首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a recent paper, Brekke and Pettersen (1972) have introduced a method for estimating any indirect process in the production of the O(1S) atoms in pulsating aurora; for 38 per cent of their data they found that the decay time for the indirect mechanism was shorter than the effective lifetime of the 1S state. These data are related to the energy transfer from the N2(A3Σ) molecules to the O(1S) state, and evidence is found for this process to contribute in the altitude range below 125 km.  相似文献   

2.
The quenching rate kN2 of O(1D) by N2 and the specific recombination rate α1D of O2+ leading to O(1D) are re-examined in light of available laboratory and satellite data. Use of recent experimental values for the O(1D) transition probabilities in a re-analysis of AE-C satellite 6300 Å airglow data results in a value for kN2 of 2.3 × 10?11 cm3s?1 at thermospheric temperatures, in excellent agreement with the laboratory measurements. This implies a value of JO2 = 1.5 × 10?6s?1 for the O2 photodissociation rate in the Schumann-Runge continuum. The specific recombination coefficient α1D = 2.1 × 10?7cm3s?1 is also in agreement with the laboratory value. Implications for the suggested N(2D) + O2 → O(1D) + NO reaction are discussed.  相似文献   

3.
Recent laboratory measurements of the deactivation rate constants for O(1S) have suggested that the dominant production mechanism for the green line in the nightglow is a two-step process. A similar mechanism involving energy transfer from an excited state of molecular oxygen is considered as a potential source of the OI (5577 Å) emission in the aurora. It is shown that the mechanism, O2 + e → O21 + e O21 + O → O2 + O(1S), is consistent with auroral observations; the intermediate excited state has been tentatively identified as the O2(c1?u) state. For the proposed energy transfer mechanism to be the primary source of the auroral green line, the peak electron impact cross-section for O21 production must be approximately 2 × 10?17 cm2.  相似文献   

4.
Simultaneous measurements of the 6300 Å airglow intensity, the electron density profile, and F-region ion temperatures and vertical ion velocities taken at the Arecibo Observatory in March 1971 are utilized in the height integrated continuity equation to extract the number of photons'of 6300 Å emitted per recombination. After accounting for quenching of O(1D) and the electrons lost via NO+ recombination, the efficiency of O(1D) production by the dissociative recombination of O2+ is determined to be 0.6 ± 0.2 including cascading from the O(1S) state. The uncertainty includes both random measurement errors and estimates of possible systematic errors.  相似文献   

5.
Recent laboratory studies show that the O(1S) quantum yield, f(1S), from O2+ dissociative recombination varies considerably with the degree r of vibrational excitation. However, the suggestion that the high values for f(1S) deduced from airglow and auroral observations can be explained by invoking vibrational excitation, creates a number of problems. Firstly, the rapid vibrational deactivation of O2+ ions by collisions with O atoms will keep r too low to account for the magnitude of f(1S); secondly, r varies considerably from one atmospheric source to another but its relative values (which should be reliable) do not co-vary with those of f(1S); thirdly, because r increases markedly above the peak of the X5577 A? dissociative recombination layer, the fits which theorists have obtained to the observed volume emission rate profiles would have to be regarded as fortuitious. It is tentatively suggested that f(1S) is higher in the airglow and aurora than in the laboratory plasma studied by Zipf (1980) because of the electron temperature dependence of the O(1S) specific recombination coefficient for O2+(v' ? 3) ions.The repulsive 1Σu[1D + 1s] state of O2 does not provide a suitable channel for the dissociative recombination. A possible alternative is the bound 3Πu[5S + 3s] state with predissociation to the repulsive 3Πu[3P + 1s] state.  相似文献   

6.
William D. Cochran 《Icarus》1984,58(3):440-445
Spectra of the [OI] 1D-3P “red” doublet and the 1S-1D “green” line in Comet IRAS-Araki-Alcock (1983d) were obtained during its close approach to the Earth. This is the first unequivocal photoelectric detection of the green line in a cometary spectrum. The population ratio of the O (1S) state to the O (1D) state in the inner coma is ≦0.03. This ratio eliminates CO or CO2 and points strongly to H2O as the primary parent for excited oxygen atoms.  相似文献   

