首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Variations in lake seepage were studied along a 130 m shoreline of Mirror Lake NH. Seepage was downward from the lake to groundwater; rates measured from 28 seepage meters varied from 0 to ?282 cm/d. Causes of this variation were investigated using electrical resistivity surveys and lakebed sediment characterization. Two‐dimensional (2D) resistivity surveys showed a transition in lakebed sediments from outwash to till that correlated with high‐ and low‐seepage zones, respectively. However, the 2D survey was not able to predict smaller scale variations within these facies. In the outwash, fast seepage was associated with permeability variations in a thin (2 cm) layer of sediments at the top of the lakebed. In the till, where seepage was slower than that in the outwash, a three‐dimensional resistivity survey mapped a point of high seepage associated with heterogeneity (lower resistivity and likely higher permeability). Points of focused flow across the sediment–water interface are difficult to detect and can transmit a large percentage of total exchange. Using a series of electrical resistivity geophysical methods in combination with hydrologic data to locate heterogeneities that affect seepage rates can help guide seepage meter placement. Improving our understanding of the causes and types of heterogeneity in lake seepage will provide better data for lake budgets and prediction of mass transfer of solutes or contaminants between lakes and groundwater.  相似文献   

2.
Seepage chambers have been used to characterize the flux of water across the water-sediment interface in a variety of settings. In this work, an electronic seepage chamber was developed specifically for long-term use in a large river where hydraulic gradient reversals occur frequently with river-stage variations. A bidirectional electronic flowmeter coupled with a seepage chamber was used to measure temporal changes in the magnitude and direction of water flux across the water-sediment interface over an 8-week period. The specific discharge measured from the seepage chamber compared favorably with measurements of vertical hydraulic gradient and previous specific discharge calculations. This, as well as other supporting data, demonstrates the effectiveness of the electronic seepage chamber to accurately quantify water flux in two directions over a multimonth period in this setting. The ability to conduct multimonth measurements of water flux at a subhourly frequency in a river system is a critical capability for a seepage chamber in a system where hydraulic gradients change on a daily and seasonal basis.  相似文献   

3.
Knowledge of groundwater seepage to and from lakes can be an important component of scientific investigations involving water and geochemical budgets. Measurements of groundwater seepage at Lake Anna, a man-made lake in central Virginia, show that inflow to the lake occurs even under dry summer conditions. Seepage rates were found to be correlated with the elevation of the near-shore water table, which responded rapidly to rainfall events in the fractured rock terrane in which Lake Anna is located. Seepage rates did not decline uniformly with distance offshore. This result contrasts with those for lakes underlain by relatively homogeneous porous media where measurements generally confirm the prediction that seepage rates drop off exponentially with distance from shore. The along shore variability of seepage rates in Lake Anna was related to a topographic index that is used to describe drainage from hillslopes. This suggests that seepage in impoundments such as Lake Anna may be strongly controlled by drainage pathways that pre-date the lake.  相似文献   

4.
Limited information exists on one of the mechanisms governing sediment input to streams: streambank erosion by ground water seepage. The objective of this research was to demonstrate the importance of streambank composition and stratigraphy in controlling seepage flow and to quantify correlation of seepage flow/erosion with precipitation, stream stage and soil pore water pressure. The streambank site was located in Northern Mississippi in the Goodwin Creek watershed. Soil samples from layers on the streambank face suggested less than an order of magnitude difference in vertical hydraulic conductivity (Ks) with depth, but differences between lateral Ks of a concretion layer and the vertical Ks of the underlying layers contributed to the propensity for lateral flow. Goodwin Creek seeps were not similar to other seeps reported in the literature, in that eroded sediment originated from layers underneath the primary seepage layer. Subsurface flow and sediment load, quantified using 50 cm wide collection pans, were dependent on the type of seep: intermittent low‐flow (LF) seeps (flow rates typically less than 0·05 L min?1), persistent high‐flow (HF) seeps (average flow rate of 0·39 L min?1) and buried seeps, which eroded unconsolidated bank material from previous bank failures. The timing of LF seeps correlated to river stage and precipitation. The HF seeps at Goodwin Creek began after rainfall events resulted in the adjacent streambank reaching near saturation (i.e. soil pore water pressures greater than ?5 kPa). Seep discharge from HF seeps reached a maximum of 1·0 L min?1 and sediment concentrations commonly approached 100 g L?1. Buried seeps were intermittent but exhibited the most significant erosion rates (738 g min?1) and sediment concentrations (989 g L?1). In cases where perched water table conditions exist and persistent HF seeps occur, seepage erosion and bank collapse of streambank sediment may be significant. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
We investigated submarine ground water discharge and salt water-fresh water interactions at two locations along the shoreline of the Upper Gulf of Thailand to evaluate mechanisms of water and material transport into the coastal zone. Our data set illustrates the value of using a combined approach consisting of automatic seepage meters to monitor flow rates while assessing the conductivity (salinity) of the subterranean fluids via remote resistivity measurements. Negative correlations between electric conductivities of fluids measured directly inside seepage meter chambers and the remotely assessed resistivities of subsurface pore water show that such measurements may evaluate the spatial distribution of flow rates as well as the subterranean water quality in the coastal zone. Combined seepage and resistivity measurements may thus provide a more complete understanding of coastal ground water dynamics.  相似文献   

