首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spatial GHG inventory at the regional level: accounting for uncertainty   总被引:3,自引:1,他引:2  
R. Bun  Kh. Hamal  M. Gusti  A. Bun 《Climatic change》2010,103(1-2):227-244
Methodology and geo-information technology for spatial analysis of processes of greenhouse gas (GHG) emissions from mobile and stationary sources of the energy sector at the level of elementary plots are developed. The methodology, which takes into account the territorial specificity of point, line, and area sources of emissions, is based on official statistical data surveys. The spatial distribution of emissions and their structure for the main sectors of the energy sector in the territory of the Lviv region of Ukraine are analyzed. The relative uncertainties of emission estimates obtained are calculated using knowledge of the spatial location of emission sources and following the Tier 1 and Tier 2 approaches of IPCC methodologies. The sensitivity of total relative uncertainty to change of uncertainties in input data uncertainties is studied for the biggest emission point sources. A few scenarios of passing to the alternative energy generation are considered and respective structural changes in the structure of greenhouse gas emissions are analyzed. An influence of these structural changes on the total uncertainty of greenhouse gas inventory results is studied.  相似文献   

2.
Total uncertainty in greenhouse gas (GHG) emissions changes over time due to “learning” and structural changes in GHG emissions. Understanding the uncertainty in GHG emissions over time is very important to better communicate uncertainty and to improve the setting of emission targets in the future. This is a diagnostic study divided into two parts. The first part analyses the historical change in the total uncertainty of CO2 emissions from stationary sources that the member states estimate annually in their national inventory reports. The second part presents examples of changes in total uncertainty due to structural changes in GHG emissions considering the GAINS (Greenhouse Gas and Air Pollution Interactions and Synergies) emissions scenarios that are consistent with the EU’s “20-20-20” targets. The estimates of total uncertainty for the year 2020 are made under assumptions that relative uncertainties of GHG emissions by sector do not change in time, and with possible future uncertainty reductions for non-CO2 emissions, which are characterized by high relative uncertainty. This diagnostic exercise shows that a driving factor of change in total uncertainty is increased knowledge of inventory processes in the past and prospective future. However, for individual countries and longer periods, structural changes in emissions could significantly influence the total uncertainty in relative terms.  相似文献   

3.
省级土地利用变化和林业(LUCF)温室气体清单主要评估“森林和其他木质生物质生物量碳储量的变化”和“森林转化温室气体排放”两类主要温室气体的排放源或吸收汇。省级LUCF温室气体清单编制方法以政府间气候变化专门委员会(IPCC)有关国家温室气体清单指南为基础,结合中国LUCF活动的实际情况,特别是在考虑核心关键数据的可获得性与可靠性的基础上制订完成。同时还建立了适用于不同省的关键排放因子和参数数据库,旨在为科学合理地编制中国省级LUCF温室气体清单提供方法学依据。  相似文献   

4.
Uncertainty analysis facilitates identification of the most important categories affecting greenhouse gas (GHG) inventory uncertainty and helps in prioritisation of the efforts needed for development of the inventory. This paper presents an uncertainty analysis of GHG emissions of all Kyoto sectors and gases for Finland consolidated with estimates of emissions/removals from LULUCF categories. In Finland, net GHG emissions in 2003 were around 69 Tg (±15 Tg) CO2 equivalents. The uncertainties in forest carbon sink estimates in 2003 were larger than in most other emission categories, but of the same order of magnitude as in carbon stock change estimates in other land use, land-use change and forestry (LULUCF) categories, and in N2O emissions from agricultural soils. Uncertainties in sink estimates of 1990 were lower, due to better availability of data. Results of this study indicate that inclusion of the forest carbon sink to GHG inventories reported to the UNFCCC increases uncertainties in net emissions notably. However, the decrease in precision is accompanied by an increase in the accuracy of the overall net GHG emissions due to improved completeness of the inventory. The results of this study can be utilised when planning future GHG mitigation protocols and emission trading schemes and when analysing environmental benefits of climate conventions.  相似文献   

