首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We compare the number and characteristics of interplanetary coronal mass ejections (ICMEs) to those of magnetic clouds (MCs) by using in-situ solar wind plasma and magnetic field observations made at 1 AU during solar cycle 23. We found that ≈ 28% of ICMEs appear to contain MCs, since 103 magnetic clouds (MCs) occurred during 1995  – 2006, and 307 ICMEs occurred during 1996 – 2006. For the period between 1996 and 2006, 85 MCs are identified as part of ICMEs, and six MCs are not associated with ICMEs, which conflicts with the idea that MCs are usually a subset of ICMEs. It was also found that solar wind conditions inside MCs and ICMEs are usually similar, but the linear correlation between geomagnetic storm intensity (Dst min ) and relevant solar wind parameters is better for MCs than for ICMEs. The differences between average event duration (Δt) and average proton plasma β (〈β〉) are two of the major differences between MCs and ICMEs: i) the average duration of ICMEs (29.6 h) is 44% longer than for MCs (20.6 hours), and ii) the average of 〈β〉 is 0.01 for MCs and 0.24 for ICMEs. The difference between the definition of a MC and that for an ICME is one of the major reasons for these average characteristics being different (i.e., listed above as items i) and ii)), and it is the reason for the frequency of their occurrences being different.  相似文献   

2.
We analyze a series of complex interplanetary events and their solar origins that occurred between 19 and 23 May 2007 using observations by the STEREO and Wind satellites. The analyses demonstrate the new opportunities offered by the STEREO multispacecraft configuration for diagnosing the structure of in situ events and relating them to their solar sources. The investigated period was characterized by two high-speed solar wind streams and magnetic clouds observed in the vicinity of the sector boundary. The observing satellites were separated by a longitudinal distance comparable to the typical radial extent of magnetic clouds at 1 AU (fraction of an AU), and, indeed, clear differences were evident in the records from these spacecraft. Two partial-halo coronal mass ejections (CMEs) were launched from the same active region less than a day apart, the first on 19 May and the second on 20 May 2007. The clear signatures of the magnetic cloud associated with the first CME were observed by STEREO B and Wind while only STEREO A recorded clear signatures of the magnetic cloud associated with the latter CME. Both magnetic clouds appeared to have interacted strongly with the ambient solar wind and the data showed evidence that they were a part of the coronal streamer belt. Wind and STEREO B also recorded a shocklike disturbance propagating inside a magnetic cloud that compressed the field and plasma at the cloud’s trailing portion. The results illustrate how distant multisatellite observations can reveal the complex structure of the extension of the coronal streamer into interplanetary space even during the solar activity minimum. Electronic Supplementary Material  The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

3.
STEREO A and B observations of the radial magnetic field between 1 January 2007 and 31 October 2008 show significant evidence that in the heliosphere, the ambient radial magnetic field component with any dynamic effects removed is uniformly distributed. Based on this monopolar nature of the ambient heliospheric field we find that the surface beyond which the magnetic fields are in the monopolar configuration must be spherical, and this spherical surface can be defined as the inner boundary of the heliosphere that separates the monopole-dominated heliospheric magnetic field from the multipole-dominated coronal magnetic field. By using the radial variation of the coronal helmet streamers belts and the horizontal current – current sheet – source surface model we find that the spherical inner boundary of the heliosphere should be located around 14 solar radii near solar minimum phase.  相似文献   

4.
M. J. Owens 《Solar physics》2009,260(1):207-217
Magnetic clouds are a class of interplanetary coronal mass ejections (CME) predominantly characterised by a smooth rotation in the magnetic field direction, indicative of a magnetic flux rope structure. Many magnetic clouds, however, also contain sharp discontinuities within the smoothly varying magnetic field, suggestive of narrow current sheets. In this study we present observations and modelling of magnetic clouds with strong current sheet signatures close to the centre of the apparent flux rope structure. Using an analytical magnetic flux rope model, we demonstrate how such current sheets can form as a result of a cloud’s kinematic propagation from the Sun to the Earth, without any external forces or influences. This model is shown to match observations of four particular magnetic clouds remarkably well. The model predicts that current sheet intensity increases for increasing CME angular extent and decreasing CME radial expansion speed. Assuming such current sheets facilitate magnetic reconnection, the process of current sheet formation could ultimately lead a single flux rope becoming fragmented into multiple flux ropes. This change in topology has consequences for magnetic clouds as barriers to energetic particle propagation.  相似文献   

