首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We discuss historical evidence for seismicity on the southern margin of the Siberian craton collected from old local newspapers. The reported earthquakes vary in magnitude from M = 2.5 to 4.5, and their macroseismic locations agree well with the regional tectonic framework. The new data prove seismic activity in the area and can be used in seismic risk assessment.  相似文献   

2.
This paper presents an integrated geophysical study of the southern margin of the East European Craton (EEC) in the Karpinksy Swell-North Caucasus area. It presents new interpretations of deep refraction and wide-angle reflection “deep seismic sounding” (DSS) data as well as conventional seismic and CDP profiling and new analyses of potential field data, including three-dimensional gravity and magnetic modelling. An integrated model of the physical properties and structure of the Earth's crust and, partially, upper mantle displays distinct features that are related to tectonic history of the study area. The Voronezh Massif (VM), the Ukrainian Shield and Rostov Dome (RD) of the EEC as well as the Donbas Foldbelt (DF), Karpinsky Swell (KS), Scythian Plate (SP) and Precaspian Basin (PCB) constitute the geodynamic ensemble that developed on the southern margin of the continent Baltica. There proposed evolutionary model comprises a stage of rifting during the middle to late Devonian, post-rift extension and subsidence during Carboniferous–early Permian times (synchronous with and related to the southward displacement of the Rostov Dome and extension in a palaeo-Scythian back-arc basin), and subsequent Mesozoic and younger evolution. A pre-Ordovician, possibly Riphean (?), mafic magmatic complex is inferred on a near vertical reflection seismic cross-section through the western portion of the Astrakhan Dome in the southwest part of the Precaspian Basin. This complex combined with evidence of a subducting slab in the upper mantle imply the presence of pre-Ordovician (Riphean?) island arc, with synchronous extension in a Precaspian back-arc basin is suggested. A middle Palaeozoic back-arc basin ensemble in what is now the western Karpinsky Swell was more than 100 km to the south from its present location. The Stavropol High migrated northwards, dislocating and moving fragments of this back-arc basin sometime thereafter. Linear positive magnetic anomalies reflect the position of associated faults, which define the location of the eastern segment of the Karpinsky Swell. These faults, which dip northward, are recognised on crustal DSS profiles crossing the Donbas Foldbelt and Scythian Plate. They are interpreted in terms of compressional tectonics younger than the Hercynian stage of evolution (i.e., post-Palaeozoic).  相似文献   

3.
Recent works suggest Proterozoic plate convergence along the southeastern margin of India which led to amalgamation of the high grade Eastern Ghats belt (EGB) and adjoining fold-and-thrust belts to the East Dhrawar craton. Two major thrusts namely the Vellikonda thrust at the western margin of the Nellore Schist belt (NSB) and the Maidukuru thrust at the western margin of the Nallamalai fold belt (NFB) accommodate significant upper crustal shortening, which is indicated by juxtaposition of geological terranes with distinct tectonostratigraphy, varying deformation intensity, structural styles and metamorphic grade. Kinematic analysis of structures and fabric of the fault zone rocks in these intracontinental thrust zones and the hanging wall and footwall rocks suggest spatially heterogeneous partitioning of strain into various combinations of E-W shortening, top-to-west shear on stratum parallel subhorizontal detachments or on easterly dipping thrusts, and a strike slip component. Although relatively less prominent than the other two components of the strain triangle, non-orthogonal slickenfibres associated with flexural slip folds and mylonitic foliation-stretching lineation orientation geometry within the arcuate NSB and NFB indicate left lateral strike slip subparallel to the overall N-S trend. On the whole an inclined transpression is inferred to have controlled the spatially heterogeneous development of thrust related fabric in the terrane between the Eastern Ghats belt south of the Godavari graben and the East Dharwar craton.  相似文献   

