34S:-22.9‰~-14.7‰)表明硫来源于岩浆和细菌还原的海水硫酸盐或基底岩石.硫化物方铅矿的206Pb/204Pb、207Pb/204Pb和208Pb/204Pb分别为18.449~18.519、15.699~15.777和38.875~39.141,具有高放射性铅的特征,μ值为9.65~9.80,结果显示Pb等成矿物质主要来自于上地壳,并有岩浆物质参与成矿.成矿流体与海水的混合作用是尕龙格玛矿床形成的主要机制.   相似文献   

15.
The Talate Pb-Zn deposit,located in the east of the NW-SE extending Devonian Kelan volcanic-sedimentary basin of the southern Altaides,occurs in the metamorphic rock series of the upper second lithological section of the lower Devonian lower Kangbutiebao Formation(D_1k_1~2).The Pb-Zn orebodies are stratiform and overprinted by late sulfide—quartz veins.Two distinct mineralization periods were identified:a submarine volcanic sedimentary exhalation period and a metamorphic hydrothermal mineralization period.The metamorphic overprinting period can be further divided into two stages:an early stage characterized by bedding-parallel lentoid quartz veins developed in the chlorite schist and leptite of the ore-bearing horizon,and a late stage represented by pyritechalcopyrite-quartz veins crosscutting chlorite schist and leptite or the massive Pb-Zn ores.Fluid inclusions in the early metamorphic quartz veins are mainly CO_2-H_2O-NaCI and carbonic(CO_2±CH_4±N_2) inclusions with minor aqueous inclusions.The CO_2-H_2O-NaCl inclusions have homogenization temperatures of 294-368℃,T_(m,CO2) of-62.6 to-60.5℃,T_(h,CO2) of 7.7 to 29.6℃(homogenized into liquid),and salinities of 5.5-7.4 wt%NaCl eqv.The carbonic inclusions have T_(m,CO2)of-60.1 to-58.5℃,and T_(h,Co2) of-4.2 to 20.6℃.Fluid inclusions in late sulfide quartz veins are also dominated by CO_2-H_2O-NaCl and CO_2±CH_4 inclusions.The CO_2-H_2O-NaCl inclusions have T_(b,tot) of142 to 360℃,T_(m,CO2)of-66.0 to-56.6℃,T_(h,CO2) of-6.0 to 29.4℃(homogenized into liquid) and salinities of 2.4-16.5 wt%NaCl eqv.The carbonic inclusions have T_(m,Co2)of-61.5 to-57.3℃,and T_(h,CO2) of-27.0to 28.7℃.The aqueous inclusions(L-V) have T_(m,ice) of-9.8 to-1.3℃ and T_(h,tot) of 205 to 412℃.The P-T trapping conditions of CO_2-rich fluid inclusions(100-370 MPa,250-368℃) are comparable with the late- to post-regional metamorphism conditions.The CO_2-rich fluids,possibly derived from regional metamorphism,were involved in the reworking and metal enrichment of the primary ores.Based on these results,the Talate Pb-Zn deposit is classified as a VMS deposit modified by metamorphic fluids.The massive Pb-Zn ores with banded and breccia structures were developed in the early period of submarine volcanic sedimentary exhalation associated with an extensional subduction-related back-arc basin,and the quartz veins bearing polymetallic sulfides were formed in the late period of metamorphic hydrothermal superimposition related to the Permian-Triassic continental collision.  相似文献   

16.
The Jinman Cu deposit is hosted in sandstones and slates of the Jurassic Huakaizuo Formation in the Mesozoic to Cenozoic Lanping basin in western Yunnan, China. Despite the fact that Cu mineralization occurs mainly in quartz–carbonate veins controlled by faults and fractures, the Jinman deposit was classified as a sediment-hosted stratiform Cu deposit, mainly because it is hosted in a sedimentary basin characterized by abundant red beds with many stratiform Cu deposits. A detailed petrographic and microthermometric study of fluid inclusions from the Jinman deposit reveals the presence of abundant CO2-rich fluid inclusions, together with aqueous inclusions. The CO2-rich inclusions have CO2 melting temperatures mainly from −58.0°C to −56.6°C, homogenization temperatures of the carbonic phase (mostly into the liquid phase) mainly between 22°C and 30°C, clathrate melting temperatures from 1.8°C to 9.2°C, with corresponding salinities from 1.6 to 13.4 wt.% NaCl equivalent, and total homogenization temperatures from 226°C to 330°C. The aqueous inclusions have first melting temperatures from −60°C to −52°C, ice melting temperatures from −41.4°C to −2.3°C, with salinities from 3.9 to 29.0 wt.% NaCl equivalent, and total homogenization temperatures mainly from 140°C to 250°C. These fluid inclusion characteristics are comparable to those of orogenic or magmatic mineralization systems and are uncharacteristic of basinal mineralization systems, suggesting that it is inappropriate to classify the Jinman deposit as a sediment-hosted stratiform Cu deposit. The results of this study, together with geochemical data reported previously, suggest that the Jinman deposit formed in a hydrothermal system that involved both extra-basinal, deeply sourced CO2-rich fluid and basinal, aqueous fluid.  相似文献   

