首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the approach of using complex multiplier-accumulators (CMACs) with multiple accumulators to reduce the total number of memory operations in an input-buffered architecture for the X part of an FX correlator. A processing unit of this architecture uses an array of CMACs that are reused for different groups of baselines. The disadvantage of processing correlations in this way is that each input data sample has to be read multiple times from the memory because each input signal is used in many of these baseline groups. While a one-accumulator CMAC cannot switch to a different baseline until it is finished integrating the current one, a multiple-accumulator CMAC can. Thus, the array of multiple-accumulator CMACs can switch between processing different baselines that share some input signals at any moment to reuse the current data in the processing buffers. In this way significant reductions in the number of memory read operations are achieved with only a few accumulators per CMAC. For example, for a large number of input signals three-accumulator CMACs reduce the total number of memory operations by more than a third. Simulated energy measurements of four VLSI designs in a high-performance 28 nm CMOS technology are presented in this paper to demonstrate that using multiple accumulators can also lead to reduced power dissipation of the processing array. Using three accumulators as opposed to one has been found to reduce the overall energy of 8-bit CMACs by 1.4% through the reduction of the switching activity within their circuits, which is in addition to a more than 30% reduction in the memory.  相似文献   

2.
3.
Motion equations for the gravitationally coupled orbit-attitude motion of a spacecraft are presented. The gravitational force and torque are expanded in a Taylor series in the small ratio (spacecraft size/orbital radius). A recursive definition for higher moments of inertia is introduced which permits terms up tofourth order to be retained. The expressions are fully nonlinear in the attitude variables. A quasi-sunpointing (QSP) passive attitude-control mode is used to assess the effects of higher moments of inertia and gravitational coupling. The attitude motion is detectably coupled to the orbital motion. However, the higher moments of inertia influence only the attitude motion.Nomenclature f G ,g G ,f Gi ,g Gi total gravitational force and torque and their components of orderi in =/r 0 - angular momentum of spacecraft about 0 and the spacecraft mass center - J i ,I i general moment of inertia about 0 and the spacecraft mass center - second (dyadic), third (triadic), and fourth (tetradic) moment of inertia about 0 and the spacecraft mass center - A andB (and related components) of the second, third and fourth moments of inertia about 0, see Equation (9) - M, m Earth's mass, spacecraft mass - Q ba rotation matrix taking a into b - position vector from attracting body's mass center to a general mass element, to 0 and to the spacecraft mass center - 1, 2, 3 basis vectors of reference frame - , , N misalignment angle betweenb 3 and the (projected) true position of the Sun, its oscillatory component and nominal value - unit dyadic (-identity matrix) - ratio of characteristic spacecraft dimension to orbital radius - pitch angle (aboutb 2 axis) - Earth's gravitational parameter - , position vector from 0 to a general mass element and the spacecraft mass center - , the (projected) true longitude of the Sun and the true longitude of the spacecraft - / angular velocity of reference frame with respect to - (·), (*), (o) d()/dt with respect to inertial space I , and orbiting frame O and a body-fixed spacecraft frame b Presented at AAS/AIAA Astrodynamics Conference, Aug. 9–11, 1982.  相似文献   

4.
CONICA is an acronym for COudé Near Infrared Camera. It is one of the four currently planned Infrared instruments for ESO's Very Large Telescope (VLT) in Chile. This multimode instrument is to be installed at the Coudé-focus (of Unit Telescope no. 1), where adaptive optics and speckle interferometry will also be available. High angular resolution imaging (to the diffraction limit) will be possible in the 1–5 m range, as well as spectroscopy with low- and medium resolution and polarimetry by means of Wollaston prism and wiregrid analysers. Various softwares are developed for this instrument. One of them: the Simulation Software has a threefold aim: 1. provide the user with feedback information on his/her choices of observational parameters. This is be achieved by displaying the calculated performance and throughput of the combined Source-Atmosphere-Telescope-Camera-Detector system in various formats, such as images, tables, isophotical images ... for point as well as for extended sources (also annular, double, etc.); 2. verify if his expectations are realistic, before actually using CONICA itself. 3. give feedback on the design to the developers of the instrument.On leave from his original institute, now at ESTEC in the ISO-project  相似文献   

