首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
During fossilization, bone is thought to recrystallize and alter chemically on timescales of kyr to a few tens of kyr, i.e., similar to the timescale for formation of soils. Therefore, C- and O-isotope compositions of bone apatite should correlate with trends in soil water composition and aridity, and serve as paleoclimate indicators. This hypothesis was tested by analyzing C- and O-isotope compositions of the CO3 component of fossil bone apatite from mid-Oligocene through late Pleistocene units in Oregon and western Idaho, including the John Day (19.4-30.0 Ma), Mascall (15.2-15.8 Ma), and Rattlesnake (7.2-7.8 Ma) Formations, whose paleosol sequences have been studied in detail, and the Juntura (10-11 Ma), Hagerman (3.2 Ma), and Fossil Lake (<23-650 ka) fossil localities. Tooth enamel δ18O values provide a baseline of meteoric water compositions. Stable isotope compositions of bone CO3 do change in response to broad climatic trends, but show poor correlation with compositions of corresponding paleosol CO3 at specific horizons. Instead, compositional deviations between bone and paleosol CO3 correlate with compositional deviations with the next higher paleosol; this suggests that the timescale for fossilization exceeds one paleosol cycle. Based on stratigraphic evidence and simple alteration models, fossilization timescales are estimated at 20-50 kyr, indicating that bone CO3 will prove most useful for sequences spanning >100 kyr. C-isotopes show negative and strong positive deviations during wet and dry climates respectively, and short-term trends correspond well with changes in aridity within the Mascall and Rattlesnake Formations, as inferred from paleosols. A proposed correction to δ18O values based on δ13C anomalies implies a small, ∼1.5‰ increase in meteoric water δ18O during the late Oligocene global warming event, consistent with a minimum temperature increase of ∼4 °C. A strong inferred decrease in δ18O of 4-5‰ after 7 Ma closely parallels compositional changes in tooth enamel, and reflects a doubling in the height of the Cascade Range.  相似文献   

2.
Rare earth elements (REE), while not essential for the physiologic functions of animals, are ingested and incorporated in ppb concentrations in bones and teeth. Nd isotope compositions of modern bones of animals from isotopically distinct habitats demonstrate that the 143Nd/144Nd of the apatite can be used as a fingerprint for bedrock geology or ambient water mass. This potentially allows the provenance and migration of extant vertebrates to be traced, similar to the use of Sr isotopes. Although REE may be enriched by up to 5 orders of magnitude during diagenesis and recrystallization of bone apatite, in vivo143Nd/144Nd may be preserved in the inner cortex of fossil bones or enamel. However, tracking the provenance of ancient or extinct vertebrates is possible only for well-preserved archeological and paleontological skeletal remains with in vivo-like Nd contents at the ppb-level. Intra-bone and -tooth REE analysis can be used to screen for appropriate areas. Large intra-bone Nd concentration gradients of 101-103 are often measured. Nd concentrations in the inner bone cortex increase over timescales of millions of years, while bone rims may be enriched over millenial timescales. Nevertheless, εNd values are often similar within one εNd unit within a single bone. Larger intra-bone differences in specimens may either reflect a partial preservation of in vivo values or changing εNd values of the diagenetic fluid during fossilization. However, most fossil specimens and the outer rims of bones will record taphonomic 143Nd/144Nd incorporated post mortem during diagenesis. Unlike REE patterns, 143Nd/144Nd are not biased by fractionation processes during REE-uptake into the apatite crystal lattice, hence the εNd value is an important tracer for taphonomy and reworking. Bones and teeth from autochthonous fossil assemblages have small variations of ±1 εNd unit only. In contrast, fossil bones and teeth from over 20 different marine and terrestrial fossil sites have a total range of εNd values from -13.0 to 4.9 (n = 80), often matching the composition of the embedding sediment. This implies that the surrounding sediment is the source of Nd in the fossil bones and that the specimens of this study seem not to have been reworked. Differences in εNd values between skeletal remains and embedding sediment may either indicate reworking of fossils and/or a REE-uptake from a diagenetic fluid with non-sediment derived εNd values. The latter often applies to fossil shark teeth, which may preserve paleo-seawater values. Complementary to εNd values, 87Sr/86Sr can help to further constrain the fossil provenance and reworking.  相似文献   