6.
Water exchange between surface water and groundwater can modulate or generate ecologically important fluxes of solutes across the sediment‐water interface. Seepage meters can directly measure fluid flux, but mechanical resistance and surface water dynamics may lead to inaccurate measurements. Tank experiments were conducted to determine effects of mechanical resistance on measurement efficiency and occurrence of directional asymmetry that could lead to erroneous net flux measurements. Seepage meter efficiency was high (average of 93%) and consistent for inflow and outflow under steady flow conditions. Wave effects on seepage meter measurements were investigated in a wave flume. Seepage meter net flux measurements averaged 0.08 cm/h—greater than the expected net‐zero flux, but significantly less than theoretical wave‐driven unidirectional discharge or recharge. Calculations of unidirectional flux from pressure measurements (Darcy flux) and theory matched well for a ratio of wave length to water depth less than 5, but not when this ratio was greater. Both were higher than seepage meter measurements of unidirectional flux made with one‐way valves. Discharge averaged 23% greater than recharge in both seepage meter measurements and Darcy calculations of unidirectional flux. Removal of the collection bag reduced this net discharge. The presence of a seepage meter reduced the amplitude of pressure signals at the bed and resulted in a nearly uniform pressure distribution beneath the seepage meter. These results show that seepage meters may provide accurate measurements of both discharge and recharge under steady flow conditions and illustrate the potential measurement errors associated with dynamic wave environments.  相似文献   

7.
Self-potential (SP) and electrical resistivity measurements are used to investigate seepage at a remote moraine dam in the Sierra Nevada of California. The site is a small terminal moraine impounding roughly 300,000 m3 of water at ~ 3400 m a.s.l. Suspicious fine sediment in a small lake at the dam's downstream toe prompted initial concerns that anomalous seepage may be eroding matrix material from the moraine. 235 individual SP measurements covering the surface of the dam were collected in order to investigate electrokinetic current sources resulting from seepage, while resistivity soundings probed moraine stratigraphy and suggest that the till contains interstitial ice. Contoured SP data reveal a non-uniform voltage distribution over the moraine dam and two distinct negative SP anomalies. The first, located in the central area of the moraine, shows a broad negative SP zone around the crest and increasingly positive SP moving downhill towards both the upstream and downstream toes. This anomaly can be explained by shallow gravitational groundwater flow in the near subsurface combined with upward groundwater flux through evapotranspiration; numerical simulation of the combined effect matches field data well. The second SP anomaly has a tightly localized distribution and can be explained by vertically descending flow into a bedrock fault conduit. Our conceptual seepage model suggests that flow travels from Dana Lake first at the boundary of ice-filled moraine and bedrock before converging on a concentrated channel in the subvertical fault zone. Positive SP near the dam abutments results from groundwater inflow from adjacent hillslopes. Combined analyses suggest that seepage erosion is not currently affecting the moraine dam, and that the sediment observed on the bed of the downstream toe lake is likely a remnant of past outflow events.  相似文献   