7.
Special line shapes are derived fro the λ 1356 Å (5S0-3P) transition of atomic oxygen from metastable (5S0-3P) time-of-flight spectra produced by electron impact dissociative excitation of O2, CO2, CO, and NO, and they are compared with the broadened λ 1304 A resonance line shapes deduced by Poland and Lawrence (1973) from atomic oxygen absorption studies. The non-thermal line shapes for both airglow emission features are shown to have an effective width comparable to a 60,000 K thermal doppler line shape for an electron impact energy of 100eV. The variation of the effective line width with electron-impact energy from threshold to 300 eV is given. Since the effective line width of the resonance radiation produced by dissociative excitation is very large compared with the doppler absorption widths of the ambient O atoms at normal exospheric temperatures, the anomalously broadened resonance lines will propagate through a planetary atmosphere as though they were optically thin. Thus, electron-impact dissociation of CO and CO2 will contribute to the observed optically thin component of the λ 1304 Å emission in the upper atmospheres of Venus and Mars. However, the process cannot account for more than 10% of the observed optically thin emission because of the small magnitude of the excitation cross-section and the comparatively high-energy threshold for the process. The possibility that the source of the kinetically energetic O(3S) atoms is the dissociative recombination of vibrationally excited CO2+ ions is discussed.  相似文献   

8.
Measurements of the emission intensities of the 557.7 nm line and Herzberg bands and of O(3P) concentrations carried out on two coordinated rocket flights at South Uist during the night of 8/9 September 1975 are presented. An examination of the 557.7 nm emission and O(3P) data on the basis of recent data on relevant rate coefficients has shown that the results can be interpreted on the basis of the Barth mechanism for the production of O(1S) atoms but not the Chapman mechanism. Evidence is provided that the A3Σ+u state of O2 could be responsible for the O(1S) production in the Barth mechanism. Values of the rate coefficients involved are deduced from a comparison of the 557.7 nm and Herzberg emission rates.  相似文献   

9.
The cross-section for dissociative photoionization of hydrogen by 584 Å radiation has been measured, yielding a value of 5 × 10?20 cm2. The process can be explained as a transition from the X1 Σg+ ground state to a continuum level of the X2 Σg+ ionized state of H2 The branching ratio for proton (H+) vs molecular ion (H2+) production at this energy is 8 × 10?3. This process is quite likely an important source of protons in the Jovian ionosphere near altitudes where peak ionization rates are found.  相似文献   

10.
Previous studies based on radio scintillation measurements of the atmosphere of Venus have identified two regions of small-scale temperature fluctuations located in the vicinity of 45 and 60 km. A global study of the fluctuations near 60 km, which are consistent with wind-shear-generated turbulence, was conducted using the Pioneer Venus measurements. The structure constants of refractive index fluctuations cn2 and temperature fluctuations cT2 increase poleward, peak near 70° latitude, and decrease over the pole; cn2 varies from 2 × 10?15 to 1.5 × 10?14m23 and cT2 from 4 × 10?3 to 7 × 10?2°K2m?23. These results indicate greater turbulent activity at the higher latitudes. In the region near 45 km the refractive index fluctuations and the corresponding temperature fluctuations are substantially lower. Based on the analysis of one representative occultation measurement, cn2 = 2 × 10?16m?23and cT2 = 7.3 × 10?4°K2m?23 in the 45-km region. The fluctuations in this region also appear to be consistent with wind-shear-generated turbulence. The turbulence level is considerably weaker than that at 60 km; the energy dissipation rate ε is 4.9 × 10?5m2sec?3 and the small-scale eddy diffusion coefficient K is 2 × 103 cm2 sec?1.  相似文献   

11.
The part that the energy transfer reaction N2(A3u+) + O(3P) → N2(X1g+) + O(1S) plays in the excitation of the auroral green line has been investigated. The contribution is estimated to be 40 per cent in this case, containing pulsating aurora in class IBC 1. Due to greater quenching of the A3u+ state, the centroid of the VK emission is displaced 10 km upwards of the green line height, which is centred at 110 km.  相似文献   

