首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
花岗伟晶岩石英流体包裹体中的短链羧酸   总被引:4,自引:1,他引:4  
用离子色谱法研究了某些花岗伟晶岩中石英流体包裹体浸取液的短链送终酸(甲酸、乙酸、丙酸和草酸)和无机阴离子(氟、氯和硫酸根离子)组成,同时进行了矿物包裹体流体的氢和石英的氧同位素成分测定以及显微计温学研究。结果表明,北京延庆大庄科花岗伟晶岩的石英流体包裹体浸取液中含有少量的甲酸和乙酸。花岗岩演化晚期-伟晶岩阶段的高温水热流体中可以存在短链羧酸。  相似文献   

2.
水热成矿流体中的短链羧酸   总被引:1,自引:1,他引:1  
曾贻善 《地学前缘》2001,8(4):397-401
文中简述了天然水流体中的短链羧酸产出状况。短链羧酸地球化学的研究目前集中于沉积盆地和表生环境。根据C H O体系中某些C H O化合物的化学关系和热力学分析 ,推测深部水热流体中有可能存在短链羧酸。研究高温热液矿床矿物流体包裹体的水溶有机组分可能是检验这一推测的突破口。某些石英脉型热液矿床的矿物流体包裹体压碎浸取和离子色谱分析确定 ,成矿流体中存在少量短链羧酸 ,而且甲酸是优势物种。文章讨论了矿物包裹体浸取实验结果需要进一步探讨的问题 ,认为研究水热成矿流体短链羧酸地球化学具有重要的理论意义。  相似文献   

3.
西华山-荡坪钨铍矿床流体包裹体羧酸研究   总被引:2,自引:0,他引:2  
系统研究了西华山—荡坪钨铍矿床矿物中流体包裹体温压地球化学特征,用离子色谱法测定了矿床中石英、水晶、黑钨矿、绿柱石、萤石等矿物包裹体浸取液的羧酸组成——甲酸、乙酸、丙酸和草酸,结果表明低分子量羧酸或羧酸盐是气化—高温热液矿床成矿流体中的常见组分。其中甲酸>乙酸草酸,部分样品中有丙酸。  相似文献   

4.
矿物流体包裹体中的羧酸曾贻善刘家齐(北京大学地质系,北京100871)(地矿部宜昌地质矿产研究所,宜昌443003)关键词矿物包裹体浸取液羧酸离子色谱分析分子中含有羧基官能团(—COOH)的物质称为羧酸。Fein[1]和Shock[2]曾概述羧酸在自...  相似文献   

5.
新疆西天山木祖克矽卡岩型铅锌矿床流体包裹体研究   总被引:1,自引:0,他引:1  
为研究木祖克铅锌矿床成因,探讨成矿流体特征及其演化规律,本文在野外地质调查的基础上,对成矿各阶段脉石矿物的流体包裹体进行了研究。结果表明,热液矿物中的包裹体类型丰富,主要为气液水两相包裹体和含NaCl子矿物的多相包裹体,后者主要发育于Ⅰ阶段石榴子石和Ⅱ阶段绿帘石中。由Ⅰ→Ⅱ→Ⅲ→Ⅳ阶段,包裹体均一温度(330~568℃→299~416℃→181~320℃→137~196℃)和盐度(38.8%~49.8%NaCleq→34.8%~38.4%NaCleq→1.4%~11.46%NaCleq→1.1%~5.6%NaCleq)有明显降低趋势。Ⅰ阶段石榴子石和Ⅱ阶段绿帘石中发育气液水包裹体和含NaCl子晶的多相包裹体,Ⅲ阶段石英中的气液水包裹体与同期次的纯液相水包裹体、纯气相水包裹体共生,且均一温度相近;各阶段成矿流体均发生过不混溶作用,其中Ⅲ阶段成矿流体的不混溶作用导致方铅矿、闪锌矿等的析出并富集成矿。  相似文献   

