首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New data collected along the slopes of Little and Great Bahama Bank and the abyssal plain of the Bahama Escarpment provides new insights about contour current‐related erosive structures and associated deposits. The Bahamian slope shows abundant evidence of bottom current activity such as furrows, comet‐like structures, sediment waves and drifts. At a seismic scale, large erosion surfaces and main periods of drift growth resulted from current acceleration related to plate tectonic processes and progressive opening and closure of gateways and long‐term palaeoclimate evolution. At present‐day, erosion features and contourite drifts are either related to relatively shallow currents (<1000 m water depth) or to deep currents (>2500 m water depth). It appears that the carbonate nature of the drifts does not impact the drift morphology at the resolution addressed in the present study. Classical drift morphologies defined in siliciclastic environments are found, such as mounded, plastered and separated drifts. In core, contourite sequences show a bi‐gradational trend that resembles classical contourite sequences in siliciclastic deposits showing a direct relationship with a change in current velocity at the sea floor. However, in a carbonate system the peak in grain size is associated with increased winnowing rather than increased sediment supply as in siliciclastic environments. In addition, the carbonate contourite sequence is usually thinner than in siliciclastics because of lower sediment supply rates. Little Bahama Bank and Great Bahama Bank contourites contain open‐ocean input and slope‐derived debris from glacial episodes. Inner platform, platform edge and open ocean pelagic input characterize the classical periplatform ooze during interglacials. In all studied examples, the drift composition depends on the sea floor topography surrounding the drift location and the type of sediment supply. Carbonate particles are derived from either the slope or the platform in slope and toe of slope drifts, very deep contourites have distant siliciclastic sources of sediment supply. The recent discovery of the importance of a large downslope gravitary system along Bahamian slopes suggests frequent interactions between downslope and along‐slope (contour currents) processes. The interlayering of mass flow deposits and contourites at a seismic scale or the presence of surface structures associated with both contour currents and mass flow processes shows that both processes act at the same location. Finally, contour currents have an important impact on the repartition of deep‐water coral mounds. Currents can actively interact with mounds as a nutrient and oxygen supplier or have a passive interaction, with mounds solely being obstacles orienting erosion and deposition.  相似文献   

2.
The Santaren Drift between the Great Bahama Bank and Cay Sal Bank (Bahamas) is closely linked to the development of the Gulf Stream and its shape and geometry record the local to global oceanographic, climatic and tectonic events since the Miocene. High‐resolution multichannel seismic data from the Santaren Channel allow detailed insight into the growth phases of the contourite drift, and by using the stratigraphic information from Ocean Drilling Program Site 1006 to infer its sedimentation rates. The results bring new understanding to this region and to interpretation of carbonate drifts. The data document that the signatures of a bottom current flow in the Santaren Channel initiated about 12·3 Ma, as indicated by the first occurrence of sheeted drifts and moat development at the northern part of the Santaren Channel. Narrowing and steepening of moat flanks as well as the pronounced upslope migration of the moat reflects a sustained current acceleration of the bottom currents until 5·5 Ma, associated with a transformation into mounded elongated drifts. Between 5·5 Ma and 3·1 Ma, bottom current intensity reached its maximum probably caused by the final closure of the Central American Seaway. The last 3·1 Myr were characterized by a marked increase in volume through flow reaching a maximum during the past 900 kyr. Drift growth was driven by the combined sources of export from the shallow‐water carbonate factory and by pelagic rain. The Middle Miocene channel‐related sheeted drift of the inner Santaren Channel is characterized by low accumulation rates, but a rapid increase of accumulation rates occurred during the Early Pliocene. The contourite drift buildup was disturbed by minor erosional phases with narrow moats in the Late Pliocene due to increasing bottom‐current velocities forced by strengthened Atlantic Ocean ventilation. The Early Pleistocene was dominated by increased periplatform sedimentation and margin progradation facilitated by a reduction in along‐slope current flow speed and a concurrent widening and flattening of the moats.  相似文献   