12.
In March 1979, the spectrum of Venus was recorded in the far infrared from the G.P. Kuiper Airborne Observatory when the planet subtended a phase angle of 62°. The brightness temperature was observed to be 275°K near 110 cm?1, dropping to 230°K near 270 cm?1. Radiance calculations, using temperature and cloud structure formation from the Pioneer Venus mission and including gaseous absorption by the collision-induced dipole of CO2, yield results consistently brighter than the observations. Supplementing the spectral data, Pioneer Venus OIR data at similar phase angles provide the constraint that any additional infrared opacity must be contained in the upper cloud, H2SO4 to the Pioneer-measured upper cloud structure serves to reconcile the model spectrum and the observations, but cloud microphysics strongly indicates that such a high particle density haze (N ? 1.6 × 107cm?3) is implausible. The atmospheric environment is reviewed with regard to the far infrared opacity and possible particle distribution modifications are discussed. We conclude that the most likely possibility for supplementing the far-infrared opacity is a population of large particles (r ? 1 μm) in the upper cloud with number densities less than 1 particle cm?3 which has remained undetected by in situ measurements.  相似文献   

13.
The paper gives the results of detailed studies of the frequency spectra Ss(?) of the chain of the wave packets Fs(t) of geomagnetic pulsations PC-1 recorded at the Novolazarevskaya station. The bulk of the energy of Fs(t) is concentrated in the vicinity of the central frequencies ?s0 of spectra—the carrier frequencies of the signals. The velocity V0 ≌ 6.103km s?1 of the flux of protons generating these signals correspond to them. The spectra of the signals have oscillations—“satellites” irregularly distributed in frequency. These satellites, as the authors believe, testify to the presence of the individual groups of protons of low concentration whose velocities vary within 103–104 km s?1.Their energy is only of the order of 10?2–10?3 of the energy of the main proton flux. Clearly pronounced maxima on double and triple frequencies ? = 2?s0and 3?s0 are detected. They show that the generation of pulsations PC-1 is accompanied by the generation on the overtones of wave packets called in this paper “two-fold” and “three-fold” pulsations PC-1. Intensive symmetrical satellites of a modulation character have been discovered on frequencies ?±sK. Frequency differences Δ?sK± = ¦?s0 ? ?sK±¦ = (0.011,0.022 and 0.035) Hz correspond to them. The authors believe that the values of Δ?±sK are resonance frequencies of the magnetospheric cavity in which geomagnetic pulsations PC-1 are generated. It is established that the values of Δ?±sK coincide closely with the carrier frequencies of geomagnetic pulsations PC-3 and PC-4 generated in the magnetosphere. This leads to the conclusion that the resonance oscillations of the magnetospheric cavity are their source. Thus, the generation of geomagnetic pulsations of different types and resonance oscillations in the magnetosphere are integrated into a unified process. The importance of the results obtained and the necessity to check further their trustworthiness and universality, using experimental data gathered in different conditions, is stressed.  相似文献   

14.
An outline is presented of a method of calculating relative rates of association of oxygen atoms by energy transfer into the different bound states of molecular oxygen. The method takes account of the detailed form of the potential energy curves for the different states. Results are presented for seven bound states of O2 at temperatures between 100 and 600 K and are compared with laboratory and airglow data. The 5Πg state, not known experimentally, accounts for over 70% of the total association below 200 K. At higher temperatures it is redissociated, and the variation in its effective association rate is primarily responsible for the variation of the total rate of oxygen association with temperature. The 5Πg state is probably involved in the production at night of the a1Δg and b1Σg+ states of O2, and in the production of O(1S) in the airglow. It may also be produced by electron impact on O2, and contribute to O(1S) production in aurorae.  相似文献   

15.
An attempt to observe radar echoes from the comet Kohoutek was made at a radio frequency of 7840 MHz (λ ~- 3.8 cm) on 12 January 1974 using the Haystack Observatory radar in Massachusetts. A search for an echo over a range of band-widths covering 2Hz to 66kHz yielded no positive result. The upper limit on the radar cross section is therefore approximately 104B12km2, where B is the (unknown) bandwidth of the echo in Hertz. For B ? 100 Hz, it follows that (i) the nucleus, if a perfect spherical reflector, must be less than 250 km in diameter, and (ii) the density of any millimeter-sized particles must be less than 1m?3 for a coma of diameter 104km.  相似文献   