3.
In a semiarid climatic zone, such as the Eastern Mediterranean region, annual rainfall variations and fractionation processes in the epikarst zone exert a profound influence on the isotopic compositions of waters seeping into a cave. Consequently, the isotopic compositions of speleothems depositing from cave waters may show complex variations that need to be understood if they are to be exploited for paleoclimate studies. This is confirmed by a four-year study of the active carbonate-water system in the Soreq cave (Israel). The δ18O (SMOW) values of cave waters range from −6.3 to −3.5%.. The highest δ18O values occur at the end of the dry season in waters dripping from stalactites, and reflect evaporation processes in the epikarst zone, whereas the lowest values occur in rapidly dripping (fast-drip) waters at the peak of the rainy seasons. However, even fast-drip waters are about 1.5%. heavier than the rainfall above the cave, which is taken to reflect the mixing of fresh with residual evaporated water in the epikarst zone. δ13C (PDB) values of dissolved inorganic carbon (DIC) vary from −15.6 to −5.4%., with fast-drip waters having lower δ13C values (mostly −15.6 to −12%.) and higher DIC concentrations relative to pool and stalactite-drip water. The low δ13C values of fast-drip waters and their supersaturation with respect to calcium carbonate indicates that the seepage waters have dissolved both soil-CO2 derived from overlying C3-type vegetation and marine dolomite host rock.The δ18O (PDB) values of various types of present-day low-magnesium calcite (LMC) speleothems range from −6.5 to −4.3%. and δ13C values from −13 to −5.5%. and are not correlated with speleothem type. An analysis of δ18O values of present-day calcite rafts and pool waters shows that they form in oxygen isotope equilibrium. Similarly, the measured ranges of δ13C and δ18O values for all types of present-day speleothems are consistent with equilibrium deposition at cave temperatures. The δ13C–δ18O range of contemporary LMC thus reflects the variations in temperatures and isotopic compositions of the presentday cave waters. The 10%. variation in the δ13C values in waters can be modeled by a simple Rayleigh calculation of the carbon isotope fractionation accompanying CO2-degassing and carbonate precipitation. These variations may obscure the differences in the carbon isotopic composition of speleothems that could arise when vegetation cover changes from C3 to C4-type plants. This consideration emphasizes that it is necessary to characterize the full range of δ13C values associated with contemporaneous speleothems in order to clarify the effects of degassing from those due to differing vegetation types.Isotopic studies of a number of different types of fossil LMC speleothems show many of them to exhibit isotopic trends that are similar to those of present-day LMC, but others show both higher and lower δ18O ranges. In particular, the higher δ18O range has been shown by independent age-measurements to be associated with a period of drier conditions. The results of the study thus indicate that it is necessary to work on a well calibrated cave system in semiarid climates and that the fossil speleothem record should be obtained from different types of contemporaneous deposit in order to fully characterize the δ18O–δ13C range representative of any given climatic period.  相似文献   

