首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
Abstract

Groundwater of the Tertiary-Quaternary Formations in the Jeloula basin (Central Tunisia), together with rain and surface waters, were analysed to investigate the mineralization processes, the origin of the water and its recharge sources. The water samples present a large spatial variability of chemical facies which is related to their interaction with the geological formations. The main sources of the water mineralization are the dissolution of evaporitic and carbonate minerals and cation exchange reactions. Stable isotopes indicate that most groundwater samples originate from infiltration of modern precipitation. Surface water samples from small dam reservoirs show a 18O/2H enrichment, which is typical of water exposed to open-surface evaporation in a semi-arid region. Considerable data of 3H and 14C allow the qualitative identification of the present-day recharge that is probably supplied by infiltration of recent flood waters in the Wadi El Hamra valley, and by direct infiltration of meteoric water through the local carbonate outcrops.

Editor D. Koutsoyiannis; Associate editor S. Faye  相似文献   

2.
Rainwater, groundwater and soil-water samples were analysed to assess groundwater geochemistry and the origin of salinity in the Ochi-Narkwa basin of the Central Region of Ghana. The samples were measured for major ions and stable isotopes (δ18O, δ2H and δ13C). The Cl? content in rainwater decreased with distance from the coast. The major hydrochemical facies were Na-Cl for the shallow groundwaters and Ca-Mg-HCO3, Na-Cl and Ca-Mg-Cl-SO4 for the deep groundwaters. Groundwater salinization is caused largely by halite dissolution and to a minor extent by silicate weathering and seawater intrusion. Stable isotope composition of the groundwaters followed a slope of 3.44, suggesting a mixing line. Chloride profiles in the soil zone revealed the existence of salt crusts, which support halite dissolution in the study area. A conceptual flow model developed to explain the mechanism of salinization showed principal groundwater flow in the NW–SE direction.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR K. Heal  相似文献   

3.
Abstract

The assessment of groundwater vulnerability to pollution has proved to be an effective tool for water resource management, especially in arid and semi-arid regions like Mahdia and Ksour Essaf. The main objective of this study is to assess the aquifer vulnerability by applying the DRASTIC method as well as using sensitivity analysis to evaluate the effect of each DRASTIC parameter on the final vulnerability map. An additional objective is to demonstrate the role of the GIS techniques in the vulnerability assessment. The DRASTIC method assigns a high vulnerability to the coast of the Mahdia-Ksour Essaf. The lowest values are observed in the southern part of the study area. A sensitivity analysis applied in this study suggests that net recharge, aquifer media and depth of groundwater are the key factors determining vulnerability. The model is validated with groundwater quality data and the results have shown strong relationships between modified DRASTIC Vulnerability Index and nitrate and chloride concentrations.

Citation Saidi, S., Bouri, S. & Ben Dhia, H. (2011) Sensitivity analysis in groundwater vulnerability assessment based on GIS in the Mahdia-Ksour Essaf aquifer, Tunisia: a validation study. Hydrol. Sci. J. 56(2), 288–304.  相似文献   

4.
Groundwater dolocretes may exert an important geomorphic control on landscape evolution within sub-humid to arid regions. However, the geomorphic and hydrogeological settings of dolocrete remain poorly described. The hydrochemical conditions of dolomite precipitation in groundwater environments are also not well known. Classic models of dolocrete formation explain dolomite precipitation from highly evolved groundwaters at the terminus of major drainage but do not explain dolocrete distributed in regionally elevated landscapes, upgradient of major drainage. This study investigated the mineralogy, micromorphology and stable carbon and oxygen isotope compositions of three dolocrete profiles within a regionally elevated sub-basin of the Hamersley Ranges in the Pilbara region of northwest Australia. We sought to establish the environmental and hydrochemical conditions and present a model for dolocrete formation. We found that dolocrete formed within zones of emerging groundwater under saline-evaporitic conditions within internally draining sub-basins, most likely during the Late Miocene and Pliocene. Saline-evaporitic conditions were indicated by: (i) the mineralogy, dominated by dolomite, palygorskite and smectite; (ii) desiccation features and the presence of phreatic and vadose cements, indicative of a shallow fluctuating water table, and; (iii) dolomite δ18O values (median = –5.88 ‰). Dolomite precipitation was promoted by evaporation and carbon dioxide degassing from shallow magnesium (Mg)-rich groundwater. These factors appear to have been the major drivers of dolocrete development without a requirement for significant down-dip hydrochemical modification. Primary dolomite precipitation was possible due to the presence of microbial extracellular polymeric substances (EPS). EPS provided negatively charged nucleation sites, which bound Mg2+, overcoming kinetic effects. High microbial activity within groundwater systems suggest these processes may be important for dolocrete formation worldwide and that groundwater dolocretes may be more pervasive in landscapes than currently recognized. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   