5.
Employing the synoptic maps of the photospheric magnetic fields from the beginning of solar cycle 21 to the end of 23, we first build up a time – longitude stackplot at each latitude between ±35°. On each stackplot there are many tilted magnetic structures clearly reflecting the rotation rates, and we adopt a cross-correlation technique to explore the rotation rates from these tilted structures. Our new method avoids artificially choosing magnetic tracers, and it is convenient for investigating the rotation rates of the positive and negative fields by omitting one kind of field on the stackplots. We have obtained the following results. i) The rotation rates of the positive and negative fields (or the leader and follower polarities, depending on the hemispheres and solar cycles) between latitudes ±35° during solar cycles 21–23 are derived. The reversal times of the leader and follower polarities are usually not consistent with the years of the solar minimum, nevertheless, at latitudes ±16°, the reversal times are almost simultaneous with them. ii) The rotation rates of the three solar cycles averaged over each cycle are calculated separately for the positive, negative and total fields. The latitude profiles of rotation of the positive and negative fields exhibit equatorial symmetries with each other, and those of the total fields lie between them. iii) The differences in rotation rates between the leader and follower polarities are obtained. They are very small near the equator, and increase as latitude increases. In the latitude range of 5° – 20°, these differences reach 0.05 deg day−1, and the mean difference for solar cycle 22 is somewhat smaller than cycles 21 and 23 in these latitude regions. Then, the differences reduce again at latitudes higher than 20°.  相似文献   

6.
We present results of solar-wind parameters generated by 3D MHD models. The ENLIL inner-heliosphere solar-wind model together with the MAS or Wang – Sheeley – Arge (WSA) coronal models, describe the steady solar-wind stream structure and its origins in the solar corona. The MAS/ENLIL and WSA/ENLIL models have been tuned to provide a simulation of plasma moments as well as interplanetary magnetic-field magnitude and polarity in the absence of disturbances from coronal transients. To investigate how well the models describe the ambient solar wind structure from the Sun out to 1 AU, the model results are compared to solar-wind measurements from the ACE spacecraft. We find that there is an overall agreement between the observations and the model results for the general large-scale solar-wind structures and trends, such as the timing of the high-density structures and the low- and high-speed winds, as well as the magnetic sector structures. The time period of our study is the declining phase of Solar Cycle 23 when the solar activity involves well-defined stream structure, which is ideal for testing a quasi-steady-state solar-wind model.  相似文献   

7.
We investigate the effects of two magnetic clouds on hourly cosmic-ray intensity profiles in the Forbush decrease events in November 2004 observed by 47 ground-based neutron-monitor stations. By using a wavelet decomposition, the start time of the main phase in a Forbush decrease event can be defined, and then clearer definitions of initial phase, main phase, and recovery phase are proposed. Our analyses suggest that the main phase of this Fd event precedes the arrival time of the first magnetic cloud by about three hours, and the Fds observed at the majority (39/47) of the stations were found to originate from the sheath region as indicated by large fluctuations in magnetic field vectors at 19:00 UT on 7 November 2004, regardless of the station location. In addition, about 45% of the onset times of the recovery phase in the Forbush decreases took place at 04:00 UT on 10 November, independent of the station position. The results presented here support the hypothesis that the sheath region between the shock and the magnetic cloud, especially the enhanced turbulent magnetic field, results in the scattering of cosmic-ray particles, and causes the following Forbush decreases. Analysis of variation profiles from different neutron monitors reveals the global simultaneity of this Forbush decrease event. Moreover, we infer that the interplanetary disturbance was asymmetric when it reached the Earth, inclined to the southern hemisphere. These results provide several observational constraints for more detailed simulations of the Forbush decrease events with time-dependent cosmic-ray modulation models.  相似文献   