6.
曾贻善  刘家齐 《矿床地质》1998,17(Z6):1083-1084
在矿物包亵体显微镜研究的基础上,用离子色谱法测定了西华山-荡坪钨铍矿、漂圹钨锡矿和珊瑚锡钨矿床某些矿物流体包裹体的羧酸(甲酸、乙酸、丙酸和草酸)组成。所有样品的浸取液中均含有一定数量的短链羧酸,甲酸是占优势的物种。所研究矿床成矿流体的阴离子组成特征可能与岩浆活动和围岩的差异有关。  相似文献   

7.
甲玛铜多金属矿床位于西藏冈底斯斑岩铜矿带东段,是近年来勘探发现的超大型斑岩-矽卡岩型铜多金属矿床。通过冷热台显微观察与测温、扫描电镜、激光拉曼探针测试,对甲玛矿床各成矿阶段典型矿物的流体包裹体研究表明,成矿流体富含挥发分,临界相均一的流体来自岩浆超临界流体出溶,主成矿阶段具有沸腾包裹体组合特征,有机质包裹体荧光效应显著。显微测温结果显示,岩浆-热液阶段斑岩中石英斑晶的流体包裹体均一温度范围为250~540℃,含石盐子晶高盐度包裹体盐度范围为35~61(wt%)NaCl.eq,中等盐度的临界均一的气液包裹体盐度范围为3~29(wt%)NaCl.eq,岩浆期后热液阶段斑岩、角岩中石英脉的流体包裹体均一温度范围为210~410℃,盐度范围为33~41(wt%)NaCl.eq,与其不混溶共生的中低盐度气液两相流体包裹体盐度范围为5~25(wt%)NaCl.eq。矽卡岩阶段矿物均一温度范围为130~360℃,盐度范围为3~41(wt%)NaCl.eq,从岩浆热液过渡阶段到石英-硫化物阶段均一温度与盐度呈阶梯式降低趋势。斑岩体石英的流体包裹体中含有较多黄铜矿子矿物,岩浆结晶分异过程中已经具成矿元素的富集。激光拉曼探针测试结果显示,成矿早期至主成矿期矿物流体包裹体气相成分主要为CO2、CH4和N2,各阶段矿物流体包裹体气相成分具有继承性。成矿流体为高温度高盐度,富含CO2、CH4的流体。成矿流体主要源于岩浆,后期混有大气降水。当岩浆热液上升时因压力的突然释放造成高温含矿热流体发生减压沸腾,CO2和CH4等气体大量逃逸,导致成矿物质快速沉淀。矿床在成因上与岩浆-热液成矿作用密切相关。  相似文献   

8.
鹿鸣钼矿床是小兴安岭—张广才岭成矿带上典型的特大型斑岩型钼矿床,矿体主要产于早中生代早期中细粒似斑状二长花岗岩内,矿化类型以细脉浸染状矿化为主。根据矿物共生组合及脉体穿插关系将鹿鸣钼矿床划分为4个成矿阶段:黄铁矿-石英阶段(Ⅰ),石英-辉钼矿阶段(Ⅱ),绿泥石-辉钼矿-石英阶段(Ⅲ),石英-碳酸盐阶段(Ⅳ)。成矿流体包裹体有3类:A型气液两相包裹体(L+V),B型含子晶三相包裹体(L+V+S),C型气相包裹体(V)。不同阶段流体包裹体的成分、均一温度、盐度等特征显示成矿流体由早阶段的高温、高盐度的H_2O-CO_2-NaCl体系逐渐演变为晚阶段的低温、低盐度的H_2O-NaCl体系。氢氧同位素特征显示成矿早阶段以岩浆水为主,随成矿演化有不同程度大气水的加入。根据矿床产出特征、矿物共生组合和流体包裹体特征,认为流体的沸腾作用和CO2等气相组分大量逸失是成矿流体形成矿床的主要因素。  相似文献   