4.
The region of the junction and interaction between the East European Craton (EEC) and the West Arctic Craton (WAC) is regarded as a complexly built zone or assembly of both the volumetric and dividing linear tectonic elements: the Trollfjord–Rybachi–Kanin (TRK) Lineament, the pericratonic subsidence zone of the EEC, the Karpinskii Lineament, the Murmansk Block of the Fennoscandian (Baltic) Shield, and the Kolmozero–Voronya Zone, which are briefly characterized in this paper. Evidences of thrusting have been established not only in the TRK Suture Zone and on the Rybachi Peninsula, which represent a fragment of the Timanides fold–thrust belt, but also to the southwest, in the Upper Riphean and Vendian terrigenous sequences making up the Sredni Peninsula and related to the pericratonic trough of the VEC. Two phases of fold–thrust deformations with elements of left-lateral strike-slip offset pertaining to the activity and evolution of the lineament suture dividing the Sredni and Rybachi peninsulas have been recorded. The variously oriented fault–fold systems within this fault zone are evidence for multistage deformation and can be explained by an at least twostage change in the kinematics that control displacement along the fault. The disintegrated granitic massifs of the Archean crystalline basement tectonically squeezed out in the upper crust as protrusions are localized within TRK Fault Zone. Plagiogranitic bodies, which underwent superposed fault-fold deformations of both kinematic stages, are an evidence of the vigorous tectonic event that predated folding and two-stage strike-slip displacement along the TRK Fault—by thrusting of Riphean sequences from north to south toward the Archean craton. The nappe–thrust regional structure was formed at this stage; elements of it have been recognized in the Sredni, Rybachi, and Kanin peninsulas. The main stages of tectonic evolution in the junction zone between the EEC and the WAP have been revealed and substantiated.  相似文献   

5.
Old and modern data are given and discussed. They allow us to decide where the real position of the south marginal suture of the East European Craton is. According to the geophysical and aerogeophysical studies, Paleozoic deposits of the Karpinskii Ridge are bedded upon deeply sunken continuation of Archean-Proterozoic complexes comprising the Voronezh massif and crystalline rocks belonging to the Astrakhan Dome. The latter have a pre-Riphean age. It is possible that the crust in the southeastern part of ridge in a narrow zone with >20 km depth of the basement surface (BS) and, partially, in the Sarpinskii trough has oceanic origin.  相似文献   

6.
The present study was undertaken with the objective of deriving constraints from available geological and geophysical data for understanding the tectonic setting and processes controlling the evolution of the southern margin of the East European Craton (EEC). The study area includes the inverted southernmost part of the intracratonic Dnieper-Donets Basin (DDB)–Donbas Foldbelt (DF), its southeastern prolongation along the margin of the EEC–the sedimentary succession of the Karpinsky Swell (KS), the southwestern part of the Peri-Caspian Basin (PCB), and the Scythian Plate (SP). These structures are adjacent to a zone, along which the crust was reworked and/or accreted to the EEC since the late Palaeozoic. In the Bouguer gravity field, the southern margin of the EEC is marked by an arc of gravity highs, correlating with uplifted Palaeozoic rocks covered by thin Mesozoic and younger sediments. A three-dimensional (3D) gravity analysis has been carried out to investigate further the crustal structure of this area. The sedimentary succession has been modelled as two heterogeneous layers—Mesozoic–Cenozoic and Palaeozoic—in the analysis. The base of the sedimentary succession (top of the crystalline Precambrian basement) lies at a depth up to 22 km in the PCB and DF–KS areas. The residual gravity field, obtained by subtracting the gravitational effect of the sedimentary succession from the observed gravity field, reveals a distinct elongate zone of positive anomalies along the axis of the DF–KS with amplitudes of 100–140 mGal and an anomaly of 180 mGal in the PCB. These anomalies are interpreted to reflect a heterogeneous lithosphere structure below the supracrustal, sedimentary layers: i.e., Moho topography and/or the existence of high-density material in the crystalline crust and uppermost mantle. Previously published data support the existence of a high-density body in the crystalline crust along the DDB axis, including the DF, caused by an intrusion of mafic and ultramafic rocks during Late Palaeozoic rifting. A reinterpretation of existing Deep Seismic Sounding (DSS) data on a profile crossing the central KS suggests that the nature of a high-velocity/density layer in the lower crust (crust–mantle transition zone) is not the same as that of below the DF. Rather than being a prolongation of the DDB–DF intracratonic rift zone, the present analysis suggests that the KS comprises, at least in part, an accretionary zone between the EEC and the SP formed after the Palaeozoic.  相似文献   