3.
Sediment data from the Bahamian Santaren carbonate drift reveal the variability of trans‐Atlantic Saharan dust transport back to about 100 ka bp (Marine Isotope Stage 5·3) and demonstrate that carbonate drifts are a valuable pelagic archive of aeolian dust flux. Carbonate drift bodies are common around tropical carbonate platforms; they represent large‐scale accumulations of ocean‐current transported material, which originates from the adjacent shallow‐water carbonate factory as well as from pelagic production, i.e. periplatform ooze. Subordinately, there is a clay‐size to silt‐size non‐carbonate fraction, which typically amounts to less than 10% of the sediment volume and originates from aeolian and fluvial input. Sedimentation rates in the 5·42 m long core GeoHH‐M95‐524 recovered 25 km west of Great Bahama Bank in the Santaren Channel ranges from 1·5 to 24·5 cm ka?1 with lowest values during the last glacial lowstand and highest values following platform re‐flooding around 8 ka bp . These sedimentation rates imply that carbonate drifts have not only the potential to resolve long‐term environmental changes on orbital timescales, but also millennial to centennial fluctuations during interglacials. The sediment core has been investigated with the aim of characterizing the lithogenic dust fraction. Laboratory analyses included X‐ray fluorescence core scanning, determination of carbonate content and grain‐size analyses (of bulk and terrigenous fraction), as well as visual inspections of the lithogenic residue; the age model is based on oxygen isotopes and radiocarbon ages. Data show that the input of aeolian dust in the periplatform ooze as indicated by Ti/Al and Fe/Al element ratios abruptly increases at 57 ka bp , stays elevated during glacial times, and reaches a Holocene minimum around 6·5 ka bp , contemporary to the African Humid Period. Subsequently, there is a gradual increase in dust flux which almost reaches glacial levels during the last centuries. Grain‐size data show that the majority of dust particles fall into the fine silt range (below 10 μm); however, there is a pronounced coarse dust fraction in the size range up to 63 μm and individual ‘giant’ dust particles are up to 515 μm in size. Total dust flux and the relative amounts of fine and coarse dust are decoupled. The time‐variable composition of the grain‐size spectrum is interpreted to reflect different dust transport mechanisms: fine dust particles are delivered by the trade winds and the geostrophic winds of the Saharan Air Layer, whereas coarse dust particles travel with convective storm systems. This mode of transport ensures continuous re‐suspension of large particles and results in a prolonged transport. In this context, grain‐size data from the terrigenous fraction of carbonate drifts provide a measure for past coarse dust transport, and consequently for the frequency of convective storm systems over the dust source areas and the tropical Atlantic.  相似文献   

4.
高分辨率二维地震资料显示中国南海西北次海盆西北陆缘(水深1 000 m及以下)发育如下深水沉积体系:珠江口盆地南部隆起区缓坡带(水深约1 000~1 500 m、坡度<1.2°)出露神狐南海山,该海山附近发育“海山相关等深流沉积体系”,可能受南海中层水循环(自西向东)底流控制;神狐南海山以南水深约1 500~2 500 m的陆坡区(坡度>2°)普遍发生坡移,发育“重力流滑塌体系”和“峡谷体系”,鲜见等深流沉积;下陆坡区(水深>2 500 m,坡度稍缓<2°)滑塌现象明显减少,主要发育“峡谷体系”以及“席状等深流沉积体系”,席状等深流沉积体系可能受分散的、流速较低的南海深层水循环底流控制。地震沉积记录显示,神狐南海山附近等深流侵蚀特征最早出现于晚中新世早期,其后至现今该区较稳定发育等深流沉积/侵蚀的加积序列,说明南海西北次海盆西北陆缘的稳定底流沉积/侵蚀可追溯至晚中新世早期。  相似文献   

