首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fatigue analysis of the taut-wire mooring system applied for deep waters   总被引:1,自引:0,他引:1  
Precisely predicting the fatigue life of taut-wire mooring systems has become an interesting and important problem for scientists and engineers since there are still difficulties in the inspection and maintenance of mooring lines in a rough sea environment especially in deep waters. In this paper, a comprehensive fatigue analysis is performed for a polyester taut-wire mooring system of an FPSO based on the time domain dynamic theory, rainflow cycle counting method and linear damage accumulation rule of Palmgren-Miner. Three influential factors in the fatigue analysis including the pre-tension, dynamic stiffness and T-N curve are investigated in detail. Two polyester T-N curves, one is from the DNV- OS-E301 and the other is from the API-RP-2SM, are adopted in the calculation. The fatigue analysis of the mooring system after one-line failure is also carried out. The calculation results indicate that the fatigue life is significantly affected by the T-N curve. The fatigue life decreases with increasing pre-tension, and is largely reduced if taking into account the dynamic stiffness caused by cyclic loading. The analysis also proves that one-line failure has remarkable effects on the fatigue lives of other mooring lines. The present parametric and comparative study is believed to be meaningful to further understanding of the taut-wire mooring system for deepwater applications.  相似文献   

2.
软刚臂系泊系统水平恢复力特性数值预报   总被引:1,自引:1,他引:0  
建立软刚臂系泊系统的理论模型以及6自由度静恢复力特性计算分析的数学模型,模拟实际几何关系与力学作用机制。提出基于误差判断的变步长迭代搜索的数值逼近求解方法,以QHD32-6 FPSO软刚臂系泊系统的纵向和横向水平恢复力特性为例进行数值预报,并与国外设计公司计算结果以及模型试验结果进行比较分析。对比显示,该模型的数值计算结果符合良好,而且迭代计算次数少、收敛快、误差小,可用于海上软刚臂系泊系统静恢复力特性的预报。  相似文献   

3.
Freak wave is the common wave which has significant wave height and irregular wave shape, and it is easy to damage offshore structure extremely. The FPSOs (Floating Production Storage and Offloading) suffer from the environment loads, including the freak wave. The freak waves were generated based on the improved phase modulation model, and the coupling model of FPSO-SPM (Single Point Mooring) was established by considering internal-turret FPSO and its mooring system. The dynamic response characteristics of both FPSO and SPM affected by the freak wave were analyzed in the time domain. According to the results, the freak waves generated by original phase modulation model mainly affect the 2nd-order wave loads. However, the freak waves which are generated by random frequencies phase modulation model affect both 1st-order and 2nd-order wave loads on FPSO. What is more, compared with the irregular waves, the dynamic responses of mooring system are larger in the freak waves, but its amplitude lags behind the peak of the freak wave.  相似文献   

4.
An energy-controlling technique to actively manage the reflective property of waves from solid boundary is presented. As linear waves propagate through an energy-controlling area, a reduction in wave heights occurs due to energy dissipation, which can be placed under direct control through the imaginary part of the wavenumber and phase velocity. Based on this relationship, the present study investigates a new method to control reflected waves with desired heights in the mild slope equation model. The method is validated through numerical tests for various reflection coefficients and the results confirm the promising use of energy-controlling boundary condition for partial wave reflections.  相似文献   

5.
An inconvenience in the experimental set-up of a FPSO in regular waves highlighted occurrence of parametric-roll events promoted by yaw-roll coupling and motivated a combined physical and numerical analysis on the relevance of this phenomenon on the roll resonance, as well as on the water shipping. The model tests examine the ship in head- and bow-sea waves in the zone of the first parametric resonance. Numerically, it is adopted a 3D Domain-Decomposition (DD) strategy combining a weakly-nonlinear potential-flow solver based on the weak-scatterer theory with a shallow-water approximation for the shipped liquid and with a bottom-slamming solution. Detailed comparisons against these and other seakeeping experiments validated the numerical method in its different aspects with global success.At first, a 2-dof equivalent linearized yaw-roll coupled system is examined and the measurements are used to estimate hydrodynamic coefficients required to complete the mathematical model of the problem. Then the DD method is applied to verify the instability occurrence and compared against the experiments. From the analysis, the parametric-roll instability does not occur if all nonlinearities in the roll restoring load are not accounted for. However the amplitude of the resonant roll is affected by the coupling with the other degrees of freedom. Especially the coupling with yaw tends to increase the steady-state roll amplitude. It also affects the water shipping with the trend in reducing its severity for the vessel, this is opposite to the influence of the parametric roll in head-sea waves on the water on deck, as documented in Greco et al. (2014) [4].  相似文献   