5.
This paper presents a methodology for hydrograph separation in mountain watersheds, which aims at identifying flow sources among ungauged headwater sub‐catchments through a combination of observed streamflow and data on natural tracers including isotope and dissolved solids. Daily summer and bi‐daily spring season water samples obtained at the outlet of the Juncal River Basin in the Andes of Central Chile were analysed for all major ions as well as stable water isotopes, δ18O and δD. Additionally, various samples from rain, snow, surface streams and exfiltrating subsurface water (springs) were sampled throughout the catchment. A principal component analysis was performed in order to address cross‐correlation in the tracer dataset, reduce the dimensionality of the problem and uncover patterns of variability. Potential sources were identified in a two‐component U‐space that explains 94% of the observed tracer variability at the catchment outlet. Hydrograph separation was performed through an Informative‐Bayesian model. Our results indicate that the Juncal Norte Glacier headwater sub‐catchment contributed at least 50% of summer flows at the Juncal River Basin outlet during the 2011–2012 water year (a hydrologically dry period in the Region), even though it accounts for only 27% of the basin area. Our study confirms the value of combining solute and isotope information for estimating source contributions in complex hydrologic systems, and provides insights regarding experimental design in high‐elevation semi‐arid catchments. The findings of this study can be useful for evaluating modelling studies of the hydrological consequences of the rapid decrease in glacier cover observed in this region, by providing insights into the origin of river water in basins with little hydrometeorological information. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Abstract

The Complex Terminal (CT) and Plio-Quaternary (P-Q) aquifers in the Chott Gharsa plain in southwestern Tunisia have been investigated with the aid of chemical and isotopic tools. It has been demonstrated that groundwater from the CT is mainly of palaeo-origin, especially in the western and central parts of the plain where the most negative values of δ18O and δ2H were observed (between??8.1 and??7.6‰ for δ18O, and??60 to??57‰ for δ2H), combined with low concentrations of radiocarbon (6.8–7.5 pmc) and absence of tritium. Modern recharge of the aquifer occurs only in the eastern part of the system where younger waters were observed, as indicated by their stable isotope composition, relatively high radiocarbon content and presence of tritium. Groundwater from the P-Q multi-layer aquifer represents mixtures of ascending deep CT waters and modern water recharging the P-Q aquifer system. Isotope mass balance was used to quantify mixing proportions. The calculations showed that the contribution of deep CT groundwater to the P-Q aquifer system reaches about 75% in the western and central parts of the plain where the CT aquifer remains strongly artesian. This contribution decreases to about 15% towards the eastern part of the plain, as a consequence of significant reduction of artesian pressure in this area of the CT aquifer. Chemical data suggest that mineralization of the studied groundwater systems is controlled mainly by dissolution of evaporative minerals (halite, anhydrite and gypsum) and cation exchange reactions with the matrix, possibly enhanced by recent anthropogenic disturbance of the system caused by lowering of the water table due to heavy exploitation and return flow of saline irrigation water into the P-Q aquifer.

Editor D. Koutsoyiannis; Associate editor E. Custodio

Citation Yangui, H., Abidi, I., Zouari, K., and Rozanski, K., 2012. Deciphering groundwater flow between the Complex Terminal and Plio-Quaternary aquifers in Chott Gharsa plain (southwestern Tunisia) using isotopic and chemical tools. Hydrological Sciences Journal, 57 (5), 967–984.  相似文献   

7.
ABSTRACT

Many oases are experiencing severe groundwater depletion due to increased population, expanding agriculture and economic development. For sustainable development, quantifying groundwater recharge resources are fundamentally important. In this study, stable isotope techniques were employed to identify recharge sources of groundwater and quantitatively evaluate their contribution ratios in the Dunhuang Oasis, northwest China. Our findings indicate that heavy isotopes in shallow groundwater are more negative than those in deep groundwater, which is attributed to shallow groundwater that was modern and deep groundwater that was old. Irrigated return water and lateral groundwater flow from the Qilian Mountains are considered as the two main sources of shallow groundwater, accounting for 35% and 65% of the total recharge, respectively. Thus, as the main groundwater source of the Dunhuang Oasis, the Qilian Mountain Front should be protected against over-exploitation. Our results provide not only fundamental knowledge for groundwater management of aquifers of the Oasis, but also valuable water management information for other similar arid oases worldwide.  相似文献   

