首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new formula has been derived for geopotential expressed in terms of orbital elements. The summation sequence was changed so that the terms of the same frequencies would be grouped and the generalized lumped coefficients were derived. The proposed formula has the same form for both odd and evenl-m.Applying Hori's perturbation method, new formulae were derived for tesseral harmonic perturbations in nonsingular orbital elements:l+g, h, e cosg,e sing, L, andH. We show the possibility of effective application of the derived formulae to the calculation of orbits of very low satellites taking into account the coefficients of tesseral harmonics of the Earth's gravitational field up to high orders and degrees. As an example the perturbations up to the order and degree of 90 for the orbit of GRM satellites were calculated. The calculations were carried out on an IBM AT personal computer.  相似文献   

2.
The equations of motion of an artificial satellite are given in nonsingular variables. Any term in the geopotential is considered as well as luni-solar perturbations up to an arbitrary power ofr/r, r being the geocentric distance of the disturbing body. Resonances with tesseral harmonics and with the Moon or Sun are also considered. By neglecting the shadow effect, the disturbing function for solar radiation is also developed in nonsingular variables for the long periodic perturbations. Formulas are developed for implementation of the theory in actual computations.  相似文献   

3.
Cosmological models are investigated within the framework of the bimetric theory of gravitation with a Lagrangian that is quadratic with respect to intensities g ik|l . It is shown that the theory predicts not only singular but also nonsingular solutions.  相似文献   

4.
In this paper, an algorithm is constructed for the determination of the perturbed motion, in both, the rectangular and the orbital elements of highly eccentric orbits in Earth's gravitational field with axial symmetry whatever the number N of the zonal harmonic coefficients may be. An application of the algorithm for the Explorer 28 satellite (e > 0.94) is given for two geopotential models corresponding to N = 2 and N = 36. In both examples extremely accurate predictions during the satellite life time are obtained.  相似文献   

5.
Altimetric measurements of the GEOSAT satellite were used for the determination of geopotential scale factorR 0. The geopotential valueW 0 on the geoid surface was then computed (W 0 =GM/R 0).The GEOSAT Geophysical Data Records (GDR's) covering an initial period of the Exact Repeat Mission (ERM) were filtered and processed. The necessary corrections were made in order to allow a precise detection of the sea surface. Gravitational geopotential, rotation and permanent tides were taken into account and the equipotential surface which is the best approximation of the sea surface was found.The determination of the potential valueW 0 on the mean geoid surface in this way is very promising. An associated value withW 0 - the geopotential scale factorR 0 - seems to be a very good Earth dimension defining quantity. Moreover, there are many possible applications ofW 0 (R 0) in modern geophysics.The incorporation of one of these parameters - we now recommendR 0 - into the set of the Primary Geodetic Parameters (PGP) is discussed and suggested.  相似文献   

6.
Geodetic satellites have been providing the low frequency part of the geopotential models used for precise orbit determination purposes (e.g. JGM3, EGM96, …). Nevertheless they can be used to estimate the temporal variation of selected coefficients, helping to clarify the complex interrelations in the earth-ocean-atmosphere system. In this paper we present the two years long analysis of SLR data from the seven available geodetic satellites (Lageos I–II, Stella, Starlette, Ajisai, Etalon I–II) to recover monthly estimates of low degree geopotential coefficients; the results are obtained analysing the satellites separately and in proper combination. An accurate modelling of the satellite orbits is required in order to separate the geopotential coefficients: we assume as a priori geopotential the JGM3 model together with its associated tides and we take care of non-gravitational effects on the satellites by means of proper empirical estimated accelerations. The time series of the estimated coefficients (J2, J3, J4, J5) are inspected to detect the sub-annual perturbations related to seasonal variation of mass distribution. Huge residual seasonal signals in the orbit of Stella indicate a strong model deficiency related to the Sun's influence on the environment. The remaining six satellites are homogeneously modelled and build up a three cycles per year oscillation on J2 and a seasonal oscillation (1 year and six month periods) revealed on the J4. The origin and possible causes of these signals are further discussed in the text. We also present a preliminary estimate, using twelve years of Lageos-I and Lageos-II observations, that is compared with previous obtained values.  相似文献   

7.

Second-order derivatives of the Earth’s potential in a local north-oriented coordinate system are expanded in series of modified spherical harmonics. Linear relations are derived between the spectral coefficients of these series and the spectrum of the geopotential. Based on these relations, recurrent procedures are developed for estimating the geopotential coefficients from the spectrum of each derivative and, conversely, for simulating the spectrum from a known geopotential model. The very simple structure of the expressions for the derivatives is convenient for estimating the coefficients of the geopotential by the least squares method at a certain step of processing satellite gradiometry data. Since the new series are orthogonal, the method with a quadrature formula can be applied, which helps avoid aliasing errors caused by the truncation of the series. The spectral coefficients of the derivatives are estimated using the derived relations for different models on an average orbital sphere of the GOCE satellite and at other altitudes above the Earth’s surface.

