首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Long-exposure spectroscopy of Mars and Venus with the Extreme Ultraviolet Explorer (EUVE) has revealed emissions of He 584 Å on both planets and He 537 Å/O+ 539 Å and He+ 304 Å on Venus. Our knowledge of the solar emission at 584 Å, eddy diffusion in Mars' upper atmosphere, electron energy distributions above Mars' ionopause, and hot oxygen densities in Mars' exosphere has been significantly improved since our analysis of the first EUVE observation of Mars [Krasnopolsky, Gladstone, 1996, Helium on Mars: EUVE and Phobos data and implications for Mars' evolution, J. Geophys. Res. 101, 15,765-15,772]. These new results and a more recent EUVE observation of Mars are the motivation for us to revisit the problem in this paper. We find that the abundance of helium in the upper atmosphere, where the main loss processes occur, is similar to that in the previous paper, though the mixing ratio in the lower and middle atmosphere is now better estimated at 10±6 ppm. Our estimate of the total loss of helium is almost unchanged at 8×1023 s−1, because a significant decrease in the loss by electron impact ionization above the ionopause is compensated by a higher loss in collisions with hot oxygen. We neglect the outgassing of helium produced by radioactive decay of U and Th because of the absence of current volcanism and a very low upper limit to the seepage of volcanic gases. The capture of solar wind α-particles is currently the only substantial source of helium on Mars, and its efficiency remains at 0.3. A similar analysis of EUV emissions from Venus results in a helium abundance in the upper atmosphere which is equal to the mean of the abundances measured previously with two optical and two mass spectrometers, and a derived helium mixing ratio in the middle and lower atmosphere of 9±6 ppm. Helium escape by ionization and sweeping out of helium ions by the solar wind above the ionopause is smaller than that calculated by Prather and McElroy [1983, Helium on Venus: implications for uranium and thorium, Science 220, 410-411] by a factor of 3. However, charge exchange of He+ ions with CO2 and N2 between the exobase and ionopause and collisions with hot oxygen ignored previously add to the total loss which appears to be at the level of 106 cm−2 s−1 predicted by Prather and McElroy [1983, Science 220, 410-411]. The loss of helium is compensated by outgassing of helium produced by radioactive decay of U and Th and by the capture of the solar wind α-particles with an efficiency of 0.1. We also compare our derived α-particle capture efficiencies for Mars and Venus with observed X-ray emissions resulting from the charge exchange of solar wind heavy ions with the extended atmospheres on both planets [Dennerl et al., 2002, Discovery of X-rays from Venus with Chandra, Astron. Astrophys. 386, 319-330; Dennerl, 2002, Discovery of X-rays from Mars with Chandra, Astron. Astrophys. 394, 1119-1128]. The emissions from both disk and halo on Mars agree with our calculated values; however, we do not see a reasonable explanation for the X-ray halo emission on Venus. The ratio of the charge exchange efficiencies derived from the disk X-ray emissions of Mars and Venus is similar to the ratio of the capture efficiencies for these planets. The surprisingly bright emission of He+ at 304 Å observed by EUVE and Venera 11 and 12 suggests that charge exchange in the flow of the solar wind α-particles around the ionopause is much stronger than in the flow of α-particles into the ionosphere.  相似文献   

2.
We analyze FUV spatially-resolved dayglow spectra obtained at 0.37 nm resolution by the UVIS instrument during the Cassini flyby of Venus. We use a least-squares fit method to determine the brightness of the OI emissions at 130.4 and OI 135.6 nm, and of the bands of the CO fourth positive system which are dominated by fluorescence scattering. We compare the brightness observed along the UVIS foot track of the two OI multiplets with that deduced from a model of the excitation of these emissions by photoelectron impact on O atoms and resonance scattering of the solar 130.4 nm emission. The large optical thickness 130.4 nm emission is accounted for using a radiative transfer model. The airglow intensities are calculated along the foot track and found to agree with the observed 130.4 nm brightness within ∼10%. The modeled OI 135.6 nm brightness is also well reproduced by the model. The oxygen density profile of the VTS3 model is found to be consistent with the observations. We find that self-absorption of the (0, v″) bands of the fourth positive emission of CO is important and we derive a CO vertical column of about 6.4 × 1015 cm−2 in close agreement with the value provided by the VTS3 empirical atmospheric model.  相似文献   