5.
The Upper Cretaceous (Campanian–Maastrichtian) bioclastic wedge of the Orfento Formation in the Montagna della Maiella, Italy, is compared to newly discovered contourite drifts in the Maldives. Like the drift deposits in the Maldives, the Orfento Formation fills a channel and builds a Miocene delta‐shaped and mounded sedimentary body in the basin that is similar in size to the approximately 350 km2 large coarse‐grained bioclastic Miocene delta drifts in the Maldives. The composition of the bioclastic wedge of the Orfento Formation is also exclusively bioclastic debris sourced from the shallow‐water areas and reworked clasts of the Orfento Formation itself. In the near mud‐free succession, age‐diagnostic fossils are sparse. The depositional textures vary from wackestone to float‐rudstone and breccia/conglomerates, but rocks with grainstone and rudstone textures are the most common facies. In the channel, lensoid convex‐upward breccias, cross‐cutting channelized beds and thick grainstone lobes with abundant scours indicate alternating erosion and deposition from a high‐energy current. In the basin, the mounded sedimentary body contains lobes with a divergent progradational geometry. The lobes are built by decametre thick composite megabeds consisting of sigmoidal clinoforms that typically have a channelized topset, a grainy foreset and a fine‐grained bottomset with abundant irregular angular clasts. Up to 30 m thick channels filled with intraformational breccias and coarse grainstones pinch out downslope between the megabeds. In the distal portion of the wedge, stacked grainstone beds with foresets and reworked intraclasts document continuous sediment reworking and migration. The bioclastic wedge of the Orfento Formation has been variously interpreted as a succession of sea‐level controlled slope deposits, a shoaling shoreface complex, or a carbonate tidal delta. Current‐controlled delta drifts in the Maldives, however, offer a new interpretation because of their similarity in architecture and composition. These similarities include: (i) a feeder channel opening into the basin; (ii) an excavation moat at the exit of the channel; (iii) an overall mounded geometry with an apex that is in shallower water depth than the source channel; (iv) progradation of stacked lobes; (v) channels that pinch out in a basinward direction; and (vi) smaller channelized intervals that are arranged in a radial pattern. As a result, the Upper Cretaceous (Campanian–Maastrichtian) bioclastic wedge of the Orfento Formation in the Montagna della Maiella, Italy, is here interpreted as a carbonate delta drift.  相似文献   

6.
Contourite drifts are sediment bodies formed by the action of bottom currents. They are common features found on continental slopes and are often affected by slope failure. However, processes controlling slope instability in contourite depositional systems are still not well constrained, and it is not clear whether contourites have particular properties that make them more susceptible to slope failure. In this study, we compare sedimentological and geotechnical properties of contouritic and hemipelagic sediments within the Corsica Trough (northern Tyrrhenian Sea) using geophysical data sets and sediment cores in order to get a better understanding of the controlling factors of slope stability. Geomorphological and slope stability analyses reveal that differences in sediment properties have little influence on the location of submarine landslides, in comparison with the morphology of the drifts. Hence, the steep downslope flanks of plastered drift deposits are the most susceptible zones for local failure initiation. Moreover, as erosion is common at the foot of plastered drifts, undercutting is thought to contribute to the development of large-scale failure up to the point that submarine landslides are triggered.  相似文献   