8.
Several independent lines of observational evidence of the existence of kinetic Alfvén waves (KAWs) in the solar wind are briefly reviewed. Each piece of evidence is inconclusive when considered separately, but when taken together, it is reasonable to conclude from these observations that KAWs in the form of kinetic Alfvén turbulence are almost always present in the free-flowing solar wind near 1 AU and, by inference, perhaps throughout much of the heliosphere.  相似文献   

9.
To model and study local magnetic-field enhancements in a solar flux rope we consider the magnetic field in its interior as a superposition of two linear (constant α) force-free magnetic-field distributions, viz. a global one, which is locally similar to a part of the cylinder, and a local torus-shaped magnetic distribution. The newly derived solution for a toroid with an aspect ratio close to unity is applied. The symmetry axis of the toroid and that of the cylinder may or may not coincide. Both the large and small radii of the toroid are set equal to the cylinder’s radius. The total magnetic field distribution yields a flux tube which has a variable diameter with local minima and maxima. In principle, this approach can be used for the interpretation and analysis of solar-limb observations of coronal loops.  相似文献   

10.
Magnetic clouds (MCs) have been identified for the period 2007??C?2009 (at/near the recent solar minimum) from Wind data, then confirmed through MC parameter fitting using a force-free model. A dramatic increase in the frequency of occurrence of these events took place from the two early years of 2007 (with five MCs) and 2008 (one MC) compared to 2009 (12 MCs). This pattern approximately mirrors the occurrence-frequency profile that was observed over a three-year interval 12 years earlier, with eight events in 1995, four in 1996, and 17 in 1997, but decreased overall by a factor of 0.62 in number. However, the average estimated axial field strength [??|B O|??] taken over all of the 18 events of 2007??C?2009 (called the ??recent period?? here) was only 11.0 nT, whereas ??|B O|?? for the 29 events of 1995??C?1997 (called the ??earlier period??) was 16.5 nT. This 33% average drop in ??|B O|?? is more or less consistent with the decreased three-year average interplanetary magnetic field intensity between these two periods, which shows a 23% drop. In the earlier period, the MCs were clearly of mixed types but predominantly of the South-to-North type, whereas those in the recent period are almost exclusively the North-to-South type; this change is consistent with global solar field changes predicted by Bothmer and Rust (Geophys. Monogr. Ser. 99, 139, 1997). As we have argued in earlier work (Lepping and Wu, J. Geophys. Res. 112, A10103, 2007), this change should make it possible to carry out (accurate short-term) magnetic storm forecasting by predicting the latter part of an MC from the earlier part, using a good MC parameter-fitting model with real-time data from a spacecraft at L1, for example. The recent set??s average duration is 15.2 hours, which is a 27% decrease compared to that of the earlier set, which had an average duration of 20.9 hours. In fact, all physical aspects of the recent MC set are shown to drop with respect to the earlier set; e.g., as well as the average internal magnetic field drop, the recent set had a somewhat low average speed of 379 km?s?1 (5% drop), and the average diameter had a 24% drop. Hence, compared to the earlier set, the recent set consists of events that are smaller, slightly slower, and weaker in every respect (and fewer in number), but in a relative sense the two three-year sets have similar frequency-of-occurrence profiles. It is also interesting that the two sets have almost the same average axial inclinations, i.e., axial latitude ??31° (in GSE). These MC characteristics are compared to relevant solar features and their changes. A preliminary assessment of the statistics on possible shocks and pressure pulses upstream of these recent MCs yields the following: About 28% of the MCs, at most, had shocks, and 33% had shocks and/or pressure pulses. These are low values, since typically the percentage of cases with shocks is about 50%, and the percentage with shocks and/or pressure pulses is usually about 75%.  相似文献   

11.
D. Passos  I. Lopes 《Solar physics》2008,250(2):403-410
We present the results of a statistical study of the solar cycle based on the analysis of the superficial toroidal magnetic field component phase space. The magnetic field component used to create the embedded phase space was constructed from monthly sunspot number observations since 1750. The phase space was split into 32 sections (or time instants) and the average values of the orbits on this phase space were calculated (giving the most probable cycle). In this phase space it is shown that the magnetic field on the Sun’s surface evolves through a set of orbits that go around a mean orbit (i.e., the most probable magnetic cycle that we interpret as the equilibrium solution). It follows that the most probable cycle is well represented by a van der Pol oscillator limit curve (equilibrium solution), as can be derived from mean-field dynamo theory. This analysis also retrieves the empirical Gnevyshev – Ohl’s rule between the first and second parts of the solar magnetic cycle. The sunspot number evolution corresponding to the most probable cycle (in phase space) is presented.  相似文献   