7.
华北南缘古元古代末岩墙群侵位的磁组构证据   总被引:7,自引:3,他引:4  
侯贵廷  王传成  李乐 《岩石学报》2010,26(1):318-324
华北克拉通南缘的中条山及邻区广泛发育元古宙放射状基性岩墙群,与五台山-恒山和大同地区的北北西向基性岩墙群以及熊耳中条拗拉谷的火山岩在时空分布和地球化学方面均具有密切的相关性。中条山及邻区放射状基性岩墙群的宏观和微观流动构造(包括捕虏体、冲痕构造、矿物线理和定向斑晶)指示岩墙群以一定的仰角向北西侵位。通过该区岩墙群磁化率各向异性(AMS)测量得到磁组构的最大磁化率长轴优势方位分布图和磁组构各向异性特征分析进一步指示华北南缘古元古代末岩墙群从熊耳中条拗拉谷的底部向北西侵位。岩墙群的流动构造和磁组构的统计成果夯实了华北克拉通古元古代末基性岩墙群与熊耳中条拗拉谷的成生联系。  相似文献   

8.
The extension of eastern Avalonia from Britain through the NE German Basin into Poland is, in some sense, a virtual structure. It is covered almost everywhere by late Paleozoic and younger sediments. Evidence for this terrane is only gathered from geophysical data and age information derived from magmatic rocks. During the last two decades, much geophysical and geological information has been gathered since the European Geotraverse (EGT), which was followed by the BABEL, LT-7, MONA LISA, DEKORP-Basin'96, and POLONAISE'97 deep seismic experiments. Based on seismic lines, a remarkable feature has been observed between the North Sea and Poland: north of the Elbe Line (EL), the lower crust is characterised by high velocities (6.8–7.0 km/s), a feature which seems to be characteristic for at least a major part of eastern Avalonia (far eastern Avalonia). In addition, the seismic lines indicate that a wedge of the East European Craton (EEC) (or Baltica) continues to the south below the southern Permian Basin (SPB)—a structure which resembles a passive continental margin. The observed pattern may either indicate an extension of the Baltic crust much farther south than earlier expected or oceanic crust of the Tornquist Sea trapped during the Caledonian collision. In either case, the data require a reinterpretation of the docking mechanism of eastern Avalonia, and the Elbe–Odra Line (EOL), as well as the Elbe Fault system, together with the Intra-Sudedic Faults, appear to be related to major changes in the deeper crustal structures separating the East European crust from the Paleozoic agglomeration of Middle European terranes.  相似文献   

9.
In Late Devonian and Early-to-Late Triassic times, the southern continental margin of the Eastern European Platform was the site of a basaltic volcanism in the Donbas and Fore-Caucasus areas respectively. Both volcanic piles rest unconformably upon Paleoproterozoic and Late Paleozoic units respectively, and emplaced during continental rifting periods some 600 km away from expected locations of active oceanic subduction zones. This paper reports a comparative geochemical study of the basaltic rocks, and views them as the best tracers of the involved mantle below the Eastern European Platform. The Late Devonian alkaline basic rocks differ from the calc-alkaline Triassic basic rocks by their higher alkali-silica ratio, their higher TiO2, K2O, P2O5 and FeO contents, their higher trace element contents, a higher degree of fractionation between the most and the least incompatible elements and the absence of Ta-Nb negative anomalies. These general features, clearly distinct from those of partial melting and fractional crystallization, are due to mantle source effects. With similar Nd and Sr isotopic signatures indicating mantle-crust mixing, both suites would originate from the melting of a same but heterogeneous continental mantle lithosphere (refertilized depleted mantle). Accordingly the Nd model ages, the youngest major event associated with mantle metasomatism occurred during Early Neoproterozoic times (∼650Ma).  相似文献   