7.
The identification of sediment drifts typically relies on interpretation of reflection seismic data sets. This study sedimentologically analyzed an example of a carbonate delta drift previously identified in seismics in order to provide a catalogue of characteristic features at core and seismic scale for allowing testing the occurrence of this poorly known type of deposit elsewhere. Cores and downhole logs recovered during International Ocean Discovery Program Expedition 359 to the Maldives, in combination with seismic data, were analyzed with this objective. The diagnostic criteria for the sedimentological recognition of a delta drift are: (i) the development of sigmoidal clinoforms that thin out towards proximal and distal settings; (ii) a proximal part characterized by coarse‐grained facies with abundant shallow‐water components and distal areas dominated by fine‐grained facies with rare to absent shallow‐water components; (iii) winnowing of the finer fraction in proximal facies; (iv) extensive fragmentation of most of the bioclasts with minor intervals of well‐preserved components; (v) bigradational intervals in the proximal part and large channels in proximal to distal settings; and (vi) the lobe to delta shaped outline of the sediment accumulation. The characteristic shallow‐water fossil assemblage of the Mid to Upper Miocene delta drift consists of large benthic foraminifera (Amphistegina, Cycloclypeus, Lepidocyclina, Operculina and Heterostegina), fragmented red algae and bryozoans, equinoid debris, and Halimeda plates. The deeper‐water part of the drift bodies consists of fine‐grained planktonic foraminifera‐rich wackestone. Condensed intervals may occur as result of enhanced bottom‐current activity. In contrast to siliciclastic drift bodies, the carbonate delta drift has an important contribution by in situ shallow‐water carbonate production reminiscent of a shoal. In situ carbonate production is proposed as a major controlling factor which is as important as the pelagic settling or the shaping by density and bottom currents in siliciclastic drifts. In the absence of three‐dimensional data and in two‐dimensional views the carbonate delta drift sediment bodies resemble carbonate ramps, which indicates that there may be the need to re‐evaluate various cases of such systems described from the geological record.  相似文献   

8.
Contourite drift systems form a significant component of the marine clastic sedimentary record. Although contourites form in all tectonic settings, few studies have described their development along convergent margins; such characterization is needed to underpin oceanographic and palaeoenvironmental studies in active settings. This study is the first to document contourite drift development along the Hikurangi subduction margin of New Zealand. Integration of bathymetric, seismic and well data enables five classes of drift to be recognized around the subduction wedge, occurring in three principal associations: (i) an upper slope drift association of giant elongate mounded (ca 150 km long, 50 km wide and up to 1100 m thick) and plastered drifts (ca 300 km long, 8 km wide and <600 m thick), which occurs upon and inboard of a major intrabasinal thrust‐cored high, whose long axis parallels the coast; shallow bottom currents disperse sub‐parallel to this axis; (ii) a spatiotemporally discontinuous association of confined and mounded hybrid drifts (ca 500 m long, <2 km wide and up to 500 m thick) that occurs along the mid‐to‐outer slope domain of the wedge, recording the interaction of along‐slope and downslope currents within trench‐slope basins; and (iii) a trench fill assemblage that implies the passage of abyssal bottom currents across a 40 km reach of the trench‐axial Hikurangi Channel‐levée, with associated modification of the channel form and of overbank sediment waves. The fundamental presence of contourites along this margin appears to depend on the orientation and strength of oceanographic bottom currents. However, drift type and evolution vary depending on the slope gradient and the presence of irregular seafloor topography created by tectonic structures. The documented drifts are generally smaller, less continuous, and develop more intermittently than similar styles of drifts documented on passive margins; this mode of occurrence may be characteristic of contourite development on convergent margins.  相似文献   

9.
During the Late Cretaceous, high global sea‐level meant that most of the NW European craton was flooded by the deep epeiric ‘chalk sea’. The classical paradigm for chalk deposition envisages a quiet rain of minute skeletal debris of coccolithophorid algae and other pelagic organisms deposited as horizontal, flat‐lying pelagic oozes with local redeposition by slumps, slides and debris flows along faults and other structural features. Seismic data from the Danish Basin and elsewhere necessitate a revision of this paradigm. These demonstrate that the chalk sea floor had a considerable relief, commonly of more than a hundred metres amplitude, comprising moats, drifts, mounds and channels. Seismic sections from the Kattegat sea illustrate the development in the Maastrichtian of a deep moat adjacent to a topographic ridge formed over the inverted NW–SE‐trending Sorgenfrei–Tornquist Zone. The moat was up to 120 m deeper than its SW flank which was formed by an internally complex elongate drift, up to 20 km wide with an estimated length of ca 200 km. Smaller mound‐like features, channels and clinoform beds are superimposed on the large‐scale relief. The sea floor relief is interpreted to have formed in response to persistent bottom currents, flowing parallel to bathymetric contours. The initial build‐up of the broad, gently convex‐up sheeted drift was controlled by relatively low‐velocity bottom currents. The region of highest current velocity was gradually shifted NE‐wards towards the inversion zone ridge, resulting in the formation of the deep moat flanked by the elongate drift. The current is interpreted to have flowed from the SE towards NW on the basis of the internal architecture of the elongate drift and the NW‐ward branching and decrease in moat relief. The architecture and morphology of the moat drift and other features of the chalk sea floor are in all aspects similar to contourite systems of modern continental margins. It is accordingly proposed that the fundamental physical oceanographic concept – contour currents and their resulting contourite drifts – is extended to include the deep epeiric seas which covered NW Europe during the Late Cretaceous.  相似文献   