5.
The weak thermal emission from the largest minor planets can be detected and measured at all points around their orbits at microwave frequencies using the Very Large Array (VLA). Position determinations of astrometric quality have been obtained, and flux measurements have provided size estimates. When enough precise positional observations have been accumulated, the orbits of the minor planets and the Earth can be determined. This will allow the equinox to be located within the radio reference frame, providing a truly fundamental coordinate system for radio source positions. It will also provide a means of relating the optical and radio (quasar) coordinate systems.The National Radio Astronomy Observatory is operated by Associated Universities, Incorporated, under contract with the National Science Foundation.  相似文献   

6.
Vertical impacts on the Earth of asteroids 500-3000 km in diameter at 15 km/s have been numerically modelled using the hydrodynamic SOVA code. This code has been modified for the spherical system of coordinates well suited for simulations of very large impacts when the entire Earth is involved in motion. The simulations include cratering process, upward motion of deep mantle layers, fall of ejecta on the Earth, escape of matter to space, and formation of rock vapour atmospheres. The calculations were made for the period preceding disappearance of rock vapour atmospheres caused by radiation several years after the largest impacts. For very large vertical impacts at 15 km/s, escaping masses proved to be negligibly small. Quantities of kinetic, internal, potential, and radiated away energies are obtained as functions of time and space. After the impacts, a global layer of condensed ejecta covers the whole of the Earth's surface and the ejecta energy is sufficient to vaporise an ocean 3 km deep. The mass of rock vapour atmosphere is 10-23% of the impactor mass. This atmosphere has a greater mass than the water atmosphere if impactor is 2000 km in diameter or larger.  相似文献   

7.
Polarimetric observations of the moon have been carried out at λeff = 0.48 and 0.63 μm using the 50 cm telescope of the Maidanak (Middle Asia) observatory. Imaging has been performed using a Canon-350D camera with a CMOS array and rotating polaroid. The investigation covered the north-western part of the lunar disk comprising the northern part of Ocean Procellarum and obtained the images representing the albedo, polarization degree, color index, and polarimetric color ratio at a phase angle of 96°. It is the first time that the latter parameter has been imaged with a resolution of approximately 1 km. Its pattern has proved to resemble that of the color index, although some important differences can be seen. This shows that spectropolarimetric observations of the moon can give new information on the composition and optical properties of the lunar regolith.  相似文献   

8.
Ground layer turbulence is a very important site characterization parameter used to assess the quality of an astronomical site. The Lunar Scintillometer is a simple and effective site-testing device for measuring the ground layer turbulence. It consists of a linear array of photodiodes which are sensitive to the slight variations in the moon’s brightness due to scintillation by the lower layers of the Earth’s atmosphere. The covariance of intensity values between the non-redundant photodiode baselines can be used to measure the turbulence profile from the ground up to a height determined by the furthest pair of detectors. The six channel lunar scintillometer that has been developed at the Indian Institute of Astrophysics is based closely on an instrument built by the team led by Andrei Tokovinin of Cerro Tololo Inter-American Observatory (CTIO), Chile (Tokovinin et al., Mon. Not. R. Astron. Soc. 404(3), 1186–1196 2010). We have fabricated the instrument based on the existing electronic design, and have worked on the noise analysis, an EMI (Electromagnetic Induction) resistant PCB design and the software pipeline for analyzing the data from the same. The results from the instrument’s multi-year campaign at Mount Saraswati, Hanle is also presented.  相似文献   