4.
We present the first systematic study of Ca isotopes (δ44/40Ca) in Late Triassic to Late Cretaceous dinosaur bones and teeth (enamel and dentin) from sympatric herbivorous and carnivorous dinosaurs. The samples derive from five different localities, and data from embedding sediments are also presented. Additional δ44/40Ca in skeletal tissues from modern reptiles and birds (avian dinosaurs) were measured for comparison in order to examine whether the original Ca isotopic composition in dinosaur skeletal apatite was preserved or might have changed during the diagenesis and fossilization process.δ44/40Ca of fossil skeletal tissues range from −1.62‰ (Tyrannosaurus rex enamel) to +1.08‰ (Brachiosaurus brancai bone), while values in modern archosaur bones and teeth range from −1.63‰ (caiman enamel) to −0.37‰ (ostrich bone). The average δ44/40Ca of the three types of fossil skeletal tissue analyzed - bone, dentin and enamel - show some systematic differences: while δ44/40Ca in bone exhibits the highest values, while δ44/40Ca in enamel has the lowest values, and dentin δ44/40Ca falls in between. Values of δ44/40Ca in the remains of herbivorous dinosaurs (0.1-1.1‰) are generally higher than those of bones of modern mammalian herbivores (−2.6‰ to −0.8‰) and from modern herbivorous archosaurs, which exhibit intermediate δ44/40Ca (−0.8‰ to −0.4‰). These systematic isotopic shifts may reflect physiological differences between dinosaurs, mammals and reptiles representing different taxonomic groups of vertebrates.Systematic offsets in skeletal apatite δ44/40Ca between herbivorous and carnivorous dinosaurs are not obvious, indicating a lack of a clear-cut Trophic Level Effect (TLE) shift between herbivores and carnivores in dinosaurs. This observation can be explained if the carnivorous dinosaurs in this study fed mainly on soft tissues from their prey and did not ingest hard (calcified) tissue to much extent. The most striking indication that the primary δ44/40Ca is actually preserved in most of the fossil teeth is a difference in δ44/40Ca of about 0.35 ± 0.10‰ (1SD) between dentin and enamel, based upon 11 of 16 analyzed dentin-enamel pairs. This difference is close to that found in modern reptiles (0.28 ± 0.05‰), and strongly suggests that this tell-tale signature is a primary feature of the fossilized dinosaur material as well. Furthermore, simple mass balance calculations show that changes of the original δ44/40Ca in bones and teeth by diagenetically-formed calcium-bearing minerals are either small or would require implausible high original δ44/40Ca values in the skeletal apatite.  相似文献   

5.
Intra-tooth δ18O variations within the carbonate (δ18Oc) and phosphate (δ18Op) components of tooth apatite were measured for Miocene and Pliocene hypsodont mammals from Afghanistan, Greece and Chad in order to evaluate the resistance of enamel to diagenetic alteration. Application of water-apatite interaction models suggest that the different kinetic behaviours of the phosphate-water and carbonate-water systems can be used to detect subtle oxygen isotope disequilibria in fossil enamel when intra-individual variations are considered. Selective alteration of the oxygen isotope composition from the carbonate component of Afghan and Greek enamels suggests inorganic isotopic exchange processes. Microbially-induced isotopic exchange for phosphate is demonstrated for the first time in enamel samples from Chad, in association with extensive recrystallization. In Chad, δ18Op values were derived from partial isotopic exchange with fossil groundwater during early diagenesis. Mass balance calculations using average carbonate content in enamel as a proxy for recrystallization, and the lowest δ18Op value of dentine as a proxy for the isotopic composition of the diagenetic fluid, indicate that diagenesis can alter δ18Op by as much as 3‰ in some enamel samples. This diagenetic alteration is also responsible for a decrease in intra-individual variations of up to 1‰ in affected specimens. The effects of diagenesis on δ18Op values of fossil enamel are not systematic, however, and can only be estimated if sequential δ18Op and δ18Oc analyses are performed on fossil enamel and dentine. Reconstruction of large temporal- or spatial-scale paleoclimates based on δ18Op analyses from mammalian teeth cannot be considered valid if enamel has been affected by bacterial activity or if the data cannot be corrected for diagenetic effects.  相似文献   