9.
荣那铜(金)矿床是班公湖-怒江缝合带西段新发现的矿床,是多龙矿集区的重要组成矿床之一,已探明储量达大型规模,具有超大型矿床的成矿潜力。荣那铜(金)矿床矿石矿相学与岩相学研究显示其具有典型高硫化型浅成低温热液型矿床的矿物组合(明矾石、硫砷铜矿等)和矿化蚀变特征。通过资料收集与野外观察,本文将荣那铜(金)矿床的成矿过程划分为石英-黄铁矿阶段、石英-多金属硫化物阶段与碳酸盐阶段,其中石英-多金属硫化物阶段为主成矿阶段。为查明该矿床的成矿流体特征,进一步确定矿床成因类型,对取自深部矿石中的石英脉(均为主成矿阶段含黄铁矿、黄铜矿石英脉)开展了流体包裹体的岩相学观察、显微测温和激光拉曼光谱分析。结果表明,上述矿物中主要发育富液相、富气相和含子矿物三相包裹体;富液相包裹体的均一温度与盐度分别为:80~440℃和4.63%~11.95%NaCl eqv;富气相包裹体的均一温度和盐度分别为:320~440℃和5.55%~10.74%NaCl eqv;含子矿物三相包裹体的均一温度与盐度分别为200~400℃和29.4%~32.56%NaCl eqv;富液相与富气相包裹体的气体成分除少量N2外,气体成分均为H2O。综合分析认为,荣那矿床成矿流体发生了强烈的沸腾作用,流体沸腾作用是该矿床的重要成矿机制。可见,荣那矿床具有高硫型浅成低温热液矿床的矿物组合及蚀变特征,但主成矿阶段石英脉流体包裹体特征与典型斑岩型铜(金)矿床的流体包裹体特征相似。因此,推测荣那高硫型浅成低温热液铜金矿的深部存在斑岩型铜金矿化,该矿床应属浅成低温热液型-斑岩型铜金矿床。  相似文献   

10.
根据山后金矿床的矿物组合和矿物生成顺序,将成矿阶段划分为4个阶段:黄铁矿-石英(钾化)阶段、石英—黄铁矿(绢英岩化)阶段、金-石英-多金属硫化物阶段和石英-碳酸盐阶段。对区内主成矿阶段的石英中流体包裹体进行岩相学、显微测温及氢氧同位素进行分析。结果表明:矿石中的包裹体主要有含CO2三相包裹体、气液两相包裹体和CO2包裹体三种类型,矿石中的包裹体普遍富含CO2。成矿过程中,流体经历了CO2-H2O—Na Cl体系的不混溶作用。成矿流体具有低盐度(4.0~9.0 wt%Na Cl.eqv)和低密度(0.70~0.89 g/cm3)的特点。主成矿温度为260℃~300℃,成矿压力为83~100 MPa,对应成矿深度为7.45~8.25 km。流体包裹体氢氧同位素分析结果介于地幔初生水和岩浆水之间,部分向大气降水线方向漂移,表明山后金矿成矿流体以幔源流体为主,并有大气降水和其他流体的加入,初步确定山后金矿床是受断裂构造控制的中温热液脉型金矿床。  相似文献   

11.
湘西沃溪金锑金属钨矿床中石英的矿物学研究   总被引:1,自引:0,他引:1       下载免费PDF全文
通过对矿床中不同世代及不同地质产状石英的颜色,形态,物理性质,化学成分,晶胞参数,结晶度的研究及X射线分析及红外光谱,电子顺磁共振谱等近代物理分析方法的测试,找出矿化石英与非矿化石英及不同类型矿化石英的标型特征,这些标型特征具有重要的找矿勘探意义。  相似文献   

12.
Vein quartz from the Nether Polar Ural Province was examined by atomic emission spectrometry, gas chromatography, electron paramagnetic resonance, and electron microscopy. According to atomic emission spectrometric analysis, the total concentration of Al, Fe, Mg, Ti, Ca, Na, K, and other minor elements in the quartz varies from 8 to 47 ppm. The lowest concentrations of minor elements were detected in the granulated quartz. Giant-crystalline milk-white quartz is noted for higher concentrations of minor elements, including Na, K, and Ca, because it contains gas-liquid inclusions. The fine-grained quartz contains very small mineral inclusions and is thus noted for elevated concentrations of Ca, Fe, K, Mg, and Ti. Gas chromatographic data on the gas phase separated from the quartz at its heating indicate that this phase contains H2O, CO2, and other components. The H2O concentration reaches 429 ??g/g, while the CO2 content is commonly no higher than 20 ??g/g. Gas separation is at a maximum at temperatures of 100?C600°C, when gasliquid inclusions decrepitate, as is typical, first of all, of the giant-crystalline milk-white quartz. Gas separation continues at higher temperatures (below 1000°C) but is much less intense. The electron microscopic examination of quartz grains after their acid treatment indicates that the surface of these grains is covered by caverns of various morphology and size, which were produced by the partial dissolution of the quartz and the opening of its gas-liquid and mineral inclusions occurring near the surface; the inclusions were not, however, completely removed. The crystal structure of the quartz contains minor Al, Ge, Na, Li, Ti, and Fe. The lowest concentrations of Al and Ge paramagnetic centers are typical of the granulated (recrystallized) and fine-grained quartz. The giant-crystalline quartz, including its transparent varieties, and individual quartz crystals, first of all their smoky-citrine varieties, contain higher concentrations of minor elements. In the Nether Polar Ural Province, granulated quartz is potentially promising for producing especially pure quartz concentrates. The quality of the translucent coarse-to giant-crystalline quartz, which predominates in the resources and reserves, is deteriorated by gas-liquid inclusions in it and requires deep processing of the raw minerals.  相似文献   

13.
通过对矿床中不同世代及不同地质产状石英的颜色、形态、物理性质、化学成分、晶胞参数、结晶度的研究及X射线分析及红外光谱、电子顺磁共振谱等近代物理分析方法的测试,找出了矿化石英与非矿化石英及不同类型矿化石英的标型特征,这些标型特征具有重要的找矿勘探意义  相似文献   

14.
《Applied Geochemistry》2000,15(1):13-25
The carboxylate (formate, acetate, propionate and oxalate) and common inorganic anions (F, Cl and SO2−4) compositions for aqueous fluid inclusion leachates from 17 mineral samples collected from various deposits have been determined using ion chromatography in conjunction with microthermometric measurements on the fluid inclusions of their host minerals. The minerals, quartz, fluorite, barite, beryl and a few `ore' minerals (wolframite, pyrite and galena), came from hydrothermal vein-type deposits in felsic igneous rocks or Archean metamorphic rocks. The results indicate that short-chain carboxylates are common components in hydrothermal fluids and can be present in considerable amounts. Formic acid (as formate) is the dominant species over other carboxylic acids. The present study raises new questions about the origin and geochemical significance of carboxylates in hydrothermal ore-forming processes.  相似文献   

15.
In Zhangbaling Tectonic Belt,two types of mineralization,auriferous quartz veins and alteration halos,can observed within many deposits.The pressure of metallogenesis of auriferous alteration halos is much higher than that of quartz vein,the temperatures of metallogeneses of these two types of orebodies are don't the same Geochemistry study indicates that both of them are micro-mesothermal deposits related to Yanshanian granites.The results of proton microprobe analysis of sulphides from the gold deposits in the area show that the "invisible" gold existed in sulphides is in the form of micro inclusions,and the concentration of "invisible" gold in sulphide minerals within quartz vein is poorer than that from alteration halos.Field observation shows that the structural modality of the fractures controlling the orebodies of auriferous quartz vein is different from that of the auriferous alteration zones.The fracture controlling the orebodies of auriferous alteration halos is compress-shear fracture,auriferous quartz vein is controlled by extensive fault.The alteration halos crosscut by auriferous quartz vein.The wallrocks of the former altered strongly and developed alteration zones well.The wallrocks of auriferous quartz vein altered slightly.The results of tectonogeochemical study shows that the concentration of associated metallogenesis elements and intensity of alteration are positively correlated with tectonic deformation strength for auriferous alteration halos.It indicates that it is probably a general character for micro-mesothermal gold deposits due to the multistages of metallogeneses took place.The tectonic environment is the most important fact determining the mechanism of fluid flow and precipitation of gold,and then the types of mineralization and modes of gold.  相似文献   

16.
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been applied to determine the elemental composition of the surface layer, as well as of the first interior layer, of quartz grains from the mine tailings from Kristineberg (northern Sweden) in order to determine concentration gradients between these two layers. The quartz grains were collected from the oxidized and unoxidized zones within the tailings. The aim of this study is to assess the role of quartz surfaces as sites for the attenuation of solutes from the mine-tailings porewater. Concentrations of Cu, Ag, Sb, Pb and Bi are highest near the surface of each grain and decrease towards the interior. The surface concentration of Cu, Zn and Pb is more pronounced within the unoxidized than within the oxidized zone of the tailings. Cu exhibits a distinct concentration peak at the surface of the quartz grains below the pre-remediation oxidation front. For Zn and Ce the trend of high surface concentration is less pronounced than for Cu or Pb. Silver, Bi and As are preferably adsorbed within the uppermost layers of the oxidized zone where the pH is as high as 6.2. The conversion of intensity signals of the elements to concentration values in ppm was done by using external standards (NIST silicate glass).  相似文献   

17.
Major minerals (sulfates, sulfides, quartz) are distributed in different parts of submarine hydrothermal ore deposits. For instance, the abundance of barite increases stratigraphically upwards in the massive orebodies of the Kuroko deposits (black and yellow ores), while quartz is abundant in the lower parts (siliceous ore). The different distribution of barite and quartz in the Kuroko deposits can not be accounted for by thermochemical equilibrium calculations based on the precipitation due to mixing of ascending hydrothermal solutions with ambient cold seawater. In the present study, a coupled fluid flow‐precipitation kinetics model was used to calculate the amounts of quartz, barite, and anhydrite precipitated from a hydrothermal solution mixed with seawater, assuming reasonable values for temperature, precipitation rate, fluid flow velocity, mineral surface area/fluid mass ratio (A/M), and initial concentrations of hydrothermal solution and seawater before mixing occurred. The results indicate that barite precipitates more efficiently than quartz from discharging fluids with relatively higher flow velocity, lower temperatures and under the condition of lower A/M ratios on the seafloor (black ore), whereas quartz precipitates more effectively from solutions with lower flow velocity, higher temperatures and higher A/M ratios beneath the seafloor (siliceous ore) and in the orebody (barite ore, ferruginous chert ore). Anhydrite precipitates in shallow sub‐seafloor environments with lower precipitation rates and higher A/M ratios than barite and higher precipitation rates and lower A/M ratios than quartz. These results explain the observed occurrences of barite, anhydrite, and quartz in the Kuroko deposits. Namely, barite is abundant in black ore and barite ore which formed above the seafloor, anhydrite formed in high‐permeability tuff breccias, and quartz formed in low permeability dacite intrusive bodies in the sub‐seafloor environment.  相似文献   