9.
The magnetic field pattern associated with large scale convective motions, which are much larger than the supergranules and have been conceived as a source of maintenance of the solar differential rotation, is calculated in the framework of a slowly and differentially rotating thin spherical shell, including the effects of thermal conductivity and viscosity. The approximations of Boussinesq are used and the initial state of the magnetic field is assumed to be purely toroidal.The resulting magnetic field pattern rotates rigidly on the differentially rotating Sun with some phase delay to the convective pattern, if it is assumed that only the predominant mode with the maximum growth rate is actually realized in the solar convection zone. The obtained magnetic and convective patterns and their properties seem to explain naturally the various aspects of large scale ordering of solar activity such as the existence and behavior of complexes of activity, the rigid body rotation of proton flare active longitudes, their association with UMR's, the existence of ghost and mirror image of UMR's themselves and the fact that the rotational period derived from sunspot data is shorter than that derived spectroscopically from fluid velocity.  相似文献   

10.
The asymmetry parameter of the scattering diagram and the efficiency for radiation pressure for scattering by a very large dielectric sphere conforming to geometrical optics and diffraction, have been investigated beyond the limit of existing literature. A new feature of shallow broad extremum (resonance) has been found in the asymmetry parameter as well as in the radiation pressure both as function of the index of refraction.  相似文献   

11.
Coupling the JNLT with the Keck telescope is of considerable interest. Further enhancement may be possible with auxiliary small telescopes, as planned for ESO's VLT. Current plans for installing the optical very large array at Mauna Kea provide opportunities for extra OVLA telescopes near the JNLT.A coudé field slicer is proposed for interferometric observing of a reference star together with the main object. Additions to the JNLT coudé spectrograph are also suggested for use as a speckle camera with multiple spectral channels.Paper presented at the Symposium on the JNLT and Related Engineering Developments, Tokyo, November 29–December 2, 1988.  相似文献   

12.
Observation data from radio telescopes is typically stored in three (or higher) dimensional data cubes, the resolution, coverage and size of which continues to grow as ever larger radio telescopes come online. The Square Kilometre Array, tabled to be the largest radio telescope in the world, will generate multi-terabyte data cubes – several orders of magnitude larger than the current norm. Despite this imminent data deluge, scalable approaches to file access in Astronomical visualisation software are rare: most current software packages cannot read astronomical data cubes that do not fit into computer system memory, or else provide access only at a serious performance cost. In addition, there is little support for interactive exploration of 3D data.We describe a scalable, hierarchical approach to 3D visualisation of very large spectral data cubes to enable rapid visualisation of large data files on standard desktop hardware. Our hierarchical approach, embodied in the AstroVis prototype, aims to provide a means of viewing large datasets that do not fit into system memory. The focus is on rapid initial response: our system initially rapidly presents a reduced, coarse-grained 3D view of the data cube selected, which is gradually refined. The user may select sub-regions of the cube to be explored in more detail, or extracted for use in applications that do not support large files. We thus shift the focus from data analysis informed by narrow slices of detailed information, to analysis informed by overview information, with details on demand. Our hierarchical solution to the rendering of large data cubes reduces the overall time to complete file reading, provides user feedback during file processing and is memory efficient. This solution does not require high performance computing hardware and can be implemented on any platform supporting the OpenGL rendering library.  相似文献   

13.
14.
A high-resolution spectrum clearly shows the presence of A 6Σ+X 6Σ+(0,0;0,1;1,0;2,0;2,1) and (2,2) bands system of CrH molecular lines in the spectral range 10,000 cm−1 to 14,050 cm−1. At least 3928 lines of the six bands, accounting for 57% of the lines registered in the laboratory can be identified with certainty in the sunspot spectrum. Most of the lines are found blended with TiO, CaH, MgH and other atomic species. These molecular lines are typically much more temperature sensitive than atomic lines, which make them ideal, complementary tool for studying cool stellar atmospheres as well as the internal structure of sunspots. Equivalent width for an adequate number of well identified molecular lines of these bands using the Gaussian-profile approximation method versus rotational quantum number J has been used to determine the effective rotational temperature of the CrH molecule. The range of effective rotational temperature value obtained from these bands is 1766 K to 2442 K. This range agrees well with the effective rotational temperatures derived for other molecules in sunspot umbrae.  相似文献   