6.
《Chemical Geology》1992,94(3):183-192
The Siwalik Sequence of northern Pakistan contains a 16-Ma record of paleosol carbonate and fossil teeth from which a record of paleovegetation can potentially be reconstructed and compared. The carbon isotopic composition of paleosol carbonate and organic matter from Siwalik strata reflects a major paleoecological change on the floodplains of major rivers beginning7.3 Ma ago. By 6 Ma C3-dominated plant communities, probably composed of mostly trees and shrubs, were displaced by nearly continuous C4 grassland. We find that the carbon isotopic ratios in herbivore tooth enamel reflect this dramatic ecologic shift. Carbonate in enamel older than 7 Ma averages −11‰ in δ13CPDB, consistent with a largely C3 diet. Enamel from the Plio-PIeistocene averages +1.9‰ in δ13C, similar to the value displayed by modern C4 grazers. Analysis of post-burial carbonate cements, and the concordance with isotopic evidence from paleosols argues strongly against major isotopic alteration of the enamel, while coexisting bone may have been altered early in burial. This study confirms that enamel apatite is useful for paleodietary reconstruction much further back in the geologic record than was previously thought.  相似文献   

7.
The skeleton of a young prime adult cave bear, Ursus spelaeus, was found in Chiostraccio Cave (Siena, Tuscany, central Italy), only slightly buried under rock falls. The specimen was dated yielding a conventional age of 24,030 ± 100 14C yr BP (29,200–28,550 cal yr BP), which makes it the latest known representative of the species in Italy. The skeleton was accompanied by the remains of wolf (Canis lupus), wild boar (Sus scrofa), aurochs (Bos primigenius), red deer (Cervus elaphus), roe deer (Capreolus capreolus), bat (Vespertinus murinus), and crow (Corvus monedula). The site seems confirming that the latest Italian U. spelaeus populations shared the risk of intrusion. The association of the cave bear with other animals suggests that the assemblage is an attritional palimpsest of remains of different species not originally associated in life. Cave bears were probably more vegetarian than brown bears and possibly became extinct when plant productivity dropped at the onset of MIS 2. Central and southern Italy may have offered isolated and sheltered refugia for cave bears.  相似文献   

8.
It is stated that all the synthetic carbonate-hydroxyapatites, produced with the reaction of H3PO4 and Ca(OH)2 solutions, are B type carbonate-apatites. The carbonate content of these is completely eliminated up to 900° C. In dental enamels taken from the healthy teeth of females, the carbonate ions occupy different positions (A–B type carbonate-apatite). Those which are parallel to axis c are decomposed only above 900° C. It was found that the natural ageing of dental enamels is in correlation with the different CO 3 2? /H2O ratio measured in these samples. Similar differences were observed between enamels taken from different parts of the tooth and the dentin. The change of the apatite composition after fluoride painting has been established by infrared (IR), derivatographic and X-ray methods.  相似文献   

9.
The Pleistocene deposits at Zhoukoudian, often referred to as the “Peking Man” site, contain dental remains from a diverse group of herbivores, including Equus sanmeniensis, Cervus elaphus, Cervus nippon, Megaloceros pachyosteus, Sus lydekkeri, and Dicerorhinus choukoutienensis. The carbon and oxygen isotopic compositions of structural carbonate within the enamel of these teeth are used to reconstruct the paleodiet and paleoenvironment of the mammals. The δ13C values of enamel from Zhoukoudian range from −2.3‰ to −13.0‰, indicating that these mammals consumed between 25% and 100% C3 plants. The presence of significant amounts of C4 plants in the diets of some herbivore species indicates that at the onset of the Middle Pleistocene local habitats included mixed C3/C4 vegetation. By approximately 470,000 yr ago, C3 plants dominated the diets of herbivores studied, suggesting that the abundance of C4 flora had decreased in the area. For all deer analyzed in this study, the values of δ13C and δ18O decrease substantially from about 720,000 to 470,000 yr ago. This trend may be due to a strengthening of the winter monsoon during the Middle Pleistocene.  相似文献   