8.
Deep seepage is a term in the hillslope and catchment water balance that is rarely measured and usually relegated to a residual in the water balance equation. While recent studies have begun to quantify this important component, we still lack understanding of how deep seepage varies from hillslope to catchment scales and how much uncertainty surrounds its quantification within the overall water balance. Here, we report on a hillslope water balance study from the H. J. Andrews Experimental Forest in Oregon aimed at quantifying the deep seepage component where we irrigated a 172‐m2 section of hillslope for 24·4 days at 3·6 ± 3 mm/h. The objective of this experiment was to close the water balance, identifying the relative partitioning of, and uncertainties around deep seepage and the other measured water balance components of evaporation, transpiration, lateral subsurface flow, bedrock return flow and fluxes into and out of soil profile storage. We then used this information to determine how the quantification of individual water balance components improves our understanding of key hillslope processes and how uncertainties in individual measurements propagate through the functional uses of the measurements into water balance components (i.e. meteorological measurements propagated through potential evapotranspiration estimates). Our results show that hillslope scale deep seepage composed of 27 ± 17% of applied water. During and immediately after the irrigation experiment, a significant amount of the irrigation water could not be accounted for. This amount decreased as the measurement time increased, declining from 28 ± 16% at the end of the irrigation to 20 ± 21% after 10 days drainage. This water is attributed to deep seepage at the catchment scale. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Evaluating the flow paths that contribute to solute flux in stream networks can lead to greater understanding of the linkages between biogeochemistry and hydrology. We compared the contributions of groundwater in spring brooks and in seepage through the streambed to nitrate flux in the Emmons Creek network in the Wisconsin sand plains. We predicted that spring brooks would contribute disproportionately to nitrate flux due to the presumed higher advection rates in springs and less opportunity for nitrate removal relative to seeps. Nitrate flux was measured in 15 spring brooks that entered Emmons Creek. Nitrate flux from seepage was measured at the locations of 30 piezometers, based on Darcy's Law, and by a reach‐scale injection of Rhodamine water tracing (RWT). When seepage discharge was estimated from the RWT release, groundwater inputs from seepage and springs accounted for the discharge gain in the Emmons Creek channel. Springs brooks and seepage (based on the RWT release) contributed 37% and 63%, respectively, to nitrate flux inputs in the study reach. Contrary to our prediction, seeps contributed disproportionately to nitrate flux relative to their discharge. Relatively high rates of seepage discharge and higher than anticipated nitrate concentrations in the shallow pore water at seepage locations contributed to the unanticipated result.  相似文献   

10.
Small‐scale heterogeneities and large changes in hydraulic gradient over short distances can create preferential groundwater flow paths that discharge to lakes. A 170 m2 grid within an area of springs and seeps along the shore of Shingobee Lake, Minnesota, was intensively instrumented to characterize groundwater‐lake interaction within underlying organic‐rich soil and sandy glacial sediments. Seepage meters in the lake and piezometer nests, installed at depths of 0·5 and 1·0 m below the ground surface and lakebed, were used to estimate groundwater flow. Statistical analysis of hydraulic conductivity estimated from slug tests indicated a range from 21 to 4·8 × 10?3 m day?1 and small spatial correlation. Although hydraulic gradients are overall upward and toward the lake, surface water that flows onto an area about 2 m onshore results in downward flow and localized recharge. Most flow occurred within 3 m of the shore through more permeable pathways. Seepage meter and Darcy law estimates of groundwater discharge agreed well within error limits. In the small area examined, discharge decreases irregularly with distance into the lake, indicating that sediment heterogeneity plays an important role in the distribution of groundwater discharge. Temperature gradients showed some relationship to discharge, but neither temperature profiles nor specific electrical conductance could provide a more convenient method to map groundwater–lake interaction. These results suggest that site‐specific data may be needed to evaluate local water budget and to protect the water quality and quantity of discharge‐dominated lakes. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
Errors with small volume elastic seepage meter bags   总被引:2,自引:1,他引:1  
The use of small volume elastic collection bags (condoms) has become popular in seepage meter studies in recent years, despite minimal field or laboratory validation of their use and, specifically, the impact of their elasticity on seepage measurements. A laboratory study was initiated after field results using small elastic collection bags produced seepage data that did not correlate with hydrometric data. The laboratory data demonstrate that condoms undergo significant mechanical relaxation during seepage measurement times typically observed in field settings. Unlike conventional nonelastic collection bags, which mechanically relax over several minutes, the condoms suffered from a slow mechanical relaxation or equilibration. Over nine hours, condoms gained 43 mL of water, approximately 50% of maximum workable volume (between mechanical relaxation effect and elastic limit), under stagnant flow conditions. This long-term equilibration invalidates simple subtraction of equilibration volumes from collection volumes as a correction technique. Previously published studies using flexible small-volume elastic measurement bags (condoms) have not reported a mechanical relaxation effect. Overall, because the condom's small workable volume and inherent variability, we would not recommend any small-volume elastic measurement bags for quantitative seepage measurements.  相似文献   

12.
Chemical and isotopic analysis of karst water dripping over a one year period from seeps in a cave above the Cenomanian aquifer in the Judea hills of Israel lead to several conclusions: (i) The tritium ages and the chemical composition of water from different seeps in a karstic cave vary greatly, (ii) The reservoirs in the upper part of the vadose zone hold water for up to several decades, (iii) Some of the cave seeps are mixtures of the old and more recent meteoric water from paths of different length, (iv) The history of storm events can only be traced in some of the seeps, (v) For most dripping seeps there is no immediate response of seepage discharge to the rainfall intensity and quantity—i.e. the seepage discharge is fairly constant.  相似文献   