12.
In this paper we analyze the distribution of magnetic strength ratios (MSR) across the solar disk using magnetograms in different spectral lines from the same observatory (Mount Wilson Observatory (MWO) and Sayan Observatory (SO)), magnetograms in the same line from different observatories (MWO, SO, Wilcox Solar Observatory (WSO)), and in different spectral lines from different observatories (the three observatories mentioned above, the National Solar Observatory/Kitt Peak (KP) and Michelson Doppler Imager (MDI) on board Solar and Heliospheric Observatory (SoHO)). We find peculiarities in some combinations of data sets. Besides the expected MSR center-to-limb variations, there is an equator-to-pole asymmetry, especially in the near-limb areas. Therefore, it is generally necessary to use 2D matrices of correction coefficients to reduce one kind of observation into another one.  相似文献   

13.
The structure of electric current and magnetic helicity in the solar corona is closely linked to solar activity over the 11-year cycle, yet is poorly understood. As an alternative to traditional current-free “potential-field” extrapolations, we investigate a model for the global coronal magnetic field which is non-potential and time-dependent, following the build-up and transport of magnetic helicity due to flux emergence and large-scale photospheric motions. This helicity concentrates into twisted magnetic flux ropes, which may lose equilibrium and be ejected. Here, we consider how the magnetic structure predicted by this model – in particular the flux ropes – varies over the solar activity cycle, based on photospheric input data from six periods of cycle 23. The number of flux ropes doubles from minimum to maximum, following the total length of photospheric polarity inversion lines. However, the number of flux rope ejections increases by a factor of eight, following the emergence rate of active regions. This is broadly consistent with the observed cycle modulation of coronal mass ejections, although the actual rate of ejections in the simulation is about a fifth of the rate of observed events. The model predicts that, even at minimum, differential rotation will produce sheared, non-potential, magnetic structure at all latitudes.  相似文献   

14.
A comparison between the two tracers of magnetic field mirror asymmetry in solar active regions – twist and current helicity – is presented. It is shown that for individual active regions these tracers do not possess visible similarity but averaging by time over the solar cycle, or by latitude, reveals similarities in their behavior. The main property of the data set is antisymmetry over the solar equator. Considering the evolution of helical properties over the solar cycle we find signatures of a possible sign change at the beginning of the cycle, though more systematic observational data are required for a definite confirmation. We discuss the role of both tracers in the context of solar dynamo theory.  相似文献   

15.
We study the physical state of the photosphere at about 30 minutes before and at the onset of a 2N/M2 two-ribbon solar flare. Semiempirical photospheric models are obtained for two Hα-kernels with the help of the SIR inversion code described by Ruiz Cobo and del Toro Iniesta (Astrophys. J. 398, 375, 1992). The models derived from the inversion reproduce spectral observations in seven Fraunhofer lines. The inferred models show variations in all photospheric parameters both before and at the onset of the flare relative to the quiet-Sun model. The temperature enhancement in the upper photospheric layers is found in the atmospheres in both kernels. The dynamical structure in the models reveals the variations at the onset of the flare relative to the preflaring ones. The inferred atmospheres show some difference in the thermodynamical parameters of two kernels.  相似文献   

16.
We present an automated extraction method based on the continuous wavelet transform (CWT) for analyzing solar magnetic loops. The aim of the work is to extract, from the images taken from solar EUV telescopes, the traces of bright loops presumably shaped by the magnetic field of the solar corona. The technique is that of wavelet analysis, using the two-dimensional Morlet wavelet, because of its efficiency in detecting oriented features, which allows us to follow closely the curvature of the loops. Next, we segment the wavelet modulus image and we threshold it, both globally and locally (i.e., adaptively), in order to eliminate the remaining noise. Altogether, our method performs well, it is robust and fast, and could be used as a standard tool for analyzing large data sets expected from missions like SDO.  相似文献   