10.
Serial sampling of tooth enamel growth increments for carbon and oxygen isotopic analyses of Macropus (kangaroo) teeth was performed to assess the potential for reconstructing paleoseasonality. The carbon isotope composition of tooth enamel apatite carbonate reflects the proportional intake of C3 and C4 vegetation. The oxygen isotopic composition of enamel reflects that of ingested and metabolic water. Tooth enamel forms sequentially from the tip of the crown to the base, so dietary and environmental changes during the tooth's formation can be detected. δ13C and δ18O values were determined for a series of enamel samples drilled from the 3rd and 4th molars of kangaroos that were collected along a 900 km north–south transect in southern Australia. The serial sampling method did not yield pronounced seasonal isotopic variation patterns in Macropus enamel. The full extent of dietary isotopic variation may be obscured by attenuation of the isotopic signal during enamel mineralisation. Brachydont (low-crowned) Macropus teeth may be less sensitive to seasonal variation in isotopic composition due to time-averaging during mineralisation. However, geographic variations observed suggest that there may be potential for tracking latitudinal shifts in vegetation zones and seasonal environmental patterns in response to climate change.  相似文献   

11.
The vertebrate fossil record of Cement Creek Cave, Colorado, spans from > 45,000 yr ago to the present and represents the richest stratified series of high-elevation (> 2900 m) mammal remains known from the late Quaternary of North America. Stable carbon and oxygen isotope analyses of tooth enamel were used to assess potential ecological responses of two species found commonly throughout the cave, Yellow-bellied marmots (Marmota flaviventris) and Bushy-tailed woodrats (Neotoma cinerea), to late Quaternary climate and environmental changes of the Southern Rocky Mountains. Results indicate that despite such perturbations, the dietary ecologies of both species were maintained across this period. Neither taxon shifted to consuming C4 taxa or different C3 functional groups; similarly, no significant shifts in surface water use were detected. Variations in enamel δ13C were observed, however, that represent the physiological responses of high-elevation plants to changing levels of late Quaternary atmospheric CO2. While our findings extend both the geographic and elevational record of this plant CO2 response, they simultaneously highlight the ecological stability of high-elevation M. flaviventris and N. cinerea during climate changes of late Quaternary magnitude.  相似文献   

12.
《Applied Geochemistry》1988,3(2):145-151
A series of well preserved mammal bones and horse teeth was analyzed from archaeological levels of Tournal Cave (Magdalenian, Aurignacian, and Mousterain) to test the hypothesis that well-crystallized enamel behaves more as a closed system than does whole bone. The isotopic composition of bones and tooth enamels from this deposit meet criteria for confidence, and gave no reasons to suspect contamination or open-system behavior. Two samples for which231Pa could be analyzed showed internal concordance with the respective230Th ages. In spite of the favourable isotopic criteria, however, comparison of the U-series ages of the bones and the tooth enamel with stratigraphic position and14C control indicated the dates were not meaningful. In general, both bones and tooth enamels gave ages too young, although some were clearly too old. Neither group showed any systematic increase of age with stratigraphic depth. Tooth enamel, therefore, shows no advantage over bone for U-series dating for this site. In Tournal cave both bones and enamel are apparently open to U, which is probably cycling as a consequences of post-depositional groundwater movement.  相似文献   

13.
Mesowear and microwear on enamel from 763 teeth of middle and late Pleistocene ungulates were analysed to infer the potential of dental wear analysis of faunal remains as a paleoenvironmental and paleoclimatic proxy in relation to climatic changes and diversity of vegetation available in the environment. Fossil localities including levels belonging to two glacial and two interglacial stages were selected in Germany, France, and Spain. At a temporal scale, results indicate that the dietary diversity in ungulates is higher during interglacial phases (MIS 5 and 3) than during pleniglacial phases (MIS 8 and 4). Dietary diversity is concluded to be related to climate-driven vegetation changes which during interglacials lead to increased variety of potential food items available to ungulates. At the geographical scale, during interglacials, changes in diet composition are evident along geographical gradients. The corresponding dietary gradients are proposed to be related to climate and vegetation gradients reflecting more arid climates in the Mediterranean area compared to North-Western Europe. Species consistently represented at all localities investigated are Cervus elaphus (Cervidae, Artiodactyla) and Equus ferus (Equidae, Perissodactyla). C. elaphus populations are found to consistently have less abrasive diets than E. ferus populations but dietary traits of both species varied largely, revealing a significant plasticity in the feeding adaptation of both species. Those traits are concluded to be related to differences in vegetation structure at each locality and complement the evidence that ungulates have broader dietary habits than what is usually assumed.  相似文献   