10.
The Qilian Orogen of north western China records mid-Paleozoic collisional suturing of arc and continental blocks onto the south western margin of the North China craton. Silurian strata from the retroarc foreland basin mark the transition from ocean closure and northward subduction to the initiation of collision suturing. Detrital zircons were analysed from the western and eastern parts of the basin and show a spectrum of ages from Archean to Paleozoic with major age concentrations at around 2.5 Ga, 1.6 Ga, 1.2 Ga, 0.98 Ga, 0.7 Ga and 0.45 Ga. Archean age grains are derived from the North China craton, whereas the Central Qilian Bloc, which lies to the south provides the likely source for the bulk of the Proterozoic detritus. Paleozoic grains are restricted to Early Silurian samples from the western part of the basin and are considered to have been derived from the magmatic arc related to ocean closure and ultimate collision of the Central Qilian Belt with the North China craton.  相似文献   

11.
A cluster of lamproite dykes are located 1 km west of Vattikod village at the NW margin of the Cuddapah basin, Eastern Dharwar craton, southern India, during the pursuit for locating primary diamond source rocks by adapting multifarious applications. These exotic rocks are emplaced along WNW-ESE to NW-SE trending fractures in the granitic rocks belonging to the Peninsular Gneissic Complex. Ten out of twelve lamproites occur near Vattikod village and one each is located in the vicinity of Marepalli and Gundrapalli villages respectively. These lamproites, though highly altered, contain microphenocrysts of altered olivine, clinopyroxene, phlogopite, leucite and sanidine and translucent to opaque, amoeboid shaped patches of glass set in a groundmass rich in carbonate, phlogopite, serpentine, and chlorite. This new cluster of lamproites constitutes a part of the recently discovered Ramadugu lamproite field. The Vattikod and Ramadugu lamproites, together with those from Krishna lamproite field and the Cuddapah basin, constitute, a wide spectrum of ultrapotassic magmatism emplaced in and around the Palaeo-Mesoproterozoic Cuddapah basin in southern India.  相似文献   

12.
We compare the diagenetic evolution of deeply buried Rotliegend (Permian) red bed sandstones at the southern and northern margin of the Central European Basin (CEB) in Germany. Main target is to evaluate the influence of maturation products from hydrocarbon (HC) source rocks during red bed diagenesis. At the southern margin of the CEB, thick coal-bearing Carboniferous source rocks are omnipresent beneath the Rotliegend. They contain dominantly gas-prone terrigenous organic material and some oil source rocks. Hydrocarbons were generated from Late Carboniferous onwards throughout most of basin subsidence. At the northern margin of the CEB, source rocks are almost absent due to deep erosion of Carboniferous rocks and a low TOC of local Lower Carboniferous relics. Early diagenetic processes are comparable at both basin margins. Significant differences in burial diagenetic evolution are spatially correlated to the occurrence of hydrocarbon source rocks. Burial diagenesis at the southern margin of the CEB is characterized especially by bleaching of red beds, major dissolution events, pervasive illite formation, impregnation of pore surfaces with bitumen, and formation of late Fe-rich cements. Almost none of these features were detected at the northern basin margin. Instead, relatively early cements are preserved down to maximum burial depths. This suggests that major diagenetic mineral reactions in deeply buried red bed sandstones are controlled by the presence or absence of maturing hydrocarbon source rocks.  相似文献   

13.
14.
The petrologic and isotopic-geochronologic study of basement rocks that were penetrated by a deep borehole in the marginal part of the East European Platform revealed that its section overlain by the Vendian-Paleozoic sedimentary cover is Early Proterozoic in age and largely consists of aluminous migmatized biotite, biotite-cordierite, and biotite-cordierite-sillimanite gneisses, which are intruded by granites, plagiogranites, and metatonalites. The lower part of the section is dominated by amphibole schists and amphibolites with subordinate nonmetamorphosed dolerite dikes and pegmatite veins. By metamorphism parameters (T = 630–680°C, P = 2–4 kbar), the metamorphic complex may be considered as the shallowest one, compared with other Early Proterozoic complexes, developed at least in the southwestern part of Fennoscandia. The progressive decrease in the mineral-formation pressure observed in the Lower Proterozoic metamorphic rocks southward, away from the Karelian Craton is likely explained by the tectonic transport (thrusting) of the Svecofennides over the margin of the Karelian Craton and their subsequent deeper erosion near the craton. The magmatic crystallization of metamorphic palgiogranites, penetrated at depths of 925–928 and 1004 m, is estimated by the U-Pb ID-TIMS method on zircons to occur 1860 ± 9 Ma ago. It is shown that by their age, the REE composition, and isotopic-geochemical characteristics, these rocks are close to the plagiogranites formed in the southeastern extremity of the Svecofennnian belt in the present-day northern Ladoga region and the Karelian Isthmus. No rocks, which could be correlated by their lithology with the Archean rocks of the Karelian Craton, are found.  相似文献   