3.
We analyze EUV spatially-resolved dayglow spectra obtained at 0.37 nm resolution by the UVIS instrument during the Cassini flyby of Venus on 24 June 1999, a period of high solar activity level. Emissions from OI, OII, NI, CI and CII and CO have been identified and their disc average intensity has been determined. They are generally somewhat brighter than those determined from the observations made with the HUT spectrograph at a lower activity level, We present the brightness distribution along the foot track of the UVIS slit of the OII 83.4 nm, OI 98.9 nm, Lyman-ß + OI 102.5 nm and NI 120.0 nm multiplets, and the CO C-X and B-X Hopfield-Birge bands. We make a detailed comparison of the intensities of the 834 nm, 989 nm, 120.0 nm multiplets and CO B-X band measured along the slit foot track on the disc with those predicted by an airglow model previously used to analyze Venus and Mars ultraviolet spectra. This model includes the treatment of multiple scattering for the optically thick OI, OII and NI multiplets. It is found that the observed intensity of the OII emission at 83.4 nm is higher than predicted by the model. An increase of the O+ ion density relative to the densities usually measured by Pioneer Venus brings the observations and the modeled values into better agreement. The calculated intensity variation of the CO B-X emission along the track of the UVIS slit is in fair agreement with the observations. The intensity of the OI 98.9 nm emission is well predicted by the model if resonance scattering of solar radiation by O atoms is included as a source. The calculated brightness of the NI 120 nm multiplet is larger than observed by a factor of ∼2-3 if photons from all sources encounter multiple scattering. The discrepancy reduces to 30-80% if the photon electron impact and photodissociation of N2 sources of N(4S) atoms are considered as optically thin. Overall, we find that the O, N2 and CO densities from the empirical VTS3 model provide satisfactory agreement between the calculated and the observed EUV airglow emissions.  相似文献   

4.
Hydroxyl nightglow is intensively studied in the Earth atmosphere, due to its coupling to the ozone cycle. Recently, it was detected for the first time also in the Venus atmosphere, thanks to the VIRTIS-Venus Express observations. The main Δν=1, 2 emissions in the infrared spectral range, centred, respectively, at 2.81 and 1.46 μm (which correspond to the (1-0) and (2-0) transitions, respectively), were observed in limb geometry (Piccioni et al., 2008) with a mean emission rate of 880±90 and 100±40 kR (1R=106 photon cm−2 s−1 (4πster)−1), respectively, integrated along the line of sight. In this investigation, the Bates-Nicolet chemical reaction is reported to be the most probable mechanism for OH production on Venus, as in the case of Earth, but HO2 and O may still be not negligible as mechanism of production for OH, differently than Earth. The nightglow emission from OH provides a method to quantify O3, HO2, H and O, and to infer the mechanism of transport of the key species involved in the production. Very recently, an ozone layer was detected in the upper atmosphere of Venus by the SPICAV (Spectroscopy for Investigation of Characteristics of the Atmosphere of Venus) instrument onboard Venus Express (Montmessin et al., 2009); this discovery enhances the importance of ozone to the OH production in the upper atmosphere of Venus through the Bates-Nicolet mechanism. On Venus, OH airglow is observed only in the night side and no evidence has been found whether a similar emission exists also in the day side. On Mars it is expected to exist both on the day and night sides of the planet, because of the presence of ozone, though OH airglow has not yet been detected.In this paper, we review and compare the OH nightglow on Venus and Earth. The case of Mars is also briefly discussed for the sake of completeness. Similarities from a chemical and a dynamical point of view are listed, though visible OH emissions on Earth and IR OH emissions on Venus are compared.  相似文献   

5.
Two extreme ultraviolet (EUV) spectrophotometers flown in December 1978 on Venera 11 and Venera 12 measured the hydrogen Lyman α emission resonantly scattered in the atmosphere of Venus. Measurements were obtained across the dayside of the disk, and in the exosphere up to 50,000 km. They were analyzed with spherically symmetric models for which the radiative transfer equation was solved. The H content of the Venus atmosphere varies from optically thin to moderately thick regions. A shape fit at the bright limb allows one to determine the exospheric temperature Tc and the number density nc independently of the calibration of the instrument or the exact value of the solar flux. The dayside exospheric temperature was measured for the first time in the polar regions, with Tc = 300 ± 25°K for Venera 11 (79°S) and Tc = 275 ± 25°K (59°S) for Venera 12. At the same place, the density is nc = 4?2+3 × 104 atom.cm?3, and the integrated number density Nt from 250 to 110 km (the level of CO2 absorption) is 2.1 × 1012 atom.cm?2, a factor of 3 to 6 lower than that predicted in aeronomical models. This probably indicates that the models should be revised in the content of H-bearing molecules and should include the effect of dynamics. Across the disk the value of Nt decreases smoothly with a total variation of two from the morning side to the afternoon side. Alternately it could be a latitude effect, with less hydrogen in the polar regions. The nonthermal component if clearly seen up to 40,000 km of altitude. It is twice as abundant as at the time of Mariner 10 (solar minimum). Its radial distribution above 4000 km can be simulated by an exospheric distribution with T = 1030K and n = 103 atom.cm?3 at the exobase level. However, there are less hot atoms between 2000 and 4000 km than predicted by an ionospheric source. A by-product of the analysis is a determination of a very high solar Lyman α flux of 7.6 × 1011 photons (cm2 sec Å)?1 at line center (1 AU) in December 1978.  相似文献   

6.
Ultraviolet (UV) nightglow data from the SPICAV instrument (SPectroscopy for the Investigation of the Characteristics of the Atmosphere of Venus) onboard the Venus Express spacecraft, currently in orbit around Venus, are presented. In its extended source mode, SPICAV has shown that the Venus nightglow in the UV contains essentially Lyman-α and Nitric Oxide (NO) emissions. In the stellar mode, when the slit of the spectrometer is removed, an emission is also observed at the limb in addition to the stellar spectrum. A forward model allows us to identify this feature as being an NO emission. Due to radiative recombination of N and O atoms produced on the dayside of Venus, and transported to the nightside, NO nightglow provides important constraints to the Solar-to-Anti Solar thermospheric circulation prevailing above 90 km. The forward model presented here allows us to derive the altitude of the peak of emission of the NO layer, found at 113.5±6 km, as well as its scale height, of 3.4±1 km and its brightness. The latter is found to be very variable with emissions between 19 Kilo-Rayleigh (kR) and 540 kR. In addition, the NO nightglow is sometimes very patchy, as we are able to observe two distinct emission zones in the field of view. Finally, systematic extraction of this emission from stellar occultations extends the database of the NO emission already reported elsewhere using limb observations.  相似文献   

7.
《Planetary and Space Science》2007,55(12):1673-1700
Spectroscopy for the investigation of the characteristics of the atmosphere of Venus (SPICAV) is a suite of three spectrometers in the UV and IR range with a total mass of 13.9 kg flying on the Venus Express (VEX) orbiter, dedicated to the study of the atmosphere of Venus from ground level to the outermost hydrogen corona at more than 40,000 km. It is derived from the SPICAM instrument already flying on board Mars Express (MEX) with great success, with the addition of a new IR high-resolution spectrometer, solar occultation IR (SOIR), working in the solar occultation mode. The instrument consists of three spectrometers and a simple data processing unit providing the interface of these channels with the spacecraft.A UV spectrometer (118–320 nm, resolution 1.5 nm) is identical to the MEX version. It is dedicated to nadir viewing, limb viewing and vertical profiling by stellar and solar occultation. In nadir orientation, SPICAV UV will analyse the albedo spectrum (solar light scattered back from the clouds) to retrieve SO2, and the distribution of the UV-blue absorber (of still unknown origin) on the dayside with implications for cloud structure and atmospheric dynamics. On the nightside, γ and δ bands of NO will be studied, as well as emissions produced by electron precipitations. In the stellar occultation mode the UV sensor will measure the vertical profiles of CO2, temperature, SO2, SO, clouds and aerosols. The density/temperature profiles obtained with SPICAV will constrain and aid in the development of dynamical atmospheric models, from cloud top (∼60 km) to 160 km in the atmosphere. This is essential for future missions that would rely on aerocapture and aerobraking. UV observations of the upper atmosphere will allow studies of the ionosphere through the emissions of CO, CO+, and CO2+, and its direct interaction with the solar wind. It will study the H corona, with its two different scale heights, and it will allow a better understanding of escape mechanisms and estimates of their magnitude, crucial for insight into the long-term evolution of the atmosphere.The SPICAV VIS-IR sensor (0.7–1.7 μm, resolution 0.5–1.2 nm) employs a pioneering technology: an acousto-optical tunable filter (AOTF). On the nightside, it will study the thermal emission peeping through the clouds, complementing the observations of both VIRTIS and Planetary Fourier Spectrometer (PFS) on VEX. In solar occultation mode this channel will study the vertical structure of H2O, CO2, and aerosols.The SOIR spectrometer is a new solar occultation IR spectrometer in the range λ=2.2–4.3 μm, with a spectral resolution λλ>15,000, the highest on board VEX. This new concept includes a combination of an echelle grating and an AOTF crystal to sort out one order at a time. The main objective is to measure HDO and H2O in solar occultation, in order to characterize the escape of D atoms from the upper atmosphere and give more insight about the evolution of water on Venus. It will also study isotopes of CO2 and minor species, and provides a sensitive search for new species in the upper atmosphere of Venus. It will attempt to measure also the nightside emission, which would allow a sensitive measurement of HDO in the lower atmosphere, to be compared to the ratio in the upper atmosphere, and possibly discover new minor atmospheric constituents.  相似文献   

8.
The Venera 8 descent module measured pressure, temperature, winds and illumination as a function of altitude in its landing on July 22, 1972, just beyond the terminator in the illuminated hemisphere of Venus. The surface temperature and pressure is 741 ± 7°K and 93 ± 1.5kgcm?2, consistent with early Venera observations and showing either no diurnal variation or insignificant diurnal variation in temperature and pressure in the vicinity of the morning terminator. The atmosphere is adiabatic down to the surface. The horizontal wind speed is low near the surface, about 35m/sec between 20 and 40km altitude, and increasing rapidly above 48km altitude to 100–140m/sec, consistent with the 4-day retrograde rotation of the ultraviolet clouds. The illumination at the center of the day hemisphere of Venus is calculated to be about 1% of the solar flux at the top of the atmosphere, consistent with greenhouse models and high enough to permit photography of the Venus surface by future missions. The attenuation below 35km altitude is explained by Rayleigh scattering with no atmospheric aerosols; above 35km there must be substantial extinction of incident light.  相似文献   

9.
Observations at Godhavn, Greenland show that the intersection of the polar cleft with the ionosphere can be recognized by simultaneous occurrence of hydrogen emissions (Hα, Hβ>) and enhanced OI 6300 Å emission. The Hα-line reveals a characteristic narrow and symmetric Doppler profile which is interpreted as indicating that the solar wind protons retain their typical flux and energy spectrum all the way down to the ionosphere. The cleft intersection seems to cover the sector 04:00–22:00 geomagnetic time.  相似文献   

10.
We report the detection of electrons due to photo-ionization of atomic oxygen and carbon dioxide in the Venus atmosphere by solar helium 30.4 nm photons. The detection was by the Analyzer of Space Plasma and Energetic Atoms (ASPERA-4) Electron Spectrometer (ELS) on the Venus Express (VEx) European Space Agency (ESA) mission. Characteristic peaks in energy for such photoelectrons have been predicted by Venus atmosphere/ionosphere models. The ELS energy resolution (ΔE/E∼7%) means that these are the first detailed measurements of such electrons. Considerations of ion production and transport in the atmosphere of Venus suggest that the observed photoelectron peaks are due primarily to ionization of atomic oxygen.  相似文献   

11.
M.V. Keldysh 《Icarus》1977,30(4):605-625
In October 1975 the Venera 9 and 10 space vehicles reached Venus. Two landers separated from the spacecraft and soft-landed on the illuminated side of the planet while their remaining orbiters were inserted into highly elliptical orbits, with pericenters at about 7600 km. These flights became a very important step in the Soviet program of Venus exploration. For the first time two panoramas of the Venus surface were returned to the Earth. Both landers and orbiters were equipped with various scientific instruments for studying the structure and dynamics of the atmosphere, physical properties and structure of the clouds, light attenuation in the atmosphere and illumination properties of the surface at the landing sites, and the composition, structure, and interaction processes in the Venus upper atmosphere and environment. The experiments were of complex character due to the simultaneous measurements from landers and orbiters, while the orbiters delivered very important information provided by systematic observations of the planet with great time and space coverage. In this report the principal characteristics of the flights, construction of the spacecraft, instrumentation, and scheme of landing on the surface are described. The preliminary results of the measurements obtained and their tentative interpretation are discussed.  相似文献   

12.
Observations and computer calculations of OI 7774 airglow emissions excited by conjugate photoelectrons have been carried out. The observations were made at McDonald Observatory, Texas using a 2m grille spectrometer from December 1972 to June 1973. The zenithal emission intensity during conjugate photoelectron precipitation was fairly constant at 2–4 R until conjugate sunset, after which it diminished steadily and ceased near a conjugate solar zenith angle (χc) of 105 ± 3°. A predawn enhancement in both OI 7774 and [OI] 6300 was observed to commence near χc ~ 102°.The computations utilize the two-stream technique of Nagy and Banks (1970) to obtain the escaping photoelectron flux and the local excitation rates of the oxygen emissions. Good agreement with the observations is obtained for the dependence of the emission rate on conjugate solar zenith angle. A lack of agreement in absolute intensity may not be due entirely to uncertainties in the excitation cross section. The discrepancy may indicate significant magnetospheric scattering of photoelectrons with energy greater than 15 eV.  相似文献   

13.
C. Devaux  M. Herman 《Icarus》1975,24(1):19-27
We have used the measurements of the solar flux obtained by the Venera 8 spacecraft inside the atmosphere of Venus and the values of the Venus spherical albedo to deduce the characteristics of the clouds and of the ground. The method used is the exponential kernel approximation and the results have been tested by exact computations with the spherical harmonics method.A cloud layer with an optical thickness τ1 ? 144, an albedo for single scattering ω0 = 0.9998 in the rear infrared, above a Rayleigh layer between 0 and 32 km and a ground of reflectivity ? = 0.4, gives a good agreement with the experimental results. A model with two cloud layers is also discussed.  相似文献   

14.
This paper reports on the first combination of results from in-situ plasma measurements at Venus, using data from Venus Express, and remote sensing data from observations of interplanetary scintillation (IPS). In so doing, we demonstrate the value of combining remote sensing and in-situ techniques for the purpose of investigating interaction between solar wind, under several different conditions, and the Venusian magnetosphere. The ion mass analyser instrument (IMA) is used to investigate solar wind interaction with the Venusian magnetosphere in the presence of two different solar wind phenomena; a co-rotating interaction region (CIR) and a coronal mass ejection (CME). The CIR, detected with IPS and sampled in-situ at Venus is found to dramatically affect upstream solar wind conditions. These case studies demonstrate how combining results from these different data sources can be of considerable value when investigating such phenomena.  相似文献   