6.
水深对超大型FPSO波浪载荷响应影响试验研究   总被引:8,自引:3,他引:5  
随着超大型浮式生产储卸油装置FPSO(floating production storing and offloading)在渤海浅水海域的广泛应用,水深对FP—SO波浪载荷响应的影响问题突现出来。对缩尺比为1:100的三模块分节模型进行了水深对超大型FPSO波浪载荷响应影响的试验研究,试验结果表明水深对FPSO波浪诱导载荷的影响很大。  相似文献   

7.
8.
Design of an offshore wind turbine requires estimation of loads on its rotor, tower and supporting structure. These loads are obtained by time-domain simulations of the coupled aero-servo-hydro-elastic model of the wind turbine. Accuracy of predicted loads depends on assumptions made in the simulation models employed, both for the turbine and for the input wind and wave conditions. Currently, waves are simulated using a linear irregular wave theory that is not appropriate for nonlinear waves, which are even more pronounced in shallow water depths where wind farms are typically sited. The present study investigates the use of irregular nonlinear (second-order) waves for estimating loads on the support structure (monopile) of an offshore wind turbine. We present the theory for the irregular nonlinear model and incorporate it in the commonly used wind turbine simulation software, FAST, which had been developed by National Renewable Energy Laboratory (NREL), but which had the modeling capability only for irregular linear waves. We use an efficient algorithm for computation of nonlinear wave elevation and kinematics, so that a large number of time-domain simulations, which are required for prediction of long-term loads using statistical extrapolation, can easily be performed. To illustrate the influence of the alternative wave models, we compute loads at the base of the monopile of the NREL 5MW baseline wind turbine model using linear and nonlinear irregular wave models. We show that for a given environmental condition (i.e., the mean wind speed and the significant wave height), extreme loads are larger when computed using the nonlinear wave model. We finally compute long-term loads, which are required for a design load case according to the International Electrotechnical Commission guidelines, using the inverse first-order reliability method. We discuss a convergence criteria that may be used to predict accurate 20-year loads and discuss wind versus wave dominance in the load prediction. We show that 20-year long-term loads can be significantly higher when the nonlinear wave model is used.  相似文献   

9.
In order to predict the roll motion of a floating structure in irregular waves accurately, it is crucial to estimate the unknown damping coefficients and restoring moment coefficients in the nonlinear roll motion equation. In this paper, a parameter identification method based on a combination of random decrement technique and support vector regression (SVR) is proposed to identify the coefficients in the roll motion equation of a floating structure by using the measured roll response in irregular waves. Case studies based on the simulation data and model test data respectively are designed to validate the applicability and validity of the identification method. Firstly, the roll motion of a vessel is simulated by using the known coefficients from literature, and the simulated data are used to identify the coefficients in the roll motion equation. The identified coefficients are compared with the known values to validate the applicability of the identification method. Then the roll motion is predicted by using the identified coefficients. The prediction results are compared with the simulated data, and good agreement is achieved. Secondly, the model test data of a FPSO are used to identify the coefficients in the roll motion equation. Then the random decrement signature of the roll motion is predicted by using the identified coefficients and compared with that obtained from the model test data, and satisfactory agreement is achieved. From this study, it is shown that the identification method can be effectively applied to identify the coefficients in the nonlinear roll motion equation in irregular waves.  相似文献   

10.
A numerical model for wave propagation in a harbour is verified by use of physical models.The extended time-dependent mild slope equation is employed as the governing equation,and the model is solved by use of ADI method containing the relaxation factor.Firstly,the reflection coefficient of waves in front of rubble-mound breakwaters under oblique incident waves is determined through physical model tests,and it is regarded as the basis for simulating partial reflection boundaries of the numerical model.Then model tests on refraction,diffraction and reflection of waves in a harbour are performed to measure wave height distribution.Comparative results between physical and numerical model tests show that the present numerical model can satisfactorily simulate the propagation of regular and irregular waves in a harbour with complex topography and boundary conditions.  相似文献   