5.
The Agriculture, forestry and other land use (AFOLU) sector as a whole accounts for more than 80% of the total greenhouse gas (GHG) emission in Nepal. This study estimates the GHG emissions from the AFOLU sector in the business as usual (BAU) case during 2010–2050 and identifies the economically attractive countermeasures to abate GHG emissions from the sector at different carbon prices. It also estimates the carbon price elasticity of GHG abatement from the sector. The study finds that enteric fermentation processes in the livestock and emissions from agricultural soils are the two major contributors of GHG emission in AFOLU sector. It identifies no-regret abatement options in the AFOLU sector that could mitigate about 41.5% of the total GHG emission during 2016–2050 in the BAU scenario. There would be a net cumulative carbon sequestration of 16 million tonnes of carbon dioxide equivalent (MtCO2e) at $10 per tonne of carbon dioxide equivalent (tCO2e) during the period. Carbon price above $75/tCO2e is not found to be much effective in achieving significant additional reduction in GHG emissions from the AFOLU sector.  相似文献   

6.
Livestock constitutes an integral component of Indian agriculture sector and also a major source of GHGs emissions. The study presents a detailed inventory of GHG emissions at district/state level from different age-groups, indigenous and exotic breed of different Indian livestock categories estimated using the recent census 2003 and country-specific emission coefficients based on IPCC guidelines. The total methane emission including enteric fermentation and manure management of livestock was estimated at 11.75 Tg/year for the year 2003. Enteric fermentation constitutes ~91 % of the total methane emissions from Indian livestock. Dairy buffalo and indigenous dairy cattle together contribute 60 % of the methane emissions. The total nitrous oxide emission from Indian livestock for the year 2003 is estimated at 1.42 Gg/year, with 86.1 % contribution from poultry. The total GHGs emission from Indian livestock is estimated at 247.2 Mt in terms of CO2 equivalent emissions. Although the Indian livestock contributes substantially to the methane budget, the per capita emission is only 24.23 kgCH4/animal/year. Using the remote sensing derived potential feed/fodder area available for livestock, the average methane flux was calculated as 74.4 kg/ha. The spatial patterns derived in GIS environment indicated the regions with high GHGs emissions that need to be focused subsequently for mitigation measures. The projected estimates indicate a likely increase of 40 % in methane emissions from buffalo population.  相似文献   

7.
国家温室气体清单时间序列一致性和2005年清单重算研究   总被引:1,自引:0,他引:1  
《巴黎协定》透明度后续实施细则对发展中国家温室气体清单时间序列一致性方面的要求显著增强。文中基于IPCC清单指南中对温室气体清单重算的要求,对作为我国国家自主贡献基年的2005年温室气体清单进行重算。由于增加了新的排放源或吸收汇、更新部分活动水平或排放因子数据以及采用了更新的方法学,重算后的2005年国家温室气体清单排放量(以CO2当量计,下同)为80.15亿t(不包括土地利用、土地利用变化和林业,即LULUCF),相比重算前增加了6.6%。能源领域对重算后总排放量上升影响最大,增加了4.26亿t,其中CO2增长主要来自第三次全国经济普查(三经普)对2005年化石燃料消费量的修订,甲烷(CH4)和氧化亚氮(N2O)排放上升主要原因是新增加了排放源。未来我国将更频繁地对以往清单年份开展重算,建议结合《巴黎协定》实施细则要求加强对我国温室气体清单时间序列一致性问题的研究,以更好地支撑国内应对气候变化决策分析,以及满足未来《巴黎协定》下的履约要求。  相似文献   

8.
The energy sector is the main contributor to GHG emissions in Saudi Arabia. The tremendous growth of GHG emissions poses serious challenges for the Kingdom in terms of their reduction targets, and also the mitigation of the associated climate changes. The rising trend of population and urbanization affects the energy demand, which results in a faster rate of increase in GHG emissions. The major energy sector sources that contribute to GHG emissions include the electricity generation, road transport, desalination plants, petroleum refining, petrochemical, cement, iron and steel, and fertilizer industries. In recent years, the energy sector has become the major source, accounting for more than 90% of national CO2 emissions. Although a substantial amount of research has been conducted on renewable energy resources, a sustainable shift from petroleum resources is yet to be achieved. Public awareness, access to energy-efficient technology, and the development and implementation of a legislative framework, energy pricing policies, and renewable and alternative energy policies are not mature enough to ensure a significant reduction in GHG emissions from the energy sector. An innovative and integrated solution that best serves the Kingdom's long-term needs and exploits potential indigenous, renewable, and alternative energy resources while maintaining its sustainable development stride is essential.