  相似文献   

8.
A new nonsingular analytical theory for the motion of near Earth satellite orbits with the air drag effect is developed for long term motion in terms of the KS uniformly regular canonical elements by a series expansion method, by assuming the atmosphere to be symmetrically spherical with constant density scale height. The series expansions include up to third order terms in eccentricity. Only two of the nine equations are solved analytically to compute the state vector and change in energy at the end of each revolution, due to symmetry in the equations of motion. Numerical comparisons of the important orbital parameters semi major axis and eccentricity up to 1000 revolutions, obtained with the present solution, with KS elements analytical solution and Cook, King-Hele and Walker's theory with respect to the numerically integrated values, show the superiority of the present solution over the other two theories over a wide range of eccentricity, perigee height and inclination.  相似文献   

9.
An error analysis of resonant orbits for geodesy indicates that attempts to use resonance to recover high order geopotential coefficients may be seriously hampered by errors in the geopotential. This effect, plus the very high correlations (up to .99) of the resonant coefficients with each other and the orbital period in single satellite solutions, makesindividual resonant orbits of limited value for geodesy. Multiple-satellite, single-plane solutions are only a slight improvement over the single satellite case. Accurate determination of high order coefficients from low altitude resonant satellites requires multiple orbit planes and small drift-periods to reduce correlations and effects of errors of non-resonant geopotential terms. Also, the effects of gravity model errors on low-altitude resonant satellites make the use of tracking arcs exceeding two to three weeks of doubtful validity. Because high-altitude resonant orbits are less affected by non-resonant terms in the geopotential, much longer tracking arcs can be used for them.  相似文献   

10.
In this paper, a motion prediction algorithm based on the KS regular elements is developed for the motion in the Earth's gravitational field with axial symmetry. The algorithm is of recursive nature and general in the sense that it could be applied for any conic motion whatever the number of zonal harmonic coefficientsN 2 may be. Applications of the algorithm for the problem of the final state prediction are illustrated by numerical examples of eight typical ballistic missiles for geopotential model with zonal harmonic terms up toJ 36. A final state of any desired accuracy is obtained for each case study, a result which shows the efficiency and the flexibility of the algorithm.  相似文献   

11.
This paper derives asymptotic expansions of ellipsoidal coordinates in Cartesian coordinates and an expansion in spherical harmonics of the dominant term for the solution of Laplace's equation corresponding to the gravitational force function for a two-dimensional finite body.On comparing the expansion of the dominant term derived here with known expansions of the force functions of the Earth's and Moon's gravitation the author obtains values for the semimajor axes and eccentricities of the singular ellipses of these bodies in terms of the second degree harmonic coefficientsc 20 andc 22.  相似文献   

12.
The formulae for the perturbations in radial, transverse and binormal components of the Earth artificial satellite motion have been derived. Perturbations due to the tesseral part of the geopotential are considered. The geopotential expressed in terms of the orbital elements has the form proposed by Wnuk (1988). The formulae for the perturbations have been obtained using the Hori (1966) method. They can be effectively applied in calculation of the perturbations in the components including the coefficients of the high order and degree tesseral harmonics. The derived formulae reveal no singularities at zero eccentricity.  相似文献   

13.
14.
Analysis of high precision 2-day mean orbital elements of several U.S. Navy navigation satellites is presented. The combined analytical-numerical method for the computation of the elements from the Defense Mapping Agency precision ephemerides is described. The precision of the semimajor axis and the inclination orbital elements are determined to be 2 cm and 0.016 respectively. The 28th degree and 27th order terms of the geopotential field are determined with the mean elements.  相似文献   

15.
Problem of selecting primary parameters has been discussed. Primaries should be defined uniquely, as well as, physically. Since no unique definition for semimajor axis exists, it should be replaced by the geoidal geopotential valueW 0 or by the geopotential scale factorR 0 =GM/W 0, geocentric gravitational constantGM be also primary parameter. Current best estimates of some parameters are given numerically.  相似文献   

16.
The actual accuracy of the geopotential value on the geoid computed from satellite altimetry recently asW 0 = (62 636 857.5 ± 1.0) m2 s–2 makes it possible to adopt this quantity as geopotential models testing (GMT) value. However, GMT network should be established consisting of points situated near the gauge stations and of other points at small sea level heights, globally distributed. As numerical example illustrating the GMT method suggested, the recent Satellite Laser Ranging network points have been used.  相似文献   

17.
The requirement that near a singular point of the equations of motion the power series expansions of the old variables in terms of the new ones start with second order terms leads to the transformation z = sin21/2w related to that of THIELE -BURRAU . Using this new transformation, a derivation of the regularized equations of motion is given. The original as well as the regularized equations of motion are of interest, for example, for calculating the initial values of the orbital elements for SCHWARZSCHILD's periodic solutions (LEIMANIS and OLUND 1972).  相似文献   

18.
This is the second paper in a series of articles devoted to one of the basic problems of celestial mechanics: the evolution of solar-type planetary systems. In the first paper (Kholshevnikov et al., 2001), we reviewed the history and the current state of the issue, outlined the scheme of the study, introduced Jacobi coordinates and related osculating elements, and indicated the form of the Hamiltonian expansion into a Poisson series in all elements. In this paper, the expansion coefficients are found according to a simple algorithm that is reduced to the calculation of multiple integrals of elementary functions. At the first stage, we restricted our analysis to the two-planetary problem (Sun–Jupiter–Saturn). The general case will be investigated in a forthcoming paper.  相似文献   

19.
20.
Recurrence relations are derived for the Eccentricity FunctionsG andH and their derivatives, as they appear in the evaluation of geopotential and third body perturbations of an artificial satellite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号