11.
As one of the key safety problems, the motion performance and touching sea bottom of a FPSO are paid much attention by the ocean oil companies when the FPSO is exposed to survival storms in the shallow-water working areas. In this paper, timedomain numerical simulations are carried out on a 160 kDWT FPSO with a Yoke mooring system moored in the BZ25-1 oilfield with a water depth of 16.7m. The results are compared with those of the corresponding model tests. Good agreement shows that the time-domain simulations can be used to predict the performance of the FPSO in shallow-water reasonably. It is found that the touch of seabed by a fully loaded FPSO occurred few times under survival storm conditions. Therefore, the FPSO should be less loaded than that in the fully loaded condition under the survival storms.  相似文献   

12.
渤海油田浅水软刚臂系泊FPSO触底分析   总被引:9,自引:3,他引:6  
在线性三维势流理论的基础上,采用时域计算方法对BZ25—1油田16万吨级FPSO不同吃水条件下的碰底情况作了分析研究。数值计算结果与模型试验进行了比较,两者吻合较好,说明应用时域计算方法可以从理论上预报FPSO在浅水中的触底情况。这对我国渤海等浅水海域油田应用FPSO系统进行开发具有一定的意义。  相似文献   

13.
During the useful life of a vessel it undergoes various changes that lead to uncertainties in determining the displacement and center of gravity. Besides upgrading work, the very operation of the platform itself involving constant ballast and oil loading and unloading or the use of maintenance equipment can generates uncertainties concerning the displacement and center of gravity. These, therefore, are the parameters that present uncertainties inherent to the vessel's operations. Taking this into account, one example of the application of uncertainties on the displacement and transversal and vertical center of gravity positions will be presented in the analysis of the static stability of a converted FPSO tanker. Another question raised in this work is the deterministic treatment of certain criteria for the parameters that depend on random factors, such as wind, currents and waves. This paper will present a probabilistic approach for the calculation of the roll angle according to resolution IMO A.562 (environment criteria). The two chosen criteria for this analysis were resolutions IMO A.167 (general criteria) and A.562 (weather criterion).  相似文献   

14.
This paper aims to investigate the basic interaction characteristics of side-by-side moored vessels both numerically and experimentally. A higher-order boundary element method (HOBEM) combined with generalized mode approach is applied to analysis of motion and drift force of side-by-side moored multiple vessels (LNG FPSO, LNGC and shuttle tankers). Model tests were carried out for the same floating bodies investigated in the numerical study in regular and irregular waves. Global and local motion responses and drift forces of three vessels are compared with those of calculations. Discussions is highlighted on applicability of numerical method to prediction of sophisticated multi-body interaction problem of which motion behavior is very important to analysis of mooring dynamics of deep sea floating bodies.  相似文献   

15.
港域波浪数学模型的改进与验证   总被引:2,自引:0,他引:2  
通过物理模型对改进的港内波浪传播变形数学模型进行验证。该数学模型以推广的时变缓坡方程为控制方程,采用含松弛因子的ADI法求解,并对波浪反射和透射边界模拟方法进行改进。先通过物理模型试验确定斜向浪入射条件下抛石防波堤前的波浪反射系数,作为数学模型中部分反射边界模拟的依据。然后进行了一个典型港口内波浪折射、绕射和反射的模型试验,测量港内波浪分布。对比模型试验和数学模型计算的结果表明,数学模型可较好地模拟港内复杂地形和边界条件下规则波和不规则波的传播变形。  相似文献   

16.
A computer program is developed for hull/mooring/riser coupled dynamic analysis of a tanker-based turret-moored FPSO (Floating Production Storage and Offloading) in waves, winds, and currents. In this computer program, the floating body is modeled as a rigid body with six degrees of freedom. The first- and second-order wave forces, added mass, and radiation damping at various yaw angles are calculated from the second-order diffraction/radiation panel program WAMIT. The wind and current forces for various yaw angles of FPSO are modeled following the empirical method suggested by OCIMF (Oil Company International Marine Forum).