15.
Abstract– Miller Range (MIL) 05029 is a slowly cooled melt rock with metal/sulfide depletion and an Ar‐Ar age of 4517 ± 11 Ma. Oxygen isotopes and mineral composition indicate that it is an L chondrite impact melt, and a well‐equilibrated igneous rock texture with a lack of clasts favors a melt pool over a melt dike as its probable depositional setting. A metallographic cooling rate of approximately 14 °C Ma?1 indicates that the impact occurred at least approximately 20 Ma before the Ar‐Ar closure age of 4517 Ma, possibly even shortly after accretion of its parent body. A metal grain with a Widmanstätten‐like pattern further substantiates slow cooling. The formation age of MIL 05029 is at least as old as the Ar‐Ar age of unshocked L and H chondrites, indicating that endogenous metamorphism on the parent asteroid was still ongoing at the time of impact. Its metallographic cooling rate of approximately 14 °C Ma?1 is similar to that typical for L6 chondrites, suggesting a collisional event on the L chondrite asteroid that produced impact melt at a minimum depth of 5–12 km. The inferred minimum crater diameter of 25–60 km may have shattered the 100–200 km diameter L chondrite asteroid. Therefore, MIL 05029 could record the timing and petrogenetic setting for the observed lack of correlation of cooling rates with metamorphic grades in many L chondrites.  相似文献   

16.
17.
At large distances, due to atmospheric absorption and the dispersion of high-frequency components, the airwaves from the fall of large meteorites or heavy-yield explosions are transformed into an infrasonic wave train propagating over large distances via atmospheric sound channels. In approaching the antipode, the amplitude of infrasonic oscillations increases significantly and the nonlinear effects may trigger the formation of a blast wave, that is, another explosion. The condition which allows such a phenomenon to happen was obtained in this study. Infrasonic waves from the Tunguska fall event and waves generated by the largest nuclear explosions were considered in this study.  相似文献   

18.
A 640 element phase-steerable dipole array has been used to make highly sensitive observations of the planet Jupiter during the 1973 apparition. The satellite Io is found to have very little influence at the low flux levels, whereas the definition of sources A and B appears to be relatively flux independent. A two-dimensional analysis of the data in the Jupiter-Io plane has revealed considerable source B activity at low intensities which is not influenced by Io.  相似文献   

19.
The space debris detectin will become greater and greater in the near future with the space debris enhancing. We introduce a theoretical approach of this problem assuming the using of a new generation large coronograph. We get some interesting — and alarming — results about the great probability to be able to observe space debris with this new ground-based large coronograph.  相似文献   

20.
Modern asteroid surveys produce an increasingly large number of observations, which are grouped into very short arcs (VSAs) each containing a few observations of the same object in one single night. To decide whether two VSAs collected in different nights correspond to the same observed object we can attempt to compute an orbit with the observations of both arcs: this is called the linkage problem. Since the number of linkages to be attempted is very large, we need efficient methods of orbit determination. Using the first integrals of Kepler’s motion we can write algebraic equations for the linkage problem, which can be put in polynomial form. In Gronchi et al. (Celest Mech Dyn Astron 123(2):105–122, 2015) these equations are reduced to a polynomial equation of degree 9: the unknown is the topocentric distance of the observed body at the mean epoch of one VSA. Here we derive the same equations in a more concise way, and show that the degree 9 is optimal in a sense that will be specified in Sect. 3.3. We also introduce a procedure to join three VSAs: from the conservation of angular momentum we obtain a polynomial equation of degree 8 in the topocentric distance at the mean epoch of the second VSA. For both identification methods, with two and three VSAs, we discuss how to discard solutions. Finally, we present some numerical tests showing that the new methods give satisfactory results and can be used also when the time separation between the VSAs is large. The low polynomial degree of the new methods makes them well suited to deal with the very large number of asteroid observations collected by the modern surveys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号