10.
中国油气勘探的一个新领域——深水牵引流沉积   总被引:4,自引:0,他引:4  
深水牵引流沉积主要分为等深流沉积和内波内潮汐沉积两类。前者可形成巨大的堆积体——等深积岩丘,其规模可与海底扇相比拟。现代海洋大陆坡及陆隆地带等深积岩丘非常发育;古代地层记录中也有等深积岩丘,如已开采数十年的阿拉伯克拉通白垩系等深积岩丘油田。后者则不仅可形成分选极好的砂级沉积物,而且可形成规模巨大的“沉积物波”,并成群成带地出现。海洋中沉积物波的迁移可形成巨大的沉积体。在世界各大洋深盆海底,均有大范围分布的现代大型沉积物波。中国地层记录中的大型沉积物波,首先在塔里木盆地塔中地区中一上奥陶统中被识别出来,并有良好油气显示。认为中国的广大地区发育有多个时代的海相深水沉积,深水牵引流沉积储集层是中国21世纪油气勘探具巨大潜力和现实可行性的新领域。其油气勘探首选地区是塔里木盆地、扬子地台南缘和鄂尔多斯西缘。  相似文献   

11.
李华  王英民  徐强  唐武  李冬 《古地理学报》2013,15(5):741-750
以地震资料为基础, 对南海北部第四系深层等深流沉积进行了研究。南海北部水深约1200~3000m范围内发育大型长条状漂积体、限制型漂积体、陆坡席状漂积体及沉积物波。大型长条状漂积体外形为丘状, 水道在靠陆一侧发育。限制型漂积体主要沉积于地形突起之间的地势相对低洼处, 外形多平坦, 水道较为发育。陆坡席状漂积体外形为席状。沉积物波面积较大, 部分与漂积体伴生。深层等深流在自北东向南西沿南海陆架运动过程中, 在中上陆坡由于地形变化相对较大及科氏力作用影响形成螺旋型等深流, 进而产生次生环流, 形成大型长条状漂积体及限制型漂积体。在中下陆坡因地形相对平坦、开阔, 等深流为层状水流, 多形成陆坡席状漂积体。本研究不仅能提高对南海深层等深流沉积的认识, 还能为油气勘探服务。  相似文献   

12.
Based on integration of seismic reflection and well data analysis this study examines two major contourite systems that developed during the late Cretaceous in the southern Baltic Sea. The evolution of these Chalk Sea contourite systems between the Kattegat and the southern Baltic Sea started when Turonian to Campanian inversion tectonics overprinted the rather flat sea floor of the epeiric Chalk Sea. The Tornquist Zone and adjacent smaller blocks were uplifted and formed elongated obstacles that influenced the bottom currents. As a consequence of the inversion, the sea floor west of the Tornquist Zone tilted towards the north‐east, creating an asymmetrical sub‐basin with a steep marginal slope in the north‐east and a gentle dipping slope in the south‐west. A south‐east directed contour current emerged in the Coniacian or Santonian along the south‐western basin margin, creating contourite channels and drifts. The previously studied contourite system offshore Stevns Klint is part of this system. A second, deeper and north‐west directed counter‐flow emerged along and parallel to the Tornquist Zone in the later Campanian, but was strongest in the Maastrichtian. This bottom current moderated the evolution of a drift‐moat system adjacent to the elevated Tornquist Zone. The near surface Alnarp Valley in Scania represents the Danian palaeo‐moat that linked the Pomeranian Bay with the Kattegat. The previously studied contourite system in the Kattegat represents the north‐western prolongation of this system. This study links previous observations from the Kattegat and offshore Stevns Klint to the here inferred two currents, a more shallow, south‐east directed and a deeper, north‐west directed flow.  相似文献   