16.
The photodissociation of water vapour in the mesosphere depends on the absorption of solar radiation in the region (175–200 nm) of the O2 Schumann-Runge band system and also at H-Lyman alpha. The photodissociation products are OH + H, OH + H, O + 2H and H2 + O at Lyman alpha; the percentages for these four channels are 70, 8, 12 and 10%, respectively, but OH + H is the only channel between 175 and 200 nm. Such proportions lead to a production of H atoms corresponding to practically the total photodissociation of H2O, while the production of H2 molecules is only 10% of the H2O photodissociation by Lyman alpha.The photodissociation frequency (s?1) at Lyman alpha can be expressed by a simple formula
JLyαH2O=4.5 ×10?61+0.2F10.7?65100exp[?4.4 ×10?19 N0.917]
where F10.7 cm is the solar radioflux at 10.7 cm and N the total number of O2 molecules (cm?2), and when the following conventional value is accepted for the Lyman alpha solar irradiance at the top of the Earth's atmosphere (Δλ = 3.5 A?) qLyα,∞ = 3 × 1011 photons cm?2 s1?.The photodissociation frequency for the Schumann-Runge band region is also given for mesospheric conditions by a simple formula
JSRB(H2O) = JSRB,∞(H2O) exp [?10?7N0.35]
where JSRB,∞(H2O) = 1.2 × 10?6 and 1.4 × 10?6 s?1 for quiet and active sun conditions, respectively.The precision of both formulae is good, with an uncertainty less than 10%, but their accuracy depends on the accuracy of observational and experimental parameters such as the absolute solar irradiances, the variable transmittance of O2 and the H2O effective absorption cross sections. The various uncertainties are discussed. As an example, the absolute values deduced from the above formulae could be decreased by about 25-20% if the possible minimum values of the solar irradiances were used.  相似文献   

17.
18.
19.
The calculated radiative lifetime of the metastable ion is 6.4 × 10?3s. Used in conjunction with the results of measurements by Erdman, Espy and Zipf this sets 1.3 × 10?18 cm2 as the upper limit to the cross section for the formation of N+(5S) in e - N2 collisions at 100eV which leaves the possibility that the process is responsible for the λ2145A? feature in auroras only just open. The cross section for the formation of N+(5S) in e — N collisions is large. However for this process to lead to the observed intensity of λ2145A? relative to λ3914A? the N:N2 abundance ratio would have to be as high as 1.6 × 10?2.  相似文献   

20.
Results are given of the calculations of the group delay time propagating τ(ω, φ0) of hydromagnetic whistlers, using outer ionospheric models closely resembling actual conditions. The τ(ω, φ0) dependencies were compared with the experimental data of τexp(ω, φ0) obtained from sonagrams. The sonagrams were recorded in the frequency range ? ? (0.5?2.5) Hz at observation points located at geomagnetic latitudes φ0 = (53?66)° and in the vicinity of the geomagnetic poles. This investigation has led us to new and important conclusions.The wave packets (W.P.) forming hydromagnetic whistlers (H.W.) are mainly generated in the plasma regions at L = 3.5?4.0. This is not consistent with ideas already expressed in the literature that their generation region is L ? 3?10. The overwhelming majority of the τexp values differ considerably from the times at which wave packets would, in theory, propagate along the magnetic field lines corresponding to those of the geomagnetic latitudes φ0 of the observation points. The second important fact is that the W.P. frequency ω is less than ΩH everywhere along its propagation trajectory, including the apogee of the magnetic force line (ΩH is the proton gyrofrequency). Proton flux spectra E ? (30?120) keV, responsible for H.W. generation, were determined. Comparison of the Explorer-45 and OGO-3 measurements published in the literature, with our data, showed that the proton flux density energy responsible for the H.W. excitation Np(MV622) ? (5 × 10?3?10?1) Ha2 where Ha is the magnetic field force in the generation region of these W.P. The electron concentration is Na ? (102?103) cm?3. The values given in the literature are Na ? (10?10?103) cm?3. The e data considered also leads to the conclusion that the generating mechanism of the W.P. studied probably always co-exists with the mechanism of their amplification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号