15.
16.
“Lower-crustal suite” xenoliths occur in “on-craton” and “off-craton” kimberlites located across the south-western margin of the Kaapvaal craton, southern Africa.

Rock types include mafic granulite (plagioclase-bearing assemblages), eclogite (plagioclase-absent assemblages with omphacitic clinopyroxene) and garnet pyroxenite (“orthopyroxene-bearing eclogite”). The mafic granulites are subdivided into three groups: garnet granulites (cpx + grt + plag + qtz); two pyroxene garnet granulites (cpx + opx + grt + plag); kyanite granulites (cpx + grt + ky + plag + qtz). Reaction microstructures preserved in many of the granulite xenoliths involve the breakdown of plagioclase by a combination of reactions: (1) cpx + plag → grt + qtz; (2) plag → grt + ky + qtz; (3) plag → cpx (jd-rich) + qtz. Compositional zoning in minerals associated with these reactions records the continuous transition from granulite facies mineral assemblages and pressure (P) — temperature (T) conditions to those of eclogite facies.

Two distinct P-T arrays are produced: (1) “off-craton” granulites away from the craton margin define a trend from 680 °C, 7.5 kbar to 850 °C, 12 kbar; (2) granulite xenoliths from kimberlites near the craton margin and “on-craton” granulites produce a trend with similar geothermal gradient but displaced to lower T by ˜ 100 °C. Both P-T fields define higher geothermal gradients than the model steady state conductive continental geotherm (40 mWm2) and are not consistent with the paleogeotherm constructed from mantle-derived garnet peridotite xenoliths.

A model involving intrusion of basic magmas around the crust/mantle boundary followed by isobaric cooling is proposed to explain the thermal history of the lower crust beneath the craton margin. The model is consistent with the thermal evolution of the exposed Namaqua-Natal mobile belt low-pressure granulites and the addition of material from the mantle during the Namaqua thermal event (c. 1150 Ma). The xenolith P-T arrays are not interpreted as representing paleogeotherms at the time of entrainment in the host kimberlite. They most likely record P-T conditions “frozen-in” during various stages of the tectonic juxtaposition of the Namaqua Mobile Belt with the Kaapvaal craton.  相似文献   