13.
深水等深积岩丘及其含油气潜能   总被引:1,自引:0,他引:1  
等深积岩丘大量存在干现代海洋调查和古代地层记录的深水沉积中,其规模可与深海大型浊积扇相比拟。岩性一般由泥级、粉砂级、砂级及细砾级等深漉沉积构成,成分上可以是陆源碎屑的或是碳酸盐的,其中粉砂级和砂级等深流沉积的单层厚度在数厘米至数十厘米,厚者可达2m 左右。颗粒的分选性一般中等一较好,局部很好,原生孔隙发育,并与深水原地沉积的页岩、泥岩互层沉积,具有良好的生储盖组合特性。对比了大西洋东缘现代沉积的 Faro 等深积岩丘和中国古代奥陶纪沉积的湘北九溪等深积岩丘、甘肃平凉等深积岩丘的层序特征,提出了等深积岩丘的形成分为萌生、成型和衰退三个阶段的沉积模式。认为等深积岩丘具有潜在的油气勘探前景。  相似文献   

14.
等深流与重力流在深水环境中较为常见,两者在地质历史时期中可存在相互作用进而形成交互作用沉积。结合近20年研究成果,对深水等深流与重力流交互作用的沉积类型、鉴别标志、形成机理及地质意义进行了总结。1)等深流与重力流交互作用沉积可分为等深流与重力流沉积互层、等深流改造重力流及等深流与重力流同时作用沉积。2)等深流沉积和重力流沉积的有效鉴别是等深流与重力流沉积互层沉积研究的前提。3)等深流改造重力流沉积发育重力流和牵引流沉积构造,双向交错层理最为典型;常具顺斜坡向下及大致平行斜坡的两个水流方向;概率累积曲线呈1~3段式等特征。4)等深流与重力流同时作用沉积主要发育单向迁移水道、不对称的水道—堤岸体系及偏转型朵叶。5)交互作用形成过程主要受等深流与重力流相对能量大小的影响。当重力流活跃时,发育重力流沉积,在重力流末期及间歇期,等深流沉积发育,进而形成重力流与等深流沉积互层。等深流能量较强时,可改造重力流沉积,形成等深流改造重力流沉积。高能等深流在重力流能量较弱时,可对重力流沉积物进行横向搬运,形成迁移水道、不对称水道—堤岸体系及偏转型朵叶。6)主要问题及下一步的主攻方向主要包括四个方面:①重视综合研究,增加实例分析;②完善鉴别标志,推广研究成果;③多方法、多尺度、多条件、多维度综合探讨交互作用沉积过程及主控因素;④加强油气勘探潜力、古环境演化及地质灾害预防等方面的研究。  相似文献   

15.
This study investigates the δ13C values of Middle Miocene–Modern drift deposits and periplatform sediments in the Maldives and compares these data with the global δ13C values derived from bulk oceanic sediments and foraminifera. This comparison reveals that while the δ13C values of the early Miocene periplatform sediments in the Maldives appear to track the global record of δ13C values, including increases associated with the Oligocene–Miocene boundary as well as the variations within the Monterey Event, the correlation with the Monterey Event may be coincidental. It is suggested that variations in δ13C values do not reflect changes in oceanic dissolved inorganic carbon, but instead pulses of sediment arising from platform progradation that contribute carbonates with elevated δ13C values derived from the adjacent shallow‐water atolls. This conclusion is supported both by correlations between the seismic sequence architecture and the δ13C values which document progradation of 13C‐rich platform sediments, and also by the continuation of the interval of 13C‐rich sediments past the end of the Monterey Event at 13 Ma within the drift.  相似文献   