Policy relevance

The main contributor to GHG emissions in Saudi Arabia is the energy sector that accounts for more than 90% of the national CO2 emissions. Tremendous growth of GHG emissions poses serious challenges for the Kingdom in their reduction and mitigating the associated climate changes. This study examines the changing patterns of different activities associated with energy sector, the pertinent challenges, and the opportunities that promise reduction of GHG emissions while providing national energy and economic security. The importance of achieving timely, sustained, and increasing reductions in GHG emissions means that a combination of policies may be needed. This study points to the long-term importance of making near- and medium-term policy choices on a well-informed, strategic basis. This analytical paper is expected to provide useful information to the national policy makers and other decision makers. It may also contribute to the GHG emission inventories and the climate change negotiations.  相似文献   

9.
基于各国提交的165份国家自主贡献文件,以其中提出的减排目标为基准,尽可能充分地考虑了减排目标的范围不确定性、不同经济情景带来的碳强度减排目标不确定性、减排气体种类边界差异、碳排放达峰约束等因素,并通过蒙特卡洛模拟的方法对全球、各区域和主要经济体的温室气体排放总量、不确定度及其来源进行了定量分析.结果表明,到2030年...  相似文献   

10.
Results of research and practical experience confirm that stabilization of GHG concentrations will require a tremendous effort. One of the sectors identified as a significant source of methane (CH4) emissions are solid waste disposal sites (SWDS). Landfills are the key source of CH4 emissions in the emissions inventory of Slovakia, and the actual emission factors are estimated with a high uncertainty level. The calculation of emission uncertainty of the landfills using the more sophisticated Tier 2 Monte Carlo method is evaluated in this article. The software package that works with the probabilistic distributions and their combination was developed with this purpose in mind. The results, sensitivity analysis, and computational methodology of the CH4 emissions from SWDS are presented in this paper.  相似文献   

11.
An uncertainty assessment of the Austrian greenhouse gas inventory provided the basis for this analysis. We isolated the factors that were responsible for the uncertainty observed, and compared our results with those of other countries. Uncertainties of input parameters were used to derive the uncertainty of the emission estimate. Resulting uncertainty using a Monte Carlo approach was 5.2% for the emission levels of 2005 and 2.4 percentage points for the 1990–2005 emission trend. Systematic uncertainty was not assessed. This result is in the range expected from previous experience in Austria and other countries. The determining factor for the emission level uncertainty (not the trend uncertainty) is the uncertainty associated with soil nitrous oxide N2O emissions. Uncertainty of the soil N2O release rate is huge, and there is no agreement even on the magnitude of the uncertainty when country comparisons are made. In other words, reporting and use of N2O release uncertainty are also different between countries; this is important, as this single factor fully determines a country’s national greenhouse gas inventory uncertainty. Inter-country comparisons of emission uncertainty are thus unable to reveal much about a country’s inventory quality. For Austria, we also compared the results of the Monte Carlo approach to those obtained from a simpler error propagation approach, and find the latter to systematically provide lower uncertainty. The difference can be explained by the ability of the Monte Carlo approach to account for statistical dependency of input parameters, again regarding soil N2O emissions. This is in contrast to the results of other countries, which focus less on statistical dependency when performing Monte Carlo analysis. In addition, the error propagation results depend on treatment of skewed probability distributions, which need to be translated into normal distributions. The result indicates that more attention needs to be given to identifying statistically dependent input data in uncertainty assessment.  相似文献   

12.
Adrian Leip 《Climatic change》2010,103(1-2):245-261
The greenhouse gas inventory of the European Communities and its estimation of the uncertainty is built from 15 individual and independent greenhouse gas inventories. This presents a particular challenge and is possible only if homogeneous information is available for all member states and if a proper evaluation of correlation between member states is performed. To this end, we present a methodology that estimates a quantitative measure for the aggregated Tier-level as well as the uncertainty for the main categories in the agriculture sector. In contrast to the approach suggested in the IPCC guidelines, which uses uncertainty estimates for activity data and emissions factors for each source category, the method presented uses quantitative information from individual parameters used in the inventory calculations, in combination with a well defined procedure to aggregate the information. Not surprisingly, N2O emissions from agricultural soils are found to dominate the uncertainty. The results demonstrate the importance of correlation, if uncertainties are combined for the whole of Europe. The biggest challenge seems to be to conceptually harmonize the uncertainty estimates for the activity data (which tend to be underestimated) and emission factors (which tend to be overestimated).  相似文献   