8.
We characterize the precipitation and groundwater in a mountainous (peaks slightly above 3000 m a.s.l.), semi‐arid river basin in SE Spain in terms of the isotopes 18O and 2H. This basin, with an extension of about 7000 km2, is an ideal site for such a study because fronts from the Atlantic and the Mediterranean converge here. Much of the land is farmed and irrigated both by groundwater and runoff water collected in reservoirs. A total of approximately 100 water samples from precipitation and 300 from groundwater have been analysed. To sample precipitation we set up a network of 39 stations at different altitudes (800–1700 m a.s.l.), with which we were able to collect the rain and snowfall from 29 separate events between July 2005 and April 2007 and take monthly samples during the periods of maximum recharge of the aquifers. To characterize the groundwater we set up a control network of 43 points (23 springs and 20 wells) to sample every 3 months the main aquifers and both the thermal and non‐thermal groundwater. We also sampled two shallow‐water sites (a reservoir and a river). The isotope composition of the precipitation forms a local meteoric water line (LMWL) characterized by the equation δD = 7·72δ18O + 9·90, with mean values for δ18O and δD of − 10·28‰ and − 69·33‰, respectively, and 12·9‰ for the d‐excess value. To correlate the isotope composition of the rainfall water with groundwater we calculated the weighted local meteoric water line (WLMWL), characterized by the equation δD = 7·40δ18O + 7·24, which takes into account the quantity of water precipitated during each event. These values of (dδD/dδ18O)< 8 and d‐excess (δD–8δ18O)< 10 in each curve bear witness to the ‘amount effect’, an effect which is more manifest between May and September, when the ground temperature is higher. Other effects noted in the basin were those of altitude and the continental influence. The isotopic compositions of the groundwater are represented by the equation δD = 4·79δ18O − 18·64. The groundwater is richer in heavy isotopes than the rainfall, with mean values of − 8·48‰ for δ18O and − 59·27‰ for δD. The isotope enrichment processes detected include a higher rate of evaporation from detrital aquifers than from carbonate ones, the effects of recharging aquifers from irrigation return flow and/or from reservoirs' leakage and enrichment in δ18O from thermal water. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
10.
Isotope tracers are widely used to study hydrological processes in small catchments, but their use in continental-scale hydrological modeling has been limited. This paper describes the development of an isotope-enabled global water balance and transport model (iWBM/WTM) capable of simulating key hydrological processes and associated isotopic responses at the large scale. Simulations and comparisons of isotopic signals in precipitation and river discharge from available datasets, particularly the IAEA GNIP global precipitation climatology and the USGS river isotope dataset spanning the contiguous United States, as well as selected predictions of isotopic response in yet unmonitored areas illustrate the potential for isotopes to be applied as a diagnostic tool in water cycle model development. Various realistic and synthetic forcings of the global hydrologic and isotopic signals are discussed. The test runs demonstrate that the primary control on isotope composition of river discharge is the isotope composition of precipitation, with land surface characteristics and precipitation-amount having less impact. Despite limited availability of river isotope data at present, the application of realistic climatic and isotopic inputs in the model also provides a better understanding of the global distribution of isotopic variations in evapotranspiration and runoff, and reveals a plausible approach for constraining the partitioning of surface and subsurface runoff and the size and variability of the effective groundwater pool at the macro-scale.  相似文献   

11.
This study addresses the influence of landslide dams on surface water drainage and groundwater flow. In the study area of Scanno Lake and Sagittario River (Central Italy), a limestone rockslide‐avalanche formed a lake, which has an outlet that is occasionally active, showing infiltration into the rockslide dam. Several springs are present at the lake's base and are partly fed by seepage through the rockslide debris. Piezometric surveys, discharge measurements, pumping tests and chemical analyses are tools used to build a conceptual model of the groundwater flow and to evaluate the flow through the rockslide debris. Seasonal water isotopic signatures validate the assumed model, showing a mixing of infiltration recharge and groundwater seepage throughout the rockslide debris. Various recharge areas have been found for springs, pointing out those directly fed by the rockslide debris aquifer. Hypotheses about seasonal groundwater mixing between the regional carbