首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wave-Mean Flow Interaction: the Role of Continuous-Spectrum Disturbances   总被引:2,自引:0,他引:2  
Traditionally, “eddy feeds zonal flow” in the atmosphere is considered as a result of decaying unstable waves. We show that disturbances made of non-modal solutions-the continuous-spectrum disturbances-can also effectively transport zonal angular momentum and interact with the zonal basic flow. These disturbances, though stable, eventually decay, losing their energy to strengthen the westerly jets in the atmosphere.Calculations with observational data illustrate that the atmospheric zonal flow is maintained primarily by continuous-spectrum disturbances rather than by unstable waves. Angular momentum transport by continuous-spectrum disturbances is one order of magnitude larger than that by all kinds of normal modes (referred as discrete-spectrum disturbances) including unstable waves.  相似文献   

2.
    
Atmospheric disturbances at 300 hPa are decomposed into normal modes, referred as discrete—spectrum disturbances which can propagate freely in the observed zonal mean flow, and non—modal transient disturbances, referred as continuous—spectrum disturbances which are continuously sheared and eventually absorbed by the zonal flow. It is shown that normal modes represent only a small fraction of the observed atmospheric disturbances, while continuous—spectrum disturbances represent the majority of observed disturbances, even when the basic flow is unstable. Daily variabilities of the observed continuous—spectrum disturbances are presented. They are shown to follow the results of wave—packet theory. Calculations suggest that there are abundant sources to excite continuous—spectrum disturbances in the atmosphere. This research was partly supported by the Institute of Atmospheric Physics, Chinese Academy of Sciences. Additional support is provided by NASA Grant NAGW3517 and DOE Grant DEFG0285-ER60314 to SUNY at Stony Brook.  相似文献   

3.
    
Traditionally, “ eddy feeds zonal flow” in the atmosphere is considered as a result of decaying unstable waves. We show that disturbances made of non-modal solutions -the continuous-spec-trum disturbances-can also effectively transport zonal angular momentum and interact with the zonal basic flow. These disturbances, though stable, eventually decay, losing their energy to strengthen the westerly jets in the atmosphere. Calculations with observational data illustrate that the atmospheric zonal flow is maintained primarily by continuous-spectrum disturbances rather than by unstable waves. Angular momen-tum transport by continuous-spectrum disturbances is one order of magnitude larger than that by all kinds of normal modes (referred as discrete-spectrum disturbances) including unstable waves. This research was partly supported by the Chinese Program on Basic Research and by the Institute of Atmospheric Physics, Chinese Academy of Sciences. It was also supported by NASA Grant NAGW 3517, and DOE Grant DEFG0285-ER60314 to the State University of New York at Stony Brook.  相似文献   

4.
Summary An initial value problem is proposed to study the influence of mountains upon atmospheric flows. The normal mode, quasigeostrophic theory of lee cyclogenesis is revisited; in order to model Alpine cyclogenesis, the flow, upon which the mountain acts, should represent a cyclone wave propagating eastward in a sheared zonal current. Two different models are considered in order to describe cyclone waves: an unstable Eady normal mode and a finite amplitude, neutral Rossby mode in the two layer model. It is shown that the topographic modifications proper of normal modes emerge very rapidly from the integration of the initial value problem. It is also shown that an enhanced deepening of the upper level trough can occur when finite amplitude effects are taken into account.With 8 Figures  相似文献   

5.
 Comprehensive global energetics analysis is carried out for the NCAR CCM2 with different horizontal resolutions of R15, T42, T63, and T106 to assess the effect of various model truncations on the global energetics characteristics in climate models. Both the energy levels and energy transformations are examined over the zonal wave number domain during a northern winter and summer. In addition to the simulated atmosphere, the ECMWF global analysis during 1986 to 1990 is analyzed for comparison using the same diagnostic scheme. Previous studies have revealed that zonal kinetic energy is supplied by synoptic disturbances in terms of the zonal-wave interactions of kinetic energy. According to our result, however, such an energy flow from eddies to zonal motions is valid only for zonal wave numbers up to about 30. We find that the zonal-wave interactions of kinetic energy change sign beyond wave number 30 where the energy is transformed from zonal to eddies for both the ECMWF and CCM2-T106. The large-scale zonal motions are diffusive against the short waves beyond wave number 30, which may well be parameterized by various forms of the diffusion schemes. We suggest from this result that the atmospheric disturbances with wave numbers lower than 30 are necessary to represent accurately the two-way interactions between zonal and eddy motions, because these waves can actively influence the behavior of the zonal motions. Based on this finding, we suggest that the model resolution of R15 is inadequate for climate studies from the energetics point of view, and that resolution of T42 is the minimum requirement to represent the general circulation adequately. Some other discrepancies are discussed in detail for the coarse resolution climate models. Received: 15 July 1996/Accepted: 3 January 1997  相似文献   

6.
In part I of this paper, we have discussed two problems: the general properties of two-dimensional baro-tropic motion and the evolution and structure of both Rossby wave packet and inertio-gravity wave packet. In this part, we shall continue our discussion. Third, normal modes and continuous spectra of both quasi-geostrophic and non-geostrophic models, their different behaviour, and the comparison of normal mode approach to the wave packet approach. Fourth, weakly nonlinear theory of interaction based on the analysis of eddy transports. A nonzonal basic flow as well as non-geostroptaic model is also included in the consideration. The last, the fully nonlinear theory, making emphasis on the conditions for the maintenance of nonzonal disturbances and the conditions for their continuous and complete absorption by the zonal flow. A comparison of Rossby wave absorption to energy cascade in the two-dimensional turbulence is also given.  相似文献   

7.
On the generation and maintenance of atmospheric disturbances   总被引:1,自引:0,他引:1  
Blocking is one of the intensive atmospheric disturbances which can maintain for a long time. In this paprer we investigate the general conditions favorable for the generation and maintenance of the intensive disturbances. First, the evolutional process of disturbances superimposed on a jet-like zonal flow is studied by using the wave-packet representation and the WKBJ method. Second, the mechanism for generation and maintenance of disturbances is investigated by using the nonlinear equations and the general physical laws. Finally, some numerical experiments are given for illustration, showing the rapid absorption of disturbances by the jet-like zonal flow in one case and the maintenance of disturbances for a long time in the other case.  相似文献   

8.
与北极涛动或北半球环状模相关的纬向对称的正规模态   总被引:6,自引:3,他引:3  
作为一个全球气候变率的重要模态,北极涛动或北半球环状模态(AO/NAM)一般由北半球海平面气压变率的EOF1来表示。但是通常认为EOF1仅有统计学意义而并不能够表明它是否是一种实际的物理模态。另一方面,现有的波-流相互作用理论也仅能给出纬向风的纬向平均状况,而不能够保证沿着某一纬圈的变化,所以它并不意味着一个具有半球尺度的纬向对称的相干结构能够组织起来。因此AO/NAM的形成机制仍然是一个具有争议的问题。文章提出纬向对称的或环状的正规模态与基本气候态附近的线性(进而非线性)动力学之间有着最直接的联系,因而可能在AO/NAM动力学的理解中扮演重要角色。为了深入探讨AO/NAM的动力学本质,使用p-坐标球面原始方程计算了冬季北半球及全球气候基本态附近的线性动力系统纬向对称的正规模态,发现在半球尺度上的纬向对称正规模态具有AO/NAM的经向偶极子及垂直方向近似正压的空间结构特征。而这些纬向对称正规模的时间变化尺度取决于与其他非纬向对称正规模间的相互作用。从而说明了AO/NAM可能是半球尺度上纬向对称正规模态的动力学行为的反映。  相似文献   

9.
The three-dimensional nonlinear quasi-geostrophic potential vorticity equation is reduced to a linear form in the stream function in spherical coordinates for the permanent wave solutions consisting of zonal wavenumbers from 0 to n and rn vertical components with a given degree n. This equation is solved by treating the coefficient of the Coriolis parameter square in the equation as the eigenvalue both for sinusoidal and hyperbolic variations in vertical direction. It is found that these solutions can represent the observed long term flow patterns at the surface and aloft over the globe closely. In addition, the sinusoidal vertical solutions with large eigenvalue G are trapped in low latitude, and the scales of these trapped modes are longer than 10 deg. lat. even for the top layer of the ocean and hence they are much larger than that given by the equatorial β-plane solutions. Therefore such baroclinic disturb-ances in the ocean can easily interact with those in the atmosphere.Solutions of the shallow water potential vorticity equation are treated in a similar manner but with the effective depth H = RT / g taken as limited within a small range for the atmosphere.The propagation of the flow energy of the wave packet consisting of more than one degree is found to be along the great circle around the globe both for barotropic and for baroclinic flows in the atmosphere.  相似文献   

10.
The problems on evolution of large-scale disturbances and their interaction with mean flow recently attract much effort of meteorologists due to their practical importance in weather and climate predictions. In this paper, some theoretical results obtained in current investigations of these problems will be reviewed. A barotropic atmosphere is taken in this paper, and the baroclinic atmosphere is left in our second paper.The following aspects are reviewed: First, the general properties of two-dimensional barotropic motion both in the nonlinear and linearized equations and both in the quasi-geostrophic and non-geostrophic models. Second, the evolution and the structure of Rossby wave packet superimposed on a zonal or non-zonal basic flow.In this part, only the above two problems are reviewed. The rernanent problems, i.e., the normal modes and continuous spectra of both quasi-geostrophic and non-geostrophic models, weakly nonlinear theory and the fully nonlinear theory will be discussed in part II (another paper).  相似文献   

11.
王丽吉  杨程 《气象学报》2018,76(1):62-77
利用太平洋地区台风过境期间6个热带气象站的高分辨率无线电探空资料,结合扩展经验正交函数(EEOF)展开,对热带下平流层行星波和重力波扰动进行了分离,给出了一种热带地区提取重力波扰动的新方案。对观测数据做EEOF展开后,选择表征行星尺度波动模态的特征向量和相应权重进行气象要素场的重建。结果显示,在不同的台风过程期间,温度、纬向风和经向风的重建扰动量显示出不同的动力学偏振关系:在准两年振荡(QBO)东风位相时与赤道开尔文波的偏振关系一致,而在准两年振荡西风位相时与混合罗斯贝-重力波(MRG)的偏振关系一致。把行星尺度波动模态从原始观测中剔除,得到新的扰动廓线,对其进行重力波垂直波数谱的谱型拟合。结果发现,与以往方法提取的重力波扰动相比,新方法所得谱型参数中特征垂直波长λ*在不同时期不同站点变化很小,稳定在1.7 km左右,且低频波数段谱斜率s的数值与理论假设1十分接近。综合其研究结果可以推测,用新方法提取的热带重力波扰动更加符合当前的理论垂直波数谱模型。   相似文献   

12.
Buoyancy-driven boundary currents were generated in the laboratory by releasing buoyant fluid from a source adjacent to a vertical boundary in a rotating container. The boundary removed the Coriolis force parallel to it, allowing the buoyant fluid to spread in a current along the boundary. Ise of a cylindrical boundary and a line source that released fluid uniformly around the circumference enabled an axisymmetric (zonal) current to be produced. With the continuous release of fluid from the source, the current grew in width and depth until it became unstable to non-axisymmetric disturbances. The wavelength and phase velocities of the disturbances were consistent with a model of baroclinic instability of two-layer flow when frictional dissipation due to Ekman layers is included. However, when the current only occupied a small fraction of the total depth, barotropic processes were also thought to be important, with the growing waves gaining energy from the horizontal shear.In other experiments, gravity currents were produced by a point source adjacent to either a zonal (circular) or a meridional (radial) vertical boundary. The currents were also observed to become unstable to the same upstream breaking waves as those on the continuous zonal current. Finally, some comparisons are made with oceanic coastal currents.  相似文献   

13.
Summary An attempt has been made in this paper to examine different modes of oscillation in the wind field during different seasons over Thiruvananthapuram (lat. 8.29° N, long. 76.59° E, located at the extreme southwest coast of India) based on daily upper air observations for the period from January 1997 to December 1999. A power spectral analysis is carried out with the upper air data of the station. The study shows that one and half cycle of Quasi–Biennial Oscillation (QBO) and the power spectra of the meridional wind component exhibit peaks between the period of four days and seven days (corresponding frequency range between 0.25 day−1 and 0.15 day−1) during all seasons. The seasonal variation of these large-scale oscillations over the station depends upon the background mean zonal flow, which in turn closely related to the QBO structure. The time sequence of power spectra shows that the disturbances with periods between four days and seven days dominantly prevail in the upper troposphere and lower stratosphere throughout the year. The regimes of high power spectral intensity in this period range are maintained in the levels where the mean zonal flow (westerly or easterly) weakens and changes with height. The study establishes the fact that disturbances (mixed Rossby-gravity waves) acquire maximum power in the winter season whereas the south-west monsoon exhibits minimum spectral intensity when spreading of energy over a frequency range takes place.  相似文献   

