首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Multi-channel expressions, in the dipole approximation, are used to calculate absorption cross sections for the ejection of an outer subshell electron from atomic oxygen. Autoionization levels have been included and the resulting resonances in the cross section are characterized by the dispersion formula. Averaged absorption cross sections are presented for wavelengths 911-754 Å and 705-675 Å.  相似文献   

2.
On 14 July 1974 the Atmosphere Explorer-C satellite flew through an aurora at F-region altitudes just after local midnight. The effects of the particle influx are clearly evident in the ion densities, the 6300 Å airglow, and the electron and ion temperatures. This event provided an opportunity to study the agreement between the observed ion densities and those calculated from photochemical theory using in situ measurements of such atmospheric parameters as the neutral densities and the differential electron energy spectra obtained along the satellite track. Good agreement is obtained for the ions O2+, NO+ and N2+ using photochemical theory and measured rate constants and electron impact cross sections. Atomic nitrogen densities are calculated from the observed [NO+]/[O2+] ratio. In the region of most intense electron fluxes (20 erg cm−2 sec−1) at 280 km, the N density is found to be between 2 and 7 × 107 cm−3. The resulting N densities are found to account for approx. 60% of the production of N+ through electron impact on N and the resonant charge exchange of O+(2P) with N(4S). This reaction also provides a significant source of O(1S) in the aurora at F-region altitudes. In the region of intense fast electron influx, the reaction with atomic nitrogen is found to be the main loss of O+(2P).  相似文献   

3.
This paper considers the classical method to determine the electron temperatures t 3,O, t 2,O and t 2,N from forbidden lines of the ions O++, O+, and N+, and investigates the influence of uncertainties in atomic data on the accuracy of the determined electron temperatures. The uncertainties in atomic data (the Einstein coefficients for spontaneous transitions and electron ionization cross-sections) are estimated as discrepancies between the values computed by various authors. The error in the electron temperature caused by uncertainties in the atomic data is found to increase with the growth in the electron temperature. At a temperature 10000 K, the errors in the electron temperatures t 3,O, t 2,N, and t 2,O do not exceed 1, 3, and 7%, respectively.  相似文献   

4.
A general Monte Carlo relaxation method has been formulated for the computation of physically self-consistent model stellar atmospheres. The local physical state is obtained by solving simultaneously the equations of statistical equilibrium for the atomic and ionic level populations, the kinetic energy balance equation for the electron gas to obtain the electron temperature, and the equation of radiative transfer. Anisotropic Thomson scattering is included in the equation of transfer and radiation pressure effects are included in the hydrostatic equation. The constraints of hydrostatic and radiative equilibrium are enforced. Local thermodynamic equilibrium (L.T.E.) is assumed as a boundary condition deep in the atmosphere. Elsewhere in the atmosphere L.T.E. is not assumed.The statistical equilibrium equations are solved with no assumptions made concerning detailed balance for the bound-bound radiative processes. The source function is formulated in microscopic detail. All atomic processes contributing to the absorption and emission of radiation are included. The kinetic energy balance equation for the electron gas is formulated in detail. All atomic processes by which kinetic energy is gained and lost by the electron gas are included.The method has been applied to the computation of a model atmosphere for a pure hydrogen early-type star. An idealized model of the hydrogen atom with five bound levels and the continuum was adopted. The results of the trial calculation are discussed with reference to stability, accuracy, and convergence of the solution.Contribution No. 385 from the Kitt Peak National Observatory.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

5.
梁贵云  赵刚 《天文学进展》2005,23(3):248-271
正在进行的实验室天体物理测量解决了X射线天文学的一些问题,这些实验产生了大量可靠的原子数据,它们既可用于电荷分布中电离与复合截面的计算,又可用于对X射线谱线形成的线表、激发截面及双电子复合系数的理解。另有一部分实验注重于解决天体观测的难题,以及验证现有的和寻找新的X射线谱线诊断。讨论了上述实验产生的数据类型,并展示了实验室测量如何为卫星(ASCA、EUVE、Chandra、XMM和ASTRO-E2)观测提供实验依据.  相似文献   

6.
A unifying theoretical approach is presented to derive from the general principles of Quantum Electrodynamics both the radiative transfer equations for polarized radiation and the statistical equilibrium equations for an atomic system interacting with a polarized radiation field. The radiation field is described by means of Stokes parameters while the atomic system is described in terms of its density-matrix operator. The non-diagonal terms of the density matrix are fully accounted for so that this formalism can be suitably employed to describe a wide variety of physical phenomena like resonance scattering, the Hanle effect and the Zeeman effect, either in optically thin or optically thick atmospheres, together with all the possible intermediate situations.The general formulae derived in the first sections of the paper are subsequently particularized introducing the dipole approximation in the relevant matrix elements describing the interaction between the atomic system and the radiation field. The final equations assume a quite compact expression by the introduction of suitable spherical tensors connected with the components of the polarization unit vectors associated with each direction of the radiation field. The general expressions and the main properties of these tensors are discussed in the Appendix.  相似文献   