14.
Several Gigantopithecus faunas associated with taxonomically undetermined hominoid fossils and/or stone artifacts are known from southern China. These faunas are particularly important for the study of the evolution of humans and other mammals in Asia. However, the geochronology of the Gigantopithecus faunas remains uncertain. In order to solve this problem, a program of geochronological studies of Gigantopithecus faunas in Guangxi Province was recently initiated. Chuifeng Cave is the first studied site, which yielded 92 Gigantopithecus blacki teeth associated with numerous other mammalian fossils. We carried out combined ESR/U-series dating of fossil teeth and sediment paleomagnetic studies. Our ESR results suggest that the lower layers at this cave can be dated to 1.92 ± 0.14 Ma and the upper layers can be dated to older than 1.38 ± 0.17 Ma. Correlation of the recognized magnetozones to the geomagnetic polarity timescale was achieved by combining magnetostratigraphic, biostratigraphic and ESR data. The combined chronologies establish an Olduvai subchron (1.945–1.778 Ma) for the lowermost Chuifeng Cave sediments. We also analyzed the enamel δ13C values of the Gigantopithecus faunas. Our results show that southern China was dominated by C3 plants during the early Pleistocene and that the Gigantopithecus faunas lived in a woodland-forest ecosystem.  相似文献   

15.
The stable carbon isotopic composition (expressed as δ13C) of herbivore remains is commonly used to reconstruct past changes in the relative abundance of C4 versus C3 grass biomass (C4 relative abundance). However, the strength of the relationship between herbivore δ13C and C4 relative abundance in extant ecosystems has not been thoroughly examined. We determined sources of variation in δ13C of bone collagen and tooth enamel of kangaroos (Macropus spp.) collected throughout Australia by measuring δ13C of bone collagen (779 individuals) and tooth enamel (694 individuals). An index of seasonal water availability, i.e. the distribution of rainfall in the C4 versus C3 growing seasons, was used as a proxy for C4 relative abundance, and this variable explained a large proportion of the variation in both collagen δ13C (68%) and enamel δ13C (68%). These figures increased to 78% and 77%, respectively, when differences between kangaroo species were accounted for. Vegetation characteristics, such as woodiness and the presence of an open forest canopy, had no effect on collagen or enamel δ13C. While there was no relationship between collagen δ13C and kangaroo age at death, tooth enamel produced later in life, following weaning, was enriched in 13C by 3.5‰ relative to enamel produced prior to weaning. From the observed relationships between seasonal water availability and collagen and enamel δ13C, enrichment factors (ε) for collagen-diet and enamel-diet (post-weaning) were estimated to be 5.2‰ ± 0.5 (95% CI) and 11.7‰ ± 0.6 (95% CI), respectively. The findings of this study confirm that at a continental scale, collagen and enamel δ13C of a group of large herbivores closely reflect C4 relative abundance. This validates a fundamental assumption underpinning the use of isotopic analysis of herbivore remains to reconstruct changes in C4 relative abundance.  相似文献   

16.
At least 14 axial-symmetry ESR lines in Plio-Quaternary enamel fibres were observed by Q-band technique. Some lines follow a law e.g. the main anisotropic A-line whose g = 2.0018 and g = 1.9977 are close to geff = 2.0020 and geff = 1.9975 respectively of the isotropic doublets B- and E-lines. The other lines are blocked below 220K e.g. one isotropic hyperfine (g = 2.0033, a = 21.6 Gauss) M-septet and one isotropic singlet (g = 2.0007) D-line. By heating, the M-septet intensity increases up to 250°C and is lost at 280°C; B- and E-lines decrease while a new isotropic (g = 2.0056) C-line appears. At 300°C, only the two C- and A-lines usually remain and hold up to 400°C.The natural dose rate of fossil enamel is calculated from U-, Th-, K-content and disequilibrium measured both in enamel and dentine, bones and sediments in contact, by methods of low-background γ-spectrometry, isotopic dilution and fission-tracks mapping.ESR dating of quaternary Proboscidae, Bovidae, Equidae and Cervidae has been attempted by a new comparative method: the A-line intensity, normalized for the same dose rate and weight, of various fossil dental enamels varies quasi-linearly with the age of the geological sites from which they are issued.  相似文献   

17.
Quantitative reconstruction of paleodiet by means of sequential sampling and carbon isotope analysis in hypsodont tooth enamel requires a precise knowledge of the isotopic enrichment between dietary carbon and carbon from enamel apatite (εD-E), as well as of the timing and duration of the enamel mineralization process (amelogenesis). To better constrain these parameters, we performed a series of controlled feeding experiments on sheep ranging in age from 6 to 24 months-old. Twenty-eight lambs and 14 ewes were fed isotopically distinct diets for different periods of time, and then slaughtered, allowing the timing and rate of molar growth to be determined. High resolution sampling and stable carbon isotope analysis of breath CO2 performed on six individuals following a diet-switch showed that 70-90% of dietary carbon had turned over in less than 24 h. Sequential sampling and carbon isotopic analysis was performed on the first (M1) and second (M2) lower molars of four lambs as well as on the third lower molar (M3) of 11 ewes. The changes in diet were recorded in all molars. We found that the length of enamel matrix apposition is approximately one-quarter of the final tooth length during crown extension, and that enamel maturation spans slightly less than 3 months in M1, and 4 months in M2 and M3. Portions of enamel in equilibrium with dietary carbon were used to calculate εD-E values. Animals on grass silage diets had values similar to previous observations, whereas animal switched to pelleted corn diets had values ca. 4‰ lower, a pattern consistent with lower methane production observed for animals fed concentrate diets. The tooth enamel forward model of Passey and Cerling (2002) closely predicted the amplitude of isotope changes recorded in tooth enamel, but slightly underestimated the rate of isotope change, suggesting that the rate of accumulation of carbonate during maturation may not be constant over time. Although stable isotope profiles in tooth enamel represent underdetermined systems, our results demonstrate that they can provide useful information about dietary variability if the mineralization process is taken into account.  相似文献   

18.
Modern bone and enamel powders have reacted at 301 K with 13C- and 18O-labelled waters under inorganic and microbial conditions. The aim of the study is to investigate the resistance of stable isotope compositions of bioapatite carbonate (δ13C, δ18Oc) and phosphate (δ18Op) to isotopic alteration during early diagenesis. Rapid and significant carbon and oxygen isotope changes were observed in the carbonate and phosphate fractions of bone apatite before any detectable change occurred in the crystallinity or organic matter content. These observations indicate that chemical alterations of bone apatite are likely to start within days of death. Enamel crystallites are much more resistant than bone crystallites, but are not exempt of alteration. Non removable carbon and oxygen isotope enrichments were measured in the carbonate phase of bone (50-90%) and enamel (40%) after the acetic acid treatment. This result indicates that a significant part of 13C and 18O-labelled coming from the aqueous fluid has been durably incorporated into the apatite structure, probably through isotopic exchange or secondary carbonate apatite precipitation. As a result, acetic acid pre-treatments that are currently used to remove exogenous material by selective dissolution, are not adequate to restore pristine δ13C and δ18Oc values of fossil apatites. Under inorganic conditions, kinetics of oxygen isotope exchange are 10 times faster in carbonate than in phosphate. On the opposite, during biologically-mediated reactions, the kinetics of oxygen isotope exchange between phosphate and water is, at least, from 2 to 15 times faster than between carbonate and water. Enamel is a more suitable material than bone for paleoenvironmental or paleoclimatical reconstructions, but interpretations of δ18Op or δ13C values must be restricted to specimens for which no or very limited trace of microbial activity can be detected.  相似文献   