14.
In this paper, a new transient forced quasi-resonant triad interaction theory in a beta channel is proposed to investigate the interaction between planetary-scale diffluent flow composed of zonal wavenumbers 1--3 and synoptic-scale waves produced continuously by a synoptic-scale vorticity source fixed upstream of an incipient blocking region during the life cycle of blocking. It is shown that the superposition of initial three Rossby waves for zonal wavenumbers 1 (monopole), 2 (dipole), and 3 (monopole), which permit triad quasi-resonance, can represent an incipient blocking event. The synoptic-scale eddies may act to amplify the incipient blocking and to excite a blocking circulation with a strong meander, whose flow pattern depends on the initial amplitudes of the planetary waves and both the intensity and location of preexisting synoptic-scale waves. The onset (decay) of the planetary-scale split-flow blocking is mainly represented by a strong increase (decrease) in the amplitude of the zonal wavenumber 2 component, having a dipole meridional structure related to the preexisting synoptic-scale eddies. The typical persistence time of the model blocking was of about 20 days, consistent with observations of blocking patterns. In our model, isolated asymmetric dipole blocking is formed by synoptic-scale waves. The instantaneous fields of total streamfunctions exhibit a remarkable resemblance to the synoptic maps observed during the life cycle of blocking. During the onset stage, the synoptic-scale waves are enhanced and split into two branches around the blocking region due to the feedback of the amplified blocking, in agreement with the observed changes of synoptic-scale waves in real blocking events. In addition, a diagnostic case study of blocking is presented to confirm the forced quasi-resonant triad interaction theory proposed here.  相似文献   

15.
An empirical orthogonal functions analysis of the onshore flow of moisture along the west coast of southern Africa using NCEP-DOE AMIP II Re-analyses suggests two dominant modes of variability that are linked to (a) variations in the circulation linked with the South Atlantic anticyclone (b) the intensity of the flow that penetrates from the tropical Atlantic. The second mode, referred as the Equatorial Westerly mode, contributes the most to moisture input from the Atlantic onto the subcontinent at tropical latitudes. Substantial correlations in austral summer between the Atlantic moisture flux in the tropics and rainfall over the upper lands surrounding the Congo basin suggest the potential role played by this zonal mode of water vapour transport. Composites for austral summer months when this Equatorial Westerly mode had a particularly strong expression, show an enhanced moisture input at tropical latitudes that feeds into the deep convection occurring over the Congo basin. Sustained meridional energy fluxes result in above normal rainfall east and south of the Congo belt. During years of reduced equatorial westerly moisture flux, a deficit of available humidity occurs in the southern tropics. A concomitant eastward shift of deep convection to the southwest Indian ocean and southeastern Africa, leads to below normal rainfall over the uplands surrounding the Congo basin.  相似文献   

16.
SomeAspectsoftheCharacteristicsofMonsoonDisturbancesUsingaCombinedBarotropic-BaroclinicModel¥N.R.ParijaandS.K.Dash(CentreforA...  相似文献   

17.
夏季纬向平均气流变动的主要模态及其与AO和ENSO的联系   总被引:4,自引:0,他引:4  
白莹莹  管兆勇 《气象学报》2007,65(3):372-383
使用NCEP-NCAR月平均再分析资料,研究了夏季纬向平均气流变动的主要模态及其与北极涛动(AO)和ENSO的联系,探讨了夏季[u]主要模态维持的可能机制。结果表明,北半球夏季纬向平均[u]的异常分布表现为两个主要模态。EOF1反映了与AO相对应的纬向平均[u]的分布,EOF2反映了与ENSO相对应的纬向平均[u]的分布。周期分析显示了EOF1、EOF2分别具有与AO及ENSO相似的周期。滞后相关分析表明,除了夏季之外的其他季节EOF1与ENSO存在显著相关,而EOF2与AO亦存在显著相关。夏季,EOF1与ENSO、EOF2与AO的同期相关量值小且不显著。这些说明,北半球夏季纬向平均气流变化的主要模态可以有效分离,其分别代表了AO和ENSO有关的信号。这对于更好地理解AO和ENSO的全球影响具有重要意义。利用准地转无加速定理,发现EOF1和EOF2对应的时间系数高低值年的E-P通量散度的合成差值场分别与纬向平均[u]的EOF1、EOF2分布表现出很好的对应关系,其中行星波对纬向平均气流主要模态的维持起着主要作用。余差环流与E-P通量散度分布型相似,量值相当,但符号相反。在一些地区,大气涡动的摩擦耗散也起着一定的作用。这些平衡了波动的能量输送作用,使纬向平均[u]的结构得以维持。  相似文献   