17.
The reasons for the isotopic and geochemical heterogeneity of magmatism of the Neoproterozoic large Volhynia-Brest igneous province (VBP) are considered. The province was formed at 550 Ma in response to the break up of the Rodinia supercontinent and extends along the western margin of the East European craton, being discordant to the Paleoproterozoic mobile zone that separates Sarmatia and Fennoscandia and the Mesoproterozoic Volhynia-Orsha aulacogen. The basalts of VBP show prominent spatiotemporal geochemical zoning. Based on petrographic, mineralogical, geochemical, and isotopic data, the following types of basalts can be distinguished: olivine-normative subalkaline basalts consisting of low-Ti (sLT, < 1.10–2.0 wt % TiO2; εNd(550) from ?6.6 to ?2.7) and medium-Ti (sMT, 2.0–3.0 wt % TiO2, occasionally up to 3.6 wt % TiO2; εNd(550) from ?3.55 to + 0.6) varieties; normal quartz-normative basalts (tholeiites) including low-Ti (tLT, < 1.75–2.0 wt % TiO2) and medium-to-high-Ti (tHT1, 2.0–3.6 wt % TiO2, εNd(550) from ?1.3 to + 1.0) varieties. The hypabyssal bodies are made up of subalkaline low-Ti olivine dolerites (LT, 1.2–1.5 wt % TiO2; εNd(550) = ?5.8) and subalkaline high-Ti olivine gabbrodolerites (HT2, 3.0–4.5 wt % TiO2; εNd(550) = ?2.5). Felsic rocks of VBP are classed as volcanic rocks of normal (andesidacites, dacites, and rhyodacites) and subalkaline (trachyrhyodacites) series with TiO2 0.72–0.77 wt% and εNd(550) of ?12. The central part of VBP is underlain by a Paleoproterozoic domain formed by continent-arc accretion and contains widespread sills of HT2 dolerites and lavas of LT basalts; the northern part of the province is underlain by the juvenile Paleoproterozoic crust dominated by MT and HT1 basalts. MT and LT basalts underwent significant AFC-style upper crustal contamination. During their long residence in the upper crustal magmatic chambers, the basaltic melts fractionated and caused notable heating of the wall rocks and, correspondingly, nonmodal melting of the upper crustal protolith containing high-Rb phase (biotite), thus producing the most felsic rocks of the province. The basalts of VBP were derived from geochemically different sources: probably, the lithosphere and a deep-seated plume (PREMA type). The HT2 dolerites were generated mainly from a lithospheric source: by 3–4% melting of the geochemically enriched garnet lherzolite mantle. LT dolerites were obtained by partial melting of the modally metasomatized mantle containing volatile-bearing phases. The concepts of VBP formation were summarized in the model of three-stage plume-lithosphere interaction.  相似文献   

18.
中生代巴彦喀拉-松潘甘孜地体向东昆仑地体斜向俯冲,在东昆仑南缘形成一条巨型的韧性剪切带。剪切带中发育的旋转碎斑、书斜构造、解理阶步、云母鱼、S-C组构、不对称褶皱、雁列脉等宏微观构造,显示剪切带兼具右行和左行的特征,且右行早于左行剪切,但总体以左行剪切为主。对西大滩糜棱岩化花岗岩和小南川未变形花岗岩进行了LA-ICP-MS锆石UPb测年,西大滩岩体侵位于199.3±2.2Ma,小南川岩体形成于196.4±1.3Ma。西大滩与小南川岩体中的锆石为典型的岩浆锆石,其年龄代表了岩体侵位的时代。鉴于2个岩体的变形程度完全不同,东昆仑南缘在199~196Ma之间发生了左行韧性剪切。  相似文献   

19.
We investigate extension events in the southern Siberian craton between 1.8 and 0.7 Ga. Signature of Late Paleoproterozoic within-plate extension in the Northern Baikal region is found in 167  29 Ma dike swarms. A Mesoproterozoic extension event was associated with intrusion of the 1535 ± 14 Ma Chernaya Zima granitoids into the Urik-Iya graben deposits. Neoproterozoic extension recorded in the Sayan-Baikal dike belt (740-780 Ma dike complexes) was concurrent with the breakup of the Rodinia supercontinent and the initiation of the Paleoasian passive margin along the southern edge of the Siberian craton. The scale of rifting-related magmatism and the features of the coeval sedimentary complexes in the southern Siberian craton indicate that Late Paleoproterozoic and Early Mesoproterozoic extension did not cause ocean opening, and the Paleoasian Ocean opened as a result of Neoproterozoic rifting.  相似文献   

20.
We present U–Pb (LA-ICP-MS) data on detrital zircon from the Late Precambrian terrigenous rocks of the Baikal Group and Ushakovka Formation, western Cisbaikalia (southern flank of the Siberian craton). The sources of clastic material for the studied sediments are interpreted. The youngest group of detrital zircon grains from the upper Baikal Group and Ushakovka Formation permits assigning these sediments to the Vendian. The lack of Mesoproterozoic detrital zircon in most of the analyzed samples confirms the hypothesis of a global (~ 1 Gyr) break in endogenic activity within the southern flank of the Siberian craton through the Precambrian. The abundance of Neoproterozoic zircon in sandstones from the upper horizons of the Baikal Group and the Ushakovka Formation might be due to the shrinkage of the ocean basin as a result of the convergence of the craton with the microcontinents and island arcs within the Paleoasian ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号