18.
The Jinwozi lode gold deposit in the eastern Tianshan Mountains of China includes auriferous quartz veins and network quartz veins that are exemplified by the Veins 3 and 210, respectively. This paper presents H‐, O‐isotope compositions and gas compositions of fluid inclusions hosted in sulfides and quartz, and S‐, Pb‐isotope compositions of sulfide separates collected from the principal Stage 2 ores in Veins 3 and 210. Fluid inclusions trapped in quartz and sphalerite are pseudo‐secondary and primary. They were trapped from the fluids during the successive or alternate precipitation of quartz with sulfides. H‐ and O‐isotope compositions of fluid inclusion of three pyrite and one quartz separates from Vein 210 plot within the field of degassed melt, which is evidence for the incorporation of magmatic fluid as well with some possibility of contribution of metamorphic water to the hydrothermal system since the two datasets show a higher oxygen isotopic ratio than those of degassed melt. However, δD and δ18O values of fluid inclusions hosted in sulfides and quartz from Vein 3 are distinctly lower than those from Vein 210. In addition, salinities of fluid inclusion from Vein 3, approximately 3 to 6 wt% NaCl equivalent, are considerably lower than those from Vein 210, which are approximately 8 to 14 wt% NaCl equivalent. Ore‐forming fluids of Veins 3 and 210 have migrated through the relatively high and low levels in the imbricate‐thrust column where rock deformation is characterized by dilatancy or ductile–brittle transition, respectively. Therefore, the ore‐forming fluid of Vein 3 is interpreted to have mixed with greater amounts of meteoric‐derived groundwater than that of Vein 210. Fluid inclusions hosted in sulfides contain considerably higher abundances of gaseous species of CO2, N2, H2S, and so on, than those hosted in quartz. Many of these gaseous species exhibit linear correlations with H2O. These linear trends are interpreted in terms of mixing between magmatic fluid and groundwater. The relative enrichment of gaseous species in fluid inclusions hosted in sulfides, coupled with the banded ore structure, suggests that the magmatic fluid was involved with the ore‐forming fluid in pulsation. Lead isotope compositions of 21 pyrite and galena separates form a linear trend, suggesting mixing of metallic materials from diverse reservoirs. The δ34S values of pyrite and galena range from +5.6‰ to +7.9‰ and from +3.1‰ to +6.3‰, respectively, indicating sulfur of the Jinwozi deposit has been leached mainly from the granodiorite and partly from the Jinwozi Formation by the circulating ore‐forming fluid.  相似文献   

19.
梁金龙  孙晓明  徐莉  翟伟  汤倩  梁业恒 《地质学报》2006,80(12):1904-1910
单斜辉石中发育石英出溶体是UHP变质作用的典型矿物学标志之一,在世界上著名UHP变质地体中屡有发现。本文利用激光Raman光谱和电子探针分析在中国大陆科学钻探先导孔(CCSD-PP1)榴辉岩岩心的绿辉石中发现了大量石英(棒)出溶现象。通过与CCSD主孔榴辉岩各种赋存形式的绿辉石成分对比,发现含石英出溶体的绿辉石具有超硅特征,这是出溶现象发生的决定性因素之一。结合高压实验岩石学资料,提出在UHP变质的峰值期部分Si进入六次配位的Si-O八面体位置,压力降低这部分Si析出,形成石英出溶体的出溶机制。结合新的矿物学研究进展,认为绿辉石中出溶石英所标志的压力应远大于前人提出的2.5GPa,意味着苏鲁超高压变质带陆壳物质的俯冲深度要大于目前一般认为的80~120km范围。  相似文献   

20.
Samples of a natural amethyst, pulverized in air, and irradiated for gamma-ray doses from 0.14 to 70 kGy, have been investigated by powder electron paramagnetic resonance (EPR) spectroscopy from 90 to 294 K. The powder EPR spectra show that the surface Fe3+ species on the gamma-ray-irradiated quartz differ from its counterpart without irradiation in both the effective g value and the observed line shape, suggesting marked radiation effects. This suggestion is supported by quantitatively determined thermodynamic properties, magnetic susceptibility, relaxation times, and geometrical radius. In particular, the surface Fe3+ species on gamma-ray-irradiated quartz has larger Gibbs and activation energies than its non-irradiated counterpart, suggesting radiation-induced chemical reactions. The shorter phase-memory time (T m) but longer spin–lattice relaxation time (T 1) of the surface Fe3+ species on the gamma-ray-irradiated quartz than that without irradiation indicate stronger dipolar interactions in the former. Moreover, the calculated geometrical radius of the surface Fe3+ species on the gamma-ray-irradiated quartz is three orders of magnitude larger than that of its counterpart on the as-is sample. These results provide new insights into radiation-induced aerosol nucleation, with relevance to atmospheric cloud formation and global climate changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号