13.
Ground water discharge is often a significant factor in the quality of fish spawning and rearing habitat and for highly biologically productive streams. In the present study, water temperatures (stream and hyporheic) and seepage fluxes were used to characterize shallow ground water discharge and recharge within thestreambed of Catamaran Brook, a small Atlantic salmon (Salmo salar) stream in central New Brunswick, Canada. Three study sites were instrumented using a total of 10 temperature sensors and 18 seepage meters. Highly variable mean seepage fluxes, ranging from 1.7 x 10(-4) to 2.5 cm3 m(-2) sec(-1), and mean hyporheic water temperatures, ranging from 10.5 degrees to 18.0 degrees C, at depths of 20 to 30 cm in the streambed were dependent on streambed location (left versus right stream bank and site location) and time during the summer sampling season. Temperature data were usefulfor determining if an area of the streambed was under discharge (positive flux), recharge (negative flux), or parallel flow (no flux) conditions and seepage meters were used to directly measure the quantity of water flux. Hyporheic water temperature measurements and specific conductance measurements of the seepage meter sample water, mean values ranging from 68.8 to 157.9 microS/cm, provided additional data for determining flux sources. Three stream banks were consistently under discharge conditions, while the other three stream banks showed reversal from discharge to recharge conditions over the sampling season. Results indicate that the majority of the water collected in the seepage meters was composed of surface water. The data obtained suggests that even though a positive seepage flux is often interpreted as ground water discharge, this discharging water may be of stream water origin that has recently entered the hyporheic zone.The measurement of seepage flux in conjunction with hyporheic water temperature or other indicators of water origin should be considered when attempting to quantify the magnitude of exchange and the source of hyporheic water.  相似文献   

14.
Potentiomanometers (PMs) are commonly used to determine flux directions across interfaces between surface waters and aquifers. We describe a complementary function: estimating small‐scale hydraulic conductivity (K) in a lakebed, using the constant‐head injection test (CHIT) by Cardenas and Zlotnik (2003) with the PM designed by Winter et al. (1988). A piezometer with a small screen is inserted into the lakebed. Local head potential is obtained by measuring the head difference between the test point and the aquifer interface. The piezometer is then used for water injection. This technique is illustrated by measurements taken from Alkali Lake in the Sand Hills, Nebraska, United States. Lakebed K and seepage fluxes ranged from 0.037 to 0.090 m/d and Darcy velocities ranged from 0.004 to 0.027 m/d. Results were consistent with the supplementary data gathered using a modified CHIT and a cone penetrometer. The compact size of the device and the small volumes used for injection enable this method to estimate lakebed K values as low as 0.01 to 0.1 m/d, a range seldom explored in lake‐aquifer interface systems.  相似文献   

15.
Fluxes of submarine groundwater discharge (SGD) were investigated into two tidal rivers on the north and south shore of Long Island, NY, during July 2015. Ground‐based handheld thermal infrared (TIR) imagery, combined with direct push‐point piezometer sampling, documented spatially heterogeneous small‐scale intertidal seepage zones. Pore waters were relatively fresh and enriched in nitrogen (N) within these small‐scale seeps. Pore waters sampled just 20 cm away, outside the boundary of the ground‐based TIR‐located seepage zone, were more saline and lower in N. These ground‐based TIR‐identified seeps geochemically represented the terrestrial fresh groundwater endmember, whereas N in pore waters sampled outside of the TIR‐identified seeps was derived from the remineralization of organic matter introduced into the sediment by tidal seawater infiltration. A 222Rn (radon‐222) time‐series was used to quantify fresh SGD‐associated N fluxes using the N endmembers sampled from the ground‐based TIR pore water profiles. N fluxes were up‐scaled to groundwater seepage zones identified from high‐resolution airborne TIR imagery using the two‐dimensional size of the airborne TIR surface water anomalies, relative to the N flux from the time‐series sampling location. Results suggest that the N load from the north‐shore tidal river to Long Island Sound is underrepresented by at least 1.6–3.6%, whereas the N load from SGD to a south‐shore tidal river may be up to 9% higher than previous estimates. These results demonstrate the importance of SGD in supplying nutrients to the lower reaches of tidal rivers and suggest that N loads in other tidal river environments may be underestimated if SGD is not accounted for.  相似文献   