7.
Unattenuated solar photo rate coefficients and excess energies for dissociation, ionization, and dissociative ionization are presented for atomic and molecular species that have been identified or are suspected to exist in the atmospheres of planets, satellites (moons), comets, or as pollutants in the Earth atmosphere. The branching ratios and cross sections with resonances have been tabulated to the greatest detail possible and the rate coefficients and excess energies have been calculated from them on a grid of small wavelength bins for the quiet and the active Sun at 1 AU heliocentric distance.  相似文献   

8.
Abstract— Electron‐beam studies of extraterrestrial materials with significantly improved spatial resolution, energy resolution, and sensitivity are enabled using a 300 keV SuperSTEM scanning transmission electron microscope (STEM) with a monochromator and two spherical aberration correctors. The improved technical capabilities enable analyses previously not possible. Mineral structures can be directly imaged and analyzed with single‐atomic‐column resolution, liquids, and implanted gases can be detected, and UV‐VIS optical properties can be measured. Detection limits for minor/trace elements in thin (<100 nm thick) specimens are improved such that quantitative measurements of some extend to the sub‐500 ppm level. Electron energy‐loss spectroscopy (EELS) can be carried out with 0.10–0.20 eV energy resolution and atomic‐scale spatial resolution such that variations in oxidation state from one atomic column to another can be detected. Petrographic mapping is extended down to the atomic scale using energy‐dispersive X‐ray spectroscopy (EDS) and energy‐filtered transmission electron microscopy (EFTEM) imaging. Technical capabilities and examples of the applications of SuperSTEM to extraterrestrial materials are presented, including the UV spectral properties and organic carbon K‐edge fine structure of carbonaceous matter in interplanetary dust particles (IDPs), X‐ray elemental maps showing the nanometer‐scale distribution of carbon within GEMS (glass with embedded metal and sulfides), the first detection and quantification of trace Ti in GEMS using EDS, and detection of molecular H2O in vesicles and implanted H2 and He in irradiated mineral and glass grains.  相似文献   

9.
A new calculation of photoionization cross-sections is described for the ground and excited states of atomic helium up to principal quantum number n =25 and angular momentum quantum number l =5. These cross-sections are used to calculate total recombination and cooling coefficients for atomic helium for electron temperatures given by log( T )=1(0.2)4.4. A comparison of the threshold photoionization cross-sections obtained here with extrapolations of the highly accurate bound–bound oscillator strength calculations by Drake shows that the new calculations are in error by no more than 1 per cent. The accuracy of the photoionization cross-sections used by previous workers to derive recombination coefficients is also discussed.  相似文献   

10.
Hyperenthalpic flows are encountered when spatial vehicules reenter the atmosphere (Anderson 1989) or in some astrophysical situations as in envelopes of cool pulsating stars (Lafon 1991). In reentry applications, a bow shock is created at the front of the vehicule. The plasma in the shock layer is highly collisional and the radiative heat flux is of the same order of magnitude as the convective heat flux. It is then necessary to take into account the coupling between aerodynamics and radiation. For high mach numbers, electronic collisional processes are out of equilibrium, and each atomic electronic level has to be considered as a distinct chemical species. The structure of the system is globally non-linear and the coupling is taken into account by mass conservation, energy exchange, and radiation-matter interaction. The radiative transfer also depends on atomic and molecular spectra in conditions of nonequilibrium for which cross sections and reaction rates are not well known and difficult to calculate. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Abstract— We describe a focused ion beam scanning electron microscope (FIB‐SEM) technique that enables coordinated isotopic and mineralogic analysis of planetary materials. We show that site‐specific electron‐transparent sections can be created and extracted in situ using a microtweezer and demonstrate that they are amenable to analysis by secondary ion mass spectrometry (SIMS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). These methods greatly advance the ability to address several fundamental questions in meteoritics, such as accretion and alteration histories of chondrules and the origin and history of preserved nebular and presolar materials.  相似文献   

12.
The relative intensities of the most prominent extreme-ultraviolet lines of Fe  ix , seen in the outer atmospheres of the Sun and other stars, have been shown to be inconsistent with the best available atomic data. The density-sensitive Fe  ix λ 241.7/ λ 244.9 line intensity ratio, for example, yields electron densities in the solar corona that disagree with those obtained from ratios in other ions, particularly at higher densities. We show here that these differences can be largely removed by using newly calculated atomic data, in particular electron impact collision strengths that include pronounced resonance features, and by incorporating a measure of line excitation by collisional excitation and cascading.  相似文献   