13.
《Climate Policy》2013,13(1):19-33
Abstract

The two project-based Kyoto mechanisms, joint implementation (JI) and the clean development mechanism (CDM), require a determination of the “baseline”, the development of greenhouse gas (GHG) emissions in the absence of the project. This paper examines, whether absolute (given in tCO2 equivalent) or relative baselines (“benchmarks”, given, e.g. in tCO2 equivalent/MWh) should be applied for JI/CDM projects in the energy sector. Accuracy of the GHG emission reduction and manageability of GHG emission balances are used as evaluation criteria. The results show that relative baselines are a more accurate instrument for the estimation of emission reductions in JI/CDM projects in the energy sector without posing significant additional risks to the management of GHG emission balances for large entities. In comparison to absolute baselines, relative baselines indicate in a more realistic and conservative manner the amount of emission reductions obtained in the energy system and give more appropriate incentives to project sponsors. The additional risks of relative baselines are likely to be small compared to the normal deviation of the domestic/internal GHG emissions. The findings are in line with the Marrakesh Accords, which set restrictions to application of absolute baselines.  相似文献   

14.
RMAPS_Chem V1.0系统是基于WRF_Chem模式建立的服务于华北区域雾霾等污染预报业务的模式系统,该研究着重针对系统中污染排放清单不确定性带来的SO2浓度预报偏差较大问题,采用EnKF源反演和误差统计订正相结合的方法对排放清单进行了改进,形成了一套优化后的华北区域SO2排放清单。通过输入初始清单和优化清单对2017年10月进行模拟,并与华北地区616个地面环境监测站观测值进行对比,结果表明:EnKF源反演结合误差统计订正的排放清单优化方法适用于SO2排放清单的改进,有效降低了清单系统性偏差,针对主要区域及重点城市的检验显示模拟结果接近观测值;排放清单优化后模拟误差显著降低,如河北南部、山东西部至北京一带模式预报均方根误差与归一化平均绝对误差明显下降,区域内站点模拟误差呈正态分布特征,误差分布范围、最大概率出现范围均明显变窄,且最大误差概率明显上升。  相似文献   

15.
Agriculture is responsible for 25?C30% of global anthropogenic greenhouse gas (GHG) emissions but has thus far been largely exempted from climate policies. Because of high monitoring costs and comparatively low technical potential for emission reductions in the agricultural sector, output taxes on emission-intensive agricultural goods may be an efficient policy instrument to deal with agricultural GHG emissions. In this study we assess the emission mitigation potential of GHG weighted consumption taxes on animal food products in the EU. We also estimate the decrease in agricultural land area through the related changes in food production and the additional mitigation potential in devoting this land to bioenergy production. Estimates are based on a model of food consumption and the related land use and GHG emissions in the EU. Results indicate that agricultural emissions in the EU27 can be reduced by approximately 32 million tons of CO2-eq with a GHG weighted tax on animal food products corresponding to ?60 per ton CO2-eq. The effect of the tax is estimated to be six times higher if lignocellulosic crops are grown on the land made available and used to substitute for coal in power generation. Most of the effect of a GHG weighted tax on animal food can be captured by taxing the consumption of ruminant meat alone.  相似文献   

16.
Agricultural soils are a major source of atmospheric nitrous oxide (N2O), a potent greenhouse gas (GHG). Because N2O emissions strongly depend on soil type, climate, and crop management, their inventory requires the combination of biophysical and economic modeling, to simulate farmers’ behavior. Here, we coupled a biophysical soil-crop model, CERES-EGC, with an economic farm type supply model, AROPAj, at the regional scale in northern France. Response curves of N2O emissions to fertilizer nitrogen (Nf) inputs were generated with CERES-EGC, and linearized to obtain emission factors. The latter ranged from 0.001 to 0.0225 kg N2O-N kg???1 Nf, depending on soil and crop type, compared to the fixed 0.0125 value of the IPCC guidelines. The modeled emission factors were fed into the economic model AROPAj which relates farm-level GHG emissions to production factors. This resulted in a N2O efflux 20% lower than with the default IPCC method. The costs of abating GHG emissions from agriculture were calculated using a first-best tax on GHG emissions, and a second-best tax on their presumed factors (livestock size and fertilizer inputs). The first-best taxation was relatively efficient, achieving an 8% reduction with a tax of 11 €/ t-CO2-equivalent, compared to 68 €/t-CO2 eq for the same target with the second-best scheme.  相似文献   