16.
Middle Pleistocene to Holocene sediment variations observed in a 26 metre long core taken during a cruise of the RV Marion Dufresne are presented. Core MD992202 was retrieved from the northern slope of Little Bahama Bank and provides an excellent example for sedimentation processes in a mid‐slope depositional environment. The sediment composition indicates sea‐level related deposition processes for the past 375 000 years (marine isotope stages 1 to 11). The sediments consist of: (i) periplatform ooze (fine‐grained particles of shallow‐water and pelagic origin) with moderate variations in carbonate content, carbonate mineralogy and grain‐size; and (ii) coarser intervals with cemented debris consisting of massive, poorly sorted, mud‐supported or clast‐supported deposits with an increased high‐magnesium calcite content. During interglacial stages (marine isotope stages 1, 5, 7, 9 and 11) periplatform oozes (i) are characterized by higher aragonite contents, finer grain‐size and higher organic contents, whereas during glacial stages (marine isotope stages 2 to 4, 6, 8 and 10), increased low‐magnesium and high‐magnesium calcite values, coarser grain‐size and lower organic contents are recorded. These glacial to interglacial differences in mineralogy, grain‐size distribution and organic content clearly show the impact of climatically controlled sea‐level fluctuations on the sedimentation patterns of the northern slope of Little Bahama Bank. The coarser deposits (ii) occur mainly at the transitions from glacial to interglacial and interglacial to glacial stages, and are interpreted as redeposition events, indicating a direct link between sediment properties (changes in mineralogy, grain‐size distribution, variations in organic contents) and sea‐level fluctuations. Changes in hydrostatic pressure and the wave base position during sea‐level changes are proposed to have triggered these large‐scale sediment redepositions.  相似文献   

17.
Carbonate drifts have so far not been as intensely investigated as their siliciclastic equivalents, especially from an ichnological perspective. The aim of this work is therefore to provide an overview of the different bioturbation styles in carbonate drifts for ichnologists and sedimentologists working in such deposits. Different types of carbonate drifts from the Maldives were studied to address this objective. The cores recovered during International Ocean Discovery Program Expedition 359 were examined to provide the sedimentological and ichnological data for a detailed analysis of the ichnology of carbonate drifts. The ichnological characteristics of the Maldives drifts are compared to other carbonate drifts in order to discuss similarities and differences, and thus provide an overview of the general characteristics of carbonate drift ichnology. These drifts are located in the Santaren Channel which lines Great Bahama Bank, along the Marion Plateau in Australia, in the Limassol and Larnaca basins in Cyprus and in the Danish Basin in Denmark. The common characteristics of bioturbation in carbonate drifts are: (i) the complete bioturbation of the sediment with bioturbation indexes between four and six; (ii) the occurrence of distinctive trace fossils limited to facies contacts or condensed intervals; (iii) a typical ichnoassemblage consisting of Thalassinoides, Scolicia, Planolites, Zoophycos, Chondrites, Phycosiphon and Palaeophycus; (iv) the contiguous occurrence of ichnogenera from different tiers, with only Zoophycos and Chondrites as deep tiers; and (v) distinct infills of the traces including particulate organic matter, pyrite, silica and celestine. In addition, the main ichnofacies of carbonate drifts is the Zoophycos ichnofacies. Ichnofabrics grade from coarse‐grained and completely bioturbated to ichnofabrics with present to rare trace fossils and preserved sedimentary structures. The type and intensity of the bioturbation is controlled by the amount of organic matter and the oxygenation at the sea floor that is determined by the action of bottom currents and the sea‐level fluctuations affecting the carbonate factory in carbonate platforms bordering the basins where the carbonate drifts form. The study of the bioturbation in core and outcrop provides palaeoenvironmental information about carbonate‐drift deposits that complement the classical sedimentological data.  相似文献   