18.
用自由模对1998年夏季阻塞形势的诊断分析   总被引:2,自引:0,他引:2  
签于大气自由模和阻塞高压的重要性 ,首先简要介绍阻塞高压与中国夏季降水的关系及 1998年夏季 5 0 0hPa异常环流场 ;然后利用 2 1波菱形截断的谱方法求出无粘性、无强迫正压涡度方程的自由解 ,即和实际大气流场十分接近的大气自由模 ,并讨论其特征 ;最后利用大气自由模的特征诊断分析了实际大气的环流特征 ,并重点用其分析了 1998年夏季的大气环流异常形势。结果表明大气自由模能很好地反映大气环流大尺度特征 ,而略去了中、小尺度涡旋 ;大气自由模的流场和绝对涡度场之间的散点图反映了 (q ,Ψ )的函数关系是分段线性或非线性的 ,尽管实际流场与绝对涡度场之间的点阵图反映两者之间成不同斜率的线性函数关系 ,但点阵比较发散 ,不能突出某些重要系统 ;1998年夏季实际大气自由模态突出了大气环流的重要特征 ,例如 ,越赤道气流、西风急流、副热带高压、阻塞高压及两极的边界效应等 ;通过自由模态的特征可以识别出纬向流及阻塞高压的持续异常 ,利用自由模的稳定性判断阻塞高压的稳定性 ,不稳定模态可以维持一段较长的时间 ,且由于这些不稳定的模存在 ,才使 1998年 6月中旬到下旬的中高纬阻塞高压稳定维持。  相似文献   

19.
Abstract

It is shown that oscillating mean flow solutions exist in the one‐dimensional Holton‐Lindzen (1972) model in the presence of a single Kelvin wave, mean flow diffusion, and an easterly zonal force per unit mass that is constant in height and time except at those points in the time‐height cross‐section where the latitudinally‐integrated mean flow is less than some prescribed easterly value. The latter forcing is intended to crudely represent the absorption of quasi‐stationary planetary Rossby waves at the tropical zero‐wind line. Our results suggest an alternative, and somewhat simpler, possible interpretation of the quasi‐biennial mean zonal wind oscillation in the equatorial lower stratosphere.  相似文献   

20.
In this study the observed non-linearity in the spatial pattern and time evolution of El Niño Southern Oscillation (ENSO) events is analyzed. It is shown that ENSO skewness is not only a characteristic of the amplitude of events (El Niños being stronger than La Niñas) but also of the spatial pattern and time evolution. It is demonstrated that these non-linearities can be related to the non-linear response of the zonal winds to sea surface temperature (SST) anomalies. It is shown in observations as well as in coupled model simulations that significant differences in the spatial pattern between positive (El Niño) versus negative (La Niña) and strong versus weak events exist, which is mostly describing the difference between central and east Pacific events. Central Pacific events tend to be weak El Niño or strong La Niña events. In turn east Pacific events tend to be strong El Niño or weak La Niña events. A rotation of the two leading empirical orthogonal function modes illustrates that for both El Niño and La Niña extreme events are more likely than expected from a normal distribution. The Bjerknes feedbacks and time evolution of strong ENSO events in observations as well as in coupled model simulations also show strong asymmetries, with strong El Niños being forced more strongly by zonal wind than by thermocline depth anomalies and are followed by La Niña events. In turn strong La Niña events are preceded by El Niño events and are more strongly forced by thermocline depth anomalies than by wind anomalies. Further, the zonal wind response to sea surface temperature anomalies during strong El Niño events is stronger and shifted to the east relative to strong La Niña events, supporting the eastward shifted El Niño pattern and the asymmetric time evolution. Based on the simplified hybrid coupled RECHOZ model of ENSO it can be shown that the non-linear zonal wind response to SST anomalies causes the asymmetric forcings of ENSO events. This also implies that strong El Niños are mostly wind driven and less predictable and strong La Niñas are mostly thermocline depth driven and better predictable, which is demonstrated by a set of 100 perfect model forecast ensembles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号