17.
In the first Kyoto commitment period Russia could be the major supplier for the greenhouse gases (GHG) emissions market. Potential Russian supply depends on the ability of Russia to keep GHG emissions lower than the Kyoto target. In the literature there is no common understanding of the total trading potential of Russia at the international carbon market. In this paper we focus on CO2 emission, which constituted nearly 80%of Russian GHG emission. We compare different projections of Russian CO2emission and analyze the most important factors, which predetermine the CO2emission growth. In a transition economy these factors are: Gross Domestic Product(GDP) dynamic, changes of GDP structure, innovation activity, transformation of export-import flows and response to the market signals. The input-output macroeconomic model with the two different input-output tables representing old and new production technologies has been applied for the analysis to simulate technological innovations and structural changes in the Russian economy during transition period. The Russian supply at the international GHG market without forest sector may be up to 3 billion metric ton of CO2 equivalent. Earlier actions to reduce CO2 emission are critical to insure theRussiansupply at the international carbon market. With regard to the current status of the Russian capital market, the forward trading with OECD countries is only the possibility to raise initial investments to roll no-regret and low-cost GHG reduction. This paper discusses uncertainties of RussianCO2emission dynamics and analyzes the different incentives to lower the emission pathway.  相似文献   

18.
Over the last three decades, socio-economic, demographic and technological transitions have been witnessed throughout the world, modifying both sectorial and geographical distributions of greenhouse gas (GHG) emissions. Understanding these trends is central to the design of current and future climate change mitigation policies, requiring up-to-date methodologically robust emission inventories such as the Emissions Database for Global Atmospheric Research (EDGAR), the European Commission’s in-house, independent global emission inventory. EDGAR is a key tool to track the evolution of GHG emissions and contributes to quantifying the global carbon budget, providing independent and systematically calculated emissions for all countries.According to the results of the EDGAR v.5.0 release, total anthropogenic global greenhouse gas emissions (excluding land use, land use change and forestry) were estimated at 49.1 Gt CO2eq in 2015, 50 % higher than in 1990, despite a monotonic decrease in GHG emissions per unit of economic output. Between 1990 and 2015, emissions from developed countries fell by 9%, while emissions from low to medium income countries increased by 130%, predominantly from 2000 onwards. The 27 Member States of the European Union and the United Kingdom led the pathway for emission reductions in industrialised economies whilst, in developing countries, the rise in emissions was driven by higher emissions in China, India, Brazil and nations in the South-East Asian region. This diversity of patterns shows how different patterns for GHG emissions are and the need for identifying regionally tailored emission reduction measures.  相似文献   

19.
以武汉市为研究区域,基于实地调查获得典型行业污染源活动水平,以大气污染物排放清单编制技术指南为参考,利用排放因子法建立2014年武汉市大气污染源排放清单,并结合经纬度、人口密度分布、土地利用类型、道路长度等数据将排放清单进行了3 km×3 km网格化处理.结果表明,2014年武汉市SO2、NOx、PM10、PM2.5、CO、BC、OC、VOCs和NH3排放量分别为10.3、17.0、16.3、7.1、63.1、0.6、0.4、19.8和1.6万t.固定燃烧源为SO2排放的主要来源,其贡献率约64%;移动源为NOx的主要来源,其贡献率约51%;颗粒物排放主要来源于扬尘源和工艺过程源;CO和VOCs主要来源于工艺过程源,BC和OC排放均以移动源和生物质燃烧源为主,NH3排放主要来自农业源.污染物排放主要集中在青山区至新洲区一带.  相似文献   

20.
In recent years, China has implemented several measures to improve air quality. The Beijing-Tianjin-Hebei(BTH)region is one area that has suffered from the most serious air pollution in China and has undergone huge changes in air quality in the past few years. How to scientifically assess these change processes remain the key issue in further improving the air quality over this region in the future. To evaluate the changes in major air pollutant emissions over this region, this paper employs ens...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号