17.
The Sangdong scheelite–molybdenite deposit in northeast South Korea consists of strata-bound orebodies in intercalated carbonate-rich layers in the Cambrian Myobong slate formation. Among them, the M1 layer hosts the main orebody below which lie layers of F1–F4 host footwall orebodies. Each layer was first skarnized with the formation of a wollastonite + garnet + pyroxene assemblage hosting minor disseminated scheelite. The central parts of the layers were subsequently crosscut by two series of quartz veining events hosting minor scheelite and major scheelite–molybdenite ores, respectively. The former veins associate amphibole–magnetite (amphibole) alteration, whereas the latter veins host quartz–biotite–muscovite (mica) alteration. Deep quartz veins with molybdenite mineralization are hosted in the Cambrian Jangsan quartzite formation beneath the Myobong formation. In the Sunbawi area, which is in close proximity to the Sangdong deposit, quartz veins with scheelite mineralization are hosted in Precambrian metamorphic basement. Three muscovite 39Ar–40Ar ages between 86.6 ± 0.2 and 87.2 ± 0.3 Ma were obtained from M1 and F2 orebodies from the Sangdong deposit and Sunbawi quartz veins. The Upper Cretaceous age of the orebodies is concordant with the published ages of the hidden Sangdong granite, 87.5 ± 4.5 Ma. This strongly suggests that the intrusion is causative for the Sangdong W–Mo ores and Sunbawi veins.Fluid inclusions in the quartz veins from the M1 and F2 orebodies, the deep quartz-molybdenite veins, and the Sunbawi veins are commonly liquid-rich aqueous inclusions having bubble sizes of 10–30 vol%, apparent salinities of 2–8 wt% NaCl eqv., and homogenization temperatures of 180–350 °C. The densities of the aqueous inclusions are 0.70–0.94 g/cm3. No indication of fluid phase separation was observed in the vein. To constrain the formation depth in the Sangdong deposit, fluid isochores are combined with Ti–in–quartz geothermometry, which suggests that the M1 and F2 orebodies were formed at depths of 1–3 km and 5–6 km below the paleosurface, respectively. The similarity of the Cs (cesium) concentrations and Rb/Sr ratios in the fluid inclusions of the respective orebodies indicate an origin from source magmas having similar degrees of fractionation and enrichment of incompatible elements such as W and Mo. High S concentrations in the fluids and possibly organic C in the sedimentary source likely promoted molybdenite precipitation in the Sangdong orebodies, whereas the scheelite deposition in the deep quartz–molybdenite veins hosted in the quartzite is limited by a lack of Ca and Fe in the hydrothermal fluids. The molybdenite deposition in the Sunbawi quartz–molybdenite veins hosted in the Precambrian metamorphic basement rocks was possibly limited by a lack of reducing agents such as organic C.  相似文献   

18.
The Yinjiagou Mo–Cu–pyrite deposit of Henan Province is located in the Huaxiong block on the southern margin of the North China craton. It differs from other Mo deposits in the East Qingling area because of its large pyrite resource and complex associated elements. The deposit’s mineralization process can be divided into skarn, sulfide, and supergene episodes with five stages, marking formation of magnetite in the skarn episode, quartz–molybdenite, quartz–calcite–pyrite–chalcopyrite–bornite–sphalerite, and calcite–galena–sphalerite in the sulfide episode, and chalcedony–limonite in the supergene episode. Re–Os and 40Ar–39Ar dating indicates that both the skarn-type and porphyry-type orebodies of the Yinjiagou deposit formed approximately 143 Ma ago during the Early Cretaceous. Four types of fluid inclusions (FIs) have been distinguished in quartz phenocryst, various quartz veins, and calcite vein. Based on petrographic observations and microthermometric criteria the FIs include liquid-rich, gas-rich, H2O–CO2, and daughter mineral-bearing inclusions. The homogenization temperature of FIs in quartz phenocrysts of K-feldspar granite porphyry ranges from 341 °C to >550 °C, and the salinity is 0.4–44.0 wt% NaCl eqv. The homogenization temperature of FIs in quartz–molybdenite veins is 382–416 °C, and the salinity is 3.6–40.8 wt% NaCl eqv. The homogenization temperature of FIs in quartz–calcite–pyrite–chalcopyrite–bornite–sphalerite ranges from 318 °C to 436 °C, and the salinity is 5.6–42.4 wt% NaCl eqv. The homogenization temperature of FIs in quartz–molybdenite stockworks is in a range of 321–411 °C, and the salinity is 6.3–16.4 wt% NaCl eqv. The homogenization temperature of FIs in quartz–sericite–pyrite is in a range of 326–419 °C, and the salinity is 4.7–49.4 wt% NaCl eqv. The ore-forming fluids of the Yinjiagou deposit are mainly high-temperature, high-salinity fluids, generally with affinities to an H2O–NaCl–KCl ± CO2 system. The δ18OH2O values of ore-forming hydrothermal fluids are 4.0–8.6‰, and the δDV-SMOW values are between −64‰ and −52‰, indicating that the ore-forming fluids were primarily magmatic. The δ34SV-CDT values of sulfides range between −0.2‰ and 6.3‰ with a mean of 1.6‰, sharing similar features with deeply sourced sulfur, implying that the sulfur mainly came from the lower crust composed of poorly differentiated igneous materials, but part of the heavy sulfur came from the Guandaokou Group dolostone. The 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb values of sulfides are in the range of 17.331–18.043, 15.444–15.575, and 37.783–38.236, respectively, which is generally consistent with the Pb isotopic signature of the Yinjiagou intrusion, suggesting that the Pb chiefly originated from the felsic–intermediate intrusive rocks in the mine area, with a small amount of lead from strata. The Yinjiagou deposit is a porphyry–skarn deposit formed during the Mesozoic transition of a tectonic regime that is EW-trending to NNE-trending, and the multiepisode boiling of ore-forming fluids was the primary mechanism for mineral deposition.  相似文献   