13.
The expressions for “survival” probabilities are presented for an atomic hydrogen particle moving on a trajectory from far regions of the heliosphere to the vicinity of the Sun. Three “destroying” processes have been considered; photoionization, charge transfer and electron ionization. The solar wind has been assumed to be a two-flux steady stream radially expanding with constant flow velocity. Recent profiles of solar-wind electron temperature have been used. The results can be useful for theoretical analyses as well as for analysis of spaceflight observations.  相似文献   

14.
Values of the proton collisional excitation and deexcitation cross sections for all transitions between the Fe+12 ground configuration levels are calculated using semi-classical Coulomb excitation theory. Rate constants for these processes are then derived for coronal temperatures and are shown to be comparable in all cases to the corresponding electron rate constants.  相似文献   

15.
J. Matthews   《Astroparticle Physics》2005,22(5-6):387-397
A simple, semi-empirical model is used to develop the hadronic portion of air showers in a manner analogous to the well-known Heitler splitting approximation of electromagnetic cascades. Various characteristics of EAS are plainly exhibited with numerical predictions in good accord with detailed Monte Carlo simulations and with data. Results for energy reconstruction, muon and electron sizes, the elongation rate, and for the effects of the atomic number of the primary are discussed.  相似文献   

16.
New measurements of line intensity ratios in the Be-like ion Si xi are presented for observations of the quiet Sun, active regions, coronal holes and above-limb regions obtained using the Coronal Diagnostic Spectrometer on the Solar and Heliospheric Observatory. A model ion, constructed using the best available atomic data, is used to predict the line intensity ratios for a wide range of electron temperatures and densities. Comparisons of the theoretical ratios with the new intensity ratios as well as with those from previous solar observations and laboratory measurements are given. The usefulness of the ratios for electron temperature and density diagnostics, as well as for spectrometer calibration, is discussed.  相似文献   

17.
Theoretical electron density sensitive line ratios   R 1– R 6  of Si  x soft X-ray emission lines are presented. We found that these line ratios are sensitive to electron density n e, and the ratio R 1 is insensitive to electron temperature T e. For reliable determination of the electron density of laboratory and astrophysical plasmas, atomic data, such as electron impact excitation rates, are very important. Our results reveal that the discrepancy of the line ratios from different atomic data calculated with the distorted wave (DW) approximation and the R-matrix method is up to 19 per cent at   n e= 2 × 108 cm−3  . We applied the theoretical intensity ratio R 1 to the Low Energy Transmission Grating Spectrometer (LETGS) spectrum of the solar-like star Procyon. By comparing the observed value (1.29) with the theoretical calculation, the derived electron density n e is  2.6 × 108 cm−3  , which is consistent with that derived from  (C  v < 8.3 × 108 cm−3)  . When the temperature structure of the Procyon corona is taken into account, the derived electron density increases from   n e= 2.6 × 108  to  2.8 × 108 cm−3  .  相似文献   

18.
We examine the electric field hypothesis as a possible explanation of a stable auroral red arc. An electric field perpendicular to the geomagnetic field in the ionosphere heats the ambient F-region electrons and ions. Given large enough electric fields, the electrons can be heated sufficiently to excite the OI (1D) term of atomic oxygen by electron impact, giving rise to the λ6300 emission characteristic of the red arc. The electron and ion heating rates are determined by the relative drift between the plasma and neutral gas.  相似文献   

19.
Calculations are presented of energy spectra and angular and spatial distributions of electron fluxes in the ionosphere resulting from precipitation ofmonoenergetic (E = 25, 50 and 100 eV) electrons. The incident electrons are assumed to be isotropic over the downward direction. It is found that the resulting steady-state electron fluxes above ca. 300 km are highly anisotropic, and that the pitch angle distribution is energy dependent. About 15 per cent of the incident electrons are backscattered elastically to the protonosphere. A much larger number of electrons escape after they have deposited a part of their energy in the atmosphere. The mean energy of the escaping electrons is about half that of the incident electrons. About 50% of the incident energy is absorbed in the atmosphere, the remainder being returned to the protonosphere. The rate of absorption of energy is a maximum at heights between 300 and 400 km. Most of the energy is absorbed in ionization and excitation of atomic oxygen. An appreciable amount of energy is, however, absorbed as heat by the ambient electron gas. Altitude profiles are presented of the rates of ionization, excitation, and electron heating caused by soft electron precipitation.  相似文献   

20.
Calculations are presented of the auroral emission of a line at 1084 Å of ionized atomic nitrogen that arises from electron impact induced simultaneous ionization and dissociation of molecular nitrogen. For an aurora of IBC Class II+, we predict 330 R of 1084 Å. Estimates are also presented of the intensities of the argon lines at 1048 and 1067 Å.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号