The mooring/riser dynamics are modeled using a rod theory and finite element method (FEM), with the governing equations described in a generalized coordinate system. The dynamics of hull, mooring lines, and risers are solved simultaneously at each time step in a combined matrix for the specified connection condition. For illustration, semi-taut chain-steel wire-chain mooring lines and steel catenary risers are employed and their effects on global FPSO hull motions are investigated. To better understand the physics related to the motion characteristics of a turret-moored FPSO, the role of various hydrodynamic contributions is analyzed and assessed including the effects of hull and mooring/riser viscous damping, second-order difference-frequency wave-force quadratic transfer functions, and yaw-angle dependent wave forces and hydrodynamic coefficients. To see the effects of hull and mooring/riser coupling and mooring/riser damping more clearly, the case with no drag forces on those slender members is also investigated. The numerical results are compared with MARIN's wave basin experiments.  相似文献   


17.
目前,由于串靠外输方式具有对船舶吨位差异及装载状况要求小、海况适应力强、系泊力小、解脱迅速等优点,而被广泛运用于浮式生产储卸油平台(FPSO)外输作业中。串靠提油作业时,位于穿梭油轮尾部的拖轮能够提供的最大有效拖力直接影响到了作业的安全性。为完善串靠提油作业时所需拖轮拖力的研究,提出更加合理的拖轮选型理论依据,就需要对拖力进行数值计算。首先,对FPSO与穿梭油轮串靠外输系统绕系泊单点旋转时所受风、浪、流等环境载荷进行全面考虑,建立了准动态受力平衡模型;然后,运用经验公式及AQWA软件计算出环境载荷大小,并依据计算结果拟合出环境载荷曲线;最后,配合受力平衡方程求解出能够保障作业安全进行所需的最小拖力。依照此方法计算所得拖力选取的拖轮能够兼顾作业安全性和使用经济性。  相似文献   

18.
Hydrodynamic modeling of perforated structures   总被引:2,自引:0,他引:2  
A hydrodynamic model of perforated or slotted structures is proposed. It is asymptotic in the sense that the openings are supposed to be infinitely small and numerous, and the wall thickness to be nil. At variance with other work, a quadratic, not linear, law, relating the pressure differential to the traversing velocity, is assumed. As a result the hydrodynamic coefficients (added mass and damping) become amplitude dependent. The model is applied to bodies of various shapes including cylinders, plates and disks, in forced motion or submitted to incoming waves. Good agreement with experimental data is generally observed.  相似文献   

19.
On the basis of the previous studies, the simplest hyperbolic mild-slope equation has been gained and the linear time-dependent numerical model for the water wave propagation has been established combined with different boundary conditions. Through computing the effective surface displacement and transforming into the real transient wave motion, related wave factors will be calculated. Compared with Lin’s model, analysis shows that calculation stability of the present model is enhanced efficiently, because the truncation errors of this model are only contributed by the dissipation terms, but those of Lin’s model are induced by the convection terms, dissipation terms and source terms. The tests show that the present model succeeds the merit in Lin’s model and the computational program is simpler, the computational time is shorter, and the computational stability is enhanced efficiently. The present model has the capability of simulating transient wave motion by correctly predicting at the speed of wave propagation, which is important for the real-time forecast of the arrival time of surface waves generated in the deep sea. The model is validated against analytical solution for wave diffraction and experimental data for combined wave refraction and diffraction over a submerged elliptic shoal on a slope. Good agreements are obtained. The model can be applied to the theory research an d engineering applications about the wave propagation in a biggish area.  相似文献   

20.
Shallow Water Effects on Surge Motion and Load of Soft Yoke Moored FPSO   总被引:2,自引:0,他引:2  
Much attention should be paid to a large FPSO moored permanently in an oil field with water depth of only about 20 m, since shallow water effects on the hydrodynamics may bring about collision and damage. A 160kDWT FPSO with a permanent soft yoke mooring system is investigated with various shallow water depths and focuses are the low frequency surge motion and mooring load. Computation for the FPSO system is made based on linear 3-D potential fluid theory and time-domain numerical simulation method. Corresponding model test is carried out in the ocean engineering basin of Shanghai Jiao Tong University. It is shown that, in the surge natural period, low frequency surge motion and mooring force increase remarkably with the decrease of water depth. Especially, the smaller the ratio of water depth and draught is, the quicker the increase is. The shallow water effects should be taken into account carefully for determining the design load of a single point mooring system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号