18.
陈慧  解习农  毛凯楠 《地球科学》2015,40(4):733-743
利用高分辨率2D地震资料揭示南海北缘一统暗沙附近(水深700~1 000 m)发育海山相关的深水等深流沉积体系, 为南海北部陆缘深水洋流循环和深海动力学研究, 以及深水油气矿产资源勘探提供了新的资料.一统暗沙南、北两侧发育边缘侵蚀槽沟, 其中北缘的边缘槽沟可称为"环槽", 反映底流(可能属于南海中层水循环体系)自西向东流经海山.一套等深流沉积的伸长状-丘状漂积体沿环槽北岸发育.一统暗沙南侧和背侧还发育黏附型漂积体、南侧沉积区和补丁型漂积体.地震沉积记录显示该区稳定底流侵蚀-沉积活动可追溯至晚中新世早期.   相似文献   

19.
The Gulf of Cadiz is swept by the strong saline Mediterranean Outflow Water (MOW). On the Algarve Margin (South Portugal), this current has constructed fine-grained contourite drifts. This margin is dissected by the Portimao Canyon and three short channels that only incise the upper slope, and are absent on a terrace located at mid-slope depths along the Algarve Margin. High-resolution seismic profiles and sediment cores highlight the original architecture of the sedimentary deposits on this terrace. Coarse-grained lenticular chaotic bodies formed during major relative sea-level lowstands are intercalated within the drift. The lobate shape and sandy nature of the lenticular chaotic bodies and their location at the mouths of the three short channels suggest they are gravity-generated deposits that are perched on the middle continental slope.In the Gulf of Cadiz, the interaction between contour current and gravity processes is strongly controlled by climatic variations and relative sea-level changes during the late Quaternary. During cold periods when sea-level was low, erosion intensified on the continental shelf and the deepest part of MOW was active. Sediment was transported downslope through the channels and deposited on sedimentary lobes perched on the mid-slope terrace. During warm periods when relative sea-level was high, the supply of sediment from the shelf was shut off and the shallowest part of MOW was more active. Contourite drifts fill the channels and bury the sandy lobes.  相似文献   

20.
Sediment waves are commonly observed on the sea floor and often vary in morphology and geometry according to factors such as seabed slope, density and discharge of turbidity currents, and the presence of persistent contour currents. This paper documents the morphology, internal geometry and distribution of deep‐water (4000 to 5000 m) bedforms observed on the sea floor offshore eastern Canada using high‐resolution multibeam bathymetry data and seismic stratigraphy. The bedforms have wavelengths of >1 km but fundamentally vary in terms of morphology and internal stratigraphy, and are distinguished into three main types. The first type, characterized by their long‐wavelength crescentic shape, is interpreted as net‐erosional cyclic steps. These cyclic steps were formed by turbidity currents flowing through canyons and overtopping and breaching levées. The second type, characterized by their linear shape and presence on levées, is interpreted as net‐depositional cyclic steps. These upslope migrating bedforms are strongly aggradational, indicating high sediment deposition from turbidity currents. The third type, characterized by their obliqueness to canyons, is observed on an open slope and is interpreted as antidunes. These antidunes were formed by the deflection of the upper dilute, low‐density parts of turbidity currents by contour currents. The modelling of the behaviour of these different types of turbidity currents reveals that fast‐flowing flows form cyclic steps while their upper parts overspill and are entrained westward by contour currents. The interaction between turbidity currents and contour currents results in flow thickening and reduced sediment concentration, which leads to lower flow velocities. Lower velocities, in turn, allow the formation of antidunes instead of cyclic steps because the densiometric Froude number (Fr′) decreases. Therefore, this study shows that both net‐erosional and net‐depositional cyclic steps are distributed along channels where turbidity currents prevail whereas antidunes form on open slopes, in a mixed turbidite/contourite system. This study provides insights into the influence of turbidity currents versus contour currents on the morphology, geometry and distribution of bedforms in a mixed turbidite–contourite system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号