17.
The differential rotation of compact magnetic elements during activity cycles 20 and 21 (1966 – 1986) is studied by using solar synoptic charts. For each hemisphere the compact magnetic elements with the polarity of the circumpolar magnetic field have larger rotation rates than the elements with the opposite polarity. This difference in rotation rates is present during the whole cycle except during the polarity reversal of the circumpolar field.  相似文献   

18.
Active region magnetic flux that emerges to the photosphere from below will show complexity in the structure, with many small-scale fragmented features appearing in between the main bipole and then disappearing. Some fragments seen will be absorbed into the main polarities and others seem to cancel with opposite magnetic field. In this paper we investigate the response of the corona to the behaviour of these small fragments and whether energy through reconnection will be transported into the corona. In order to investigate this we analyse data from the Hinode space mission during flux emergence on 1?–?2 December 2006. At the initial stages of flux emergence several small-scale enhancements (of only a few pixels size) are seen in the coronal line widths and diffuse coronal emission exists. The magnetic flux emerges as a fragmented structure, and coronal loops appear above these structures or close to them. These loops are large-scale structures – most small-scale features predominantly stay within the chromosphere or at the edges of the flux emergence. The most distinctive feature in the Doppler velocity is a strong ring of coronal outflows around the edge of the emerging flux region on the eastern side which is either due to reconnection or compression of the structure. This feature lasts for many hours and is seen in many wavelengths. We discuss the implications of this feature in terms of the onset of persistent outflows from an active region that could contribute to the slow solar wind.  相似文献   

19.
The good quality of the observing sequence of about 60 photographs of the white-light corona taken during the total solar eclipse observations on 29 March 2006, in Al Sallum, Egypt, enable us to use a new method of image processing for enhancement of the fine structure of coronal phenomena. We present selected magnetic-field lines derived for different parameters of the extrapolation model. The coincidence of the observed coronal white-light fine structures and the computed field-line positions provides a 3D causal relationship between coronal structures and the coronal magnetic field.  相似文献   

20.
We examine the average magnetic field magnitude (\(| \boldsymbol{B} | \equiv B\)) within magnetic clouds (MCs) observed by the Wind spacecraft from 1995 to July 2015 to understand the difference between this \(B\) and the ideal \(B\)-profiles expected from using the static, constant-\(\alpha\), force-free, cylindrically symmetric model for MCs of Lepping, Jones, and Burlaga (J. Geophys. Res. 95, 11957, 1990, denoted here as the LJB model). We classify all MCs according to an assigned quality, \(Q_{0}\) (\(= 1, 2, 3\), for excellent, good, and poor). There are a total of 209 MCs and 124 when only \(Q_{0} = 1\), 2 cases are considered. The average normalized field with respect to the closest approach (\(\mathit{CA}\)) is stressed, where we separate cases into four \(\mathit{CA}\) sets centered at 12.5 %, 37.5 %, 62.5 %, and 87.5 % of the average radius; the averaging is done on a percentage-duration basis to treat all cases the same. Normalized \(B\) means that before averaging, the \(B\) for each MC at each point is divided by the LJB model-estimated \(B\) for the MC axis, \(B_{0}\). The actual averages for the 209 and 124 MC sets are compared to the LJB model, after an adjustment for MC expansion (e.g. Lepping et al. in Ann. Geophys. 26, 1919, 2008). This provides four separate difference-relationships, each fitted with a quadratic (Quad) curve of very small \(\sigma\). Interpreting these Quad formulae should provide a comprehensive view of the variation in normalized \(B\) throughout the average MC, where we expect external front and rear compression to be part of its explanation. These formulae are also being considered for modifying the LJB model. This modification will be used in a scheme for forecasting the timing and magnitude of magnetic storms caused by MCs. Extensive testing of the Quad formulae shows that the formulae are quite useful in correcting individual MC \(B\)-profiles, especially for the first \({\approx\,}1/3\) of these MCs. However, the use of this type of \(B\) correction constitutes a (slight) violation of the force-free assumption used in the original LJB MC model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号