16.
MODFLOW is one of the most popular groundwater simulation tools available; however, the development of lake modules that can be coupled with MODFLOW is lacking apart from the LAK3 package. This study proposes a new approach for simulating lake - groundwater interaction under steady-state flow, referred to as the sloping lakebed method (SLM). In this new approach, discretization of the lakebed in the vertical direction is independent of the spatial discretization of the aquifer system, which can potentially solve the problem that the lake and groundwater are usually simulated at different scales. The lakebed is generalized by a slant at the bottom of each lake grid cell, which can be classified as fully submerged, dry, and partly submerged. The SLM method accounts for all lake sources and sinks, establishing a governing equation that can be solved using Newton's method. A benchmarking case study was conducted using a modified model setup in the LAK3 user manual. It was found that when there is a sufficient number of layers at the top of the groundwater model, SLM simulates an almost identical groundwater head as the LAK3-based model; when the number of layers decreases, SLM is unaffected while LAK3 may be at a risk of giving unrealistic results. Additionally, the SLM can reflect the relationship between the simulated lake surface area and lake water depth more accurately. Therefore, the SLM method is a promising alternative to the LAK3 package when simulating lake - groundwater interaction.  相似文献   

17.
Quantifying groundwater flow at seepage faces is crucial because seepage faces influence the hydroecology and water budgets of watersheds, lakes, rivers and oceans, and because measuring groundwater fluxes directly in aquifers is extremely difficult. Seepage faces provide a direct and measurable groundwater flux but there is no existing method to quantitatively image groundwater processes at this boundary. Our objective is to determine the possibilities and limitations of thermal imagery in quantifying groundwater discharge from discrete seeps. We developed a conceptual model of temperature below discrete seeps, observed 20 seeps spectacularly exposed in three dimensions at an unused limestone quarry and conducted field experiments to examine the role of diurnal changes and rock face heterogeneity on thermal imagery. The conceptual model suggests that convective air‐water heat exchange driven by temperature differences is the dominant heat transfer mechanism. Thermal imagery is effective at locating and characterizing the flux of groundwater seeps. Areas of active groundwater flow and ice growth can be identified from thermal images in the winter, and seepage rates can be differentiated in the summer. However, the application of thermal imagery is limited by diverse factors including technical issues of image acquisition, diurnal changes in radiation and temperature, and rock face heterogeneity. Groundwater discharge rates could not be directly quantified from thermal imagery using our observations but our conceptual model and experiments suggest that thermal imagery could quantify groundwater discharge when there are large temperature differences, simple cliff faces, non‐freezing conditions, and no solar radiation.  相似文献   

18.
Seepage rate and direction measured with a seepage metre modified for use in flowing water were greatly variable along a 300‐m reach of a shallow, gravel‐bed river and depended primarily on the local‐scale bed topography. The median value of seepage measured at 24 locations was 24 cm/day, but seepage measured at specific sites ranged from ?340 to +237 cm/day. Seepage also varied substantially over periods of hours to days and occasionally reversed direction in response to evolution of the sediment bed. Vertical hydraulic conductivity was related to seepage direction and was larger during upward seepage than during downward seepage; with differences ranging from 4 to 40% in areas of active sediment transport to more than an order of magnitude in areas where current was too slow to mobilize bed sediment. Seepage was poorly related to hydraulic gradient measured over vertical distances of 0·3 m and appeared to be opposite the hydraulic gradient at 18% of the locations where both parameters were measured. Results demonstrate the scale dependence of these measurements in coarse‐grained hyporheic settings and indicate that hydraulic gradients should be determined over a much shorter vertical increment if used to indicate exchange across the sediment–water interface. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

19.
20.
2007年西昌和天祝地电场观测台阵建立, 随后两年西昌台阵地电场的TGF-A波形明显, 天祝台阵则以TGF-B波形出现. 台阵内各台站间地电场相关性高, 这受地电场潮汐机理的支持; 不同台站或同一台站的不同方向地电场潮汐波峰谷值差异明显, 地电场潮汐机理和场地水文地质资料表明, 这主要与岩石、 裂隙度、 裂隙优势走向、 含水度、 透水率、 水矿化度和裂隙水压力差等因素相关. 潮汐电信号形成于裂隙水或水中电荷周期性移动, 电荷被岩壁吸附或脱离产生噪声, 该信噪比在同一台阵内基本相同, 信噪比值与潮汐电信号产生过程和场地电磁背景关系密切. 应用地电场潮汐谐波振幅计算裂隙水主体渗流方向, 结果与应用潮汐波峰谷值法基本一致, 这消除了峰谷值法取值的偶然误差. 2008年汶川MS8.0地震前, 两台阵内都存在场地裂隙水主体渗流方向的短临变异现象, 西昌台阵这种变异更明显.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号