15.
Ground based high resolution (R ~ 120,000) spectra of the zenith day sky near 6300 Å were obtained with a PEPSIOS. When compared with the solar spectrum taken with the same spectrometer, the 6300.3 Å line of atomic oxygen was clearly present in emission. The apparent emission rate averaged 6 to 8 kR for solar zenith angles of 50 to 60 deg and decreased smoothly to about 1 kR as the solar zenith angle increased to 95 deg. The average emission line is somewhat different in width than the thermal line width expected with the Jacchia (1971) model for a 250 km altitude.  相似文献   

16.
Isolated events of proton and alpha particle precipitation in the Venusian atmosphere were recorded with the use of the ASPERA-4 analyzer on board the ESA Venus Express spacecraft. Using a Monte Carlo simulation method for calculation of proton and alpha particle precipitations in the Venusian atmosphere, reflected and upward directed particle fluxes have been found. It has been found that only a vanishing percentage of protons and alpha particles are backscattered to the Venusian exosphere when neglecting the induced magnetic field and under conditions of low solar activity. Accounting for the induced field drastically changes the situation: the backscattered by the atmosphere energy fluxes increase up to 44% for the horizontal magnetic field B = 20 nT, measured for Venus, for the case of precipitating protons, and up to 64%, for alpha particles. The reflected energy fluxes increase to about 100% for both protons and alpha particles as the field grows to 40 nT, i.e., the atmosphere is protected against penetration of solar wind particles.  相似文献   

17.
This paper reviews the current knowledge of u.v. solar irradiances beyond 120 nm measured during solar cycle 21. Parameters required to calculate the atmospheric attenuation of the u.v. radiation and the photodissociation rate of neutral constituents are discussed. The effect of scattering is also considered.  相似文献   

18.
We analyze the observations of the hard (ACS SPI, > 150 keV) and soft (GOES, 1–8 Å) X-ray emissions and the microwave (15.5 GHz) emission in the solar flares on September 7, 2005 and December 6 and 13, 2006. The time profiles of the nonthermal emission from these flares had a complex structure, suggesting that active processes in the flare region continued for a long time (more than an hour). We have verified the linear relationship between the nonthermal flux and the time derivative of the soft X-ray flux (the Neupert effect) in the events under consideration. In the first two cases, the Neupert effect held at the time of the most intense nonthermal emission peak, but not at the decay phase of the soft X-ray emission, when the intensity of the nonthermal emission was much higher than the background values. At the same time, the hard X-ray emission was suppressed compared to the main peak, while the microwave emission remained approximately at the same level. In the December 13, 2006 event, the prolonged hard X-ray emission was difficult to observe due to the fast arrival of solar protons, but the Neupert effect did not hold for its main peak either. At comparable intensities of the microwave emission on December 6 and 13, the intensity of the hard X-ray emission on December 13 at the time of the main peak was suppressed approximately by an order of magnitude. These observational facts are indicative of several particle acceleration and interaction episodes under various physical conditions during one flare. When the Neupert effect did not hold, the interaction of electrons took place mainly in a low-density medium. An effective escape of accelerated particles into interplanetary space rather than their precipitation into dense layers of the solar atmosphere may take place precisely at this time.  相似文献   

19.
20.
The upper mesosphere airglow emissions OI 5577, NaD and OH have been observed at Cachoeira Paulista (22.7°S; 45.0°W) Brazil. Nocturnal variations and their seasonal dependencies in amplitude and phase, and the annual variations of these emissions are presented, analysing the data obtained from 1977 to 1982 during the ascending phase of the last solar cycle. The nocturnal variations of the OI 5577 emission and the OH rotational temperature showed a significant semidiurnal oscillation, with the phase of maximum moving from midnight in January to early morning in June. Semiannual variation of the OI 5577 and NaD emissions with the maximum intensities in April/May and October/November were observed. The OH rotational temperature, however, showed an annual variation, maximum in summer and minimum in winter, while no significant seasonal variation was found in the OH emission intensities. Long-term intensity variations are also presented with the solar sunspot numbers and the 10.7 cm flux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号