首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 15 毫秒
1.
The processes resulting in the formation of a coarse‐grained sand beach ridge plain at Cowley Beach, north‐east Australia have been questioned by Tamura et al. (2018). These authors now acknowledge the conclusions by Nott et al. (2009) and Nott (2014) that the dominant depositional mechanisms here are waves and inundations generated during tropical cyclones. The Tamura et al. (2018) new ground penetrating radar data highlights that scarping of incipient ridges is a common feature and occurs regularly under non‐storm conditions. The upper sedimentary units deposited during storms are not scarped and demonstrate the high preservation potential and usefulness of these deposits for reconstructing long‐term records of tropical cyclones. Tamura et al. (2018) question the robustness of the methodology used by Nott & Hayne (2001), Nott (2003) and Nott et al. (2009) in estimating the magnitude of the storms responsible for these sedimentary deposits. These supposed issues though have been dealt with in detail in a series of publications over the past nearly two decades. The shortcomings of the Tamura et al. (2018) criticisms are explained in detail here.  相似文献   

2.
《Sedimentology》2018,65(3):721-744
Storm surges generated by tropical cyclones have been considered a primary process for building coarse‐sand beach ridges along the north‐eastern Queensland coast, Australia. This interpretation has led to the development of palaeotempestology based on the beach ridges. To better identify the sedimentary processes responsible for these ridges, a high‐resolution chronostratigraphic analysis of a series of ridges was carried out at Cowley Beach, Queensland, a meso‐tidal beach system with a >3 m tide range. Optically stimulated luminescence ages indicate that 10 ridges accreted seaward over the last 2500 to 2700 years. The ridge crests sit +3·5 to 5·1 m above Australian Height Datum (ca mean sea‐level). A ground‐penetrating radar profile shows two distinct radar facies, both of which are dissected by truncation surfaces. Hummocky structures in the upper facies indicate that the nucleus of the beach ridge forms as a berm at +2·5 m Australian Height Datum, equivalent to the fair‐weather swash limit during high tide. The lower facies comprises a sequence of seaward‐dipping reflections. Beach progradation thus occurs via fair‐weather‐wave accretion of sand, with erosion by storm waves resulting in a sporadic sedimentary record. The ridge deposits above the fair‐weather swash limit are primarily composed of coarse and medium sands with pumice gravels and are largely emplaced during surge events. Inundation of the ridges is more likely to occur in relation to a cyclone passing during high tide. The ridges may also include an aeolian component as cyclonic winds can transport beach sand inland, especially during low tide, and some layers above +2·5 m Australian Height Datum are finer than aeolian ripples found on the backshore. Coarse‐sand ridges at Cowley Beach are thus products of fair‐weather swash and cyclone inundation modulated by tides. Knowledge of this composite depositional process can better inform the development of robust palaeoenvironmental reconstructions from the ridges.  相似文献   

3.
4.
5.
6.
7.
Discussion points raised by Rose ( 2016 ) concentrate on late Albian stratigraphic relationships between formations of the East Texas Basin and the San Marcos Arch of the Comanche Platform in the northern Gulf of Mexico. Criticisms of Phelps et al. (2014) regarding stratigraphic nomenclature, palaeogeography and regional lithostratigraphic correlations generally focus on interpretive aspects of the study or do not account for the full scope of published information. Revisions to the top Aptian–Albian Supersequence boundary by Rose are incompatible with the relative location of a subaerial unconformity, as well as deepening lithofacies trends and retrogradational stratigraphic patterns below the interpreted boundary. Rose's placement of the top Aptian–Albian Supersequence boundary precisely at the Albian–Cenomanian stage boundary also implies ca 1·4 Ma of diachroneity in second order sea‐level patterns between the northern Gulf of Mexico and other documented global sedimentary basins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号