19.
The Jinman Cu polymetallic deposit is located within Middle Jurassic sandstone and slate units in the Lanping Basin of southwestern China. The Cu mineralization occurs mainly as sulfide‐bearing quartz–carbonate veins in faults and fractures, controlled by a Cenozoic thrust–nappe system. A detailed study of fluid inclusions from the Jinman deposit distinguishes three types of fluid inclusions in syn‐ore quartz and post‐ore calcite: aqueous water (type A), CO2–H2O (type B), and CO2‐dominated (type C) fluid inclusions. The homogenization temperatures of CO2–H2O inclusions vary from 208°C to 329°C, with corresponding salinities from 0.6 to 4.6 wt.% NaCl equivalent. The homogenization temperatures of the aqueous fluid inclusions mainly range from 164°C to 249°C, with salinities from 7.2 to 20.2 wt.% NaCl equivalent. These characteristics of fluid inclusions are significantly different from those of basinal mineralization systems, but similar to those of orogenic or magmatic mineralization systems. The H and O isotope compositions suggest that the ore‐forming fluid is predominantly derived from magmatic water, with the participation of basinal brine. The δ34S values are widely variable between ?9.7 ‰ and 9.7 ‰, with a mode distribution around zero, which may be interpreted by the variation in physico‐chemical conditions or by compositional variation of the sources. The mixing of a deeply sourced CO2‐rich fluid with basinal brine was the key mechanism responsible for the mineralization of the Jinman deposit.  相似文献   

20.
The Wulasigou Cu-Pb-Zn deposit,located 15 km northwest of Altay city in Xinjiang,is one of many Cu-Pb-Zn polymetallic deposits in the Devonian Kelan volcanic-sedimentary basin in southern Altaids.Two mineralizing periods can be distinguished:the marine volcanic sedimentary PbZn mineralization period,and the metamorphic hydrothermal Cu mineralization period,which is further divided into an early bedded foliated quartz vein stage(Q1) and a late sulfide-quartz vein stage(Q2) crosscutting the foliation.Four types of fluid inclusions were recognized in the Q1 and Q2 quartz from the east orebodies of the Wulasigou deposit:H_2O-CO_2 inclusions,carbonic fluid inclusions,aqueous fluid inclusions,and daughter mineral-bearing fluid inclusions.Microthermometric studies show that solid CO_2 melting temperatures(T_(m,CO2)) of H_2O-CO_2 inclusions in Ql are from-62.3℃ to-58.5C,clathrate melting temperatures(T_(m,clath)l) are from 0.5 C to 7.5 C,partial homogenization temperatures(T_(h,CO2)) vary from 3.3℃ to 25.9℃(to liquid),and the total homogenization temperatures(T_(h,tot)) vary from 285℃ to 378℃,with the salinities being 4.9%-15.1%NaCl eqv.and the CO_2-phase densities being 0.50-0.86 g/cm~3.H_2O-CO_2 inclusions in Q2 have T_(m,CO_2) from-61.9℃ to-56.9℃,T_(m,clath)from 1.3℃ to 9.5℃,T_(h,CO2) from 3.4℃ to 28.7℃(to liquid),and T_(h,tot) from 242℃ to 388℃,with the salinities being 1.0%-15.5%NaCl eqv.and the CO_2-phase densities being 0.48-0.89 g/cm~3.The minimum trapping pressures of fluid inclusions in Q1 and Q2 are estimated to be 260-360 MPa and180-370 MPa,respectively.The δ~(34)S values of pyrite from the volcanic sedimentary period vary from2.3‰ to 2.8‰(CDT),and those from the sulfide-quartz veins fall in a narrow range of-1.9‰ to 2.6‰(CDT).The δD values of fluid inclusions in Q2 range from-121.0‰ to-100.8‰(SMOW),and theδ~(18)O_(H2O) values calculated from δ~(18)O of quartz range from-0.2‰ to 8.3‰(SMOW).The δD-δ~(18)O_(H2O)data are close to the magmatic and metamorphic fields.The fluid inclusion and stable isotope data documented in this study indicate that the vein-type copper mineralization in the Wulasigou Pb-Zn-Cu deposit took place in an orogenic-metamorphic enviroment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号