19.
The following organic radicals were identified by EPR spectroscopy in apatite from marine phosphorites (granular, nodular, shelly, and microcrystalline), supergene phosphorites (from ocean islands only), and modern and fossil biological materials (human dental enamel, fossil shark teeth, and pathogenic cardioliths): ?H3, ?H2-R, HO?HR,(CH3)2-?R,3?org, PO 3 2? , P(OR)3, and perinaphteenyl. Each textural and petrographic type of apatite corresponds to a specific model of organic radicals, which correlates with the type of organic matter (sapropelic, humic, guano, or collagen). The latter is controlled by the conditions of mineral formation, including climatic ones, and postdiagenetic (catagenetic) processes. A relationship was established between the EPR spectra of observed organic radicals and the valence state and structural position of impurity ions: (1) vanadium: V4+ (VO2+) in the Ca2+ II site or V5+ (VO4)3? ?? (PO4)3? and (2) uranium: U4+(UO2) in the Ca2+ II site or U6+ chemisorbed on the surface as UO 2 2+   相似文献   

20.
Understanding the relationships between speleothem stable isotopes (δ13C δ18O) and in situ cave forcing mechanisms is important to interpreting ancient stalagmite paleoclimate records. Cave studies have demonstrated that the δ18O of inorganically precipitated (low temperature) speleothem calcite is systematically heavier than the δ18O of laboratory-grown calcite for a given temperature. To understand this apparent offset, rainwater, cave drip water, groundwater, and modern naturally precipitated calcite (farmed in situ) were grown at multiple locations inside Hollow Ridge Cave in Marianna, Florida. High resolution micrometeorological, air chemistry time series and ventilation regimes were also monitored continuously at two locations inside the cave, supplemented with periodic bi-monthly air gas grab sample transects throughout the cave.Cave air chemistry and isotope monitoring reveal density-driven airflow pathways through Hollow Ridge Cave at velocities of up to 1.2 m s−1 in winter and 0.4 m s−1 in summer. Hollow Ridge Cave displays a strong ventilation gradient in the front of the cave near the entrances, resulting in cave air that is a mixture of soil gas and atmospheric CO2. A clear relationship is found between calcite δ13C and cave air ventilation rates estimated by proxies pCO2 and 222Rn. Calcite δ13C decreased linearly with distance from the front entrance to the interior of the cave during all seasons, with a maximum entrance-to-interior gradient of Δδ13CCaCO3 = −7‰. A whole-cave “Hendy test” at multiple contemporaneous farming sites reveals that ventilation induces a +1.9 ± 0.96‰ δ13C offset between calcite precipitated in a ventilation flow path and calcite precipitated on the edge or out of flow paths. This interpretation of the “Hendy test” has implications for interpreting δ13C records in ancient speleothems. Calcite δ13CCaCO3 may be a proxy not only for atmospheric CO2 or overlying vegetation shifts but also for changes in cave ventilation due to dissolution fissures and ceiling collapse creating and plugging ventilation windows.Farmed calcite δ18O was found to exhibit a +0.82 ± 0.24‰ offset from values predicted by both theoretical calculations and laboratory-grown inorganic calcite. Unlike δ13CCaCO3, oxygen isotopes showed no ventilation effects, i.e. Δδ18OCaCO3 appears to be a function of growth temperature only although we cannot rule out a small effect of (unmeasured) gradients in relative humidity (evaporation) accompanying ventilation. Our results support the findings of other cave investigators that water-calcite fractionation factors observed in speleothem calcite are higher that those measured in laboratory experiments. Cave and laboratory calcite precipitates may differ mainly in the complex effects of kinetic isotope fractionation. Combining our data with other recent speleothem studies, we find a new empirical relationship for cave-specific water-calcite oxygen isotope fractionation across a range of temperatures and cave environments:
1000lnα=16.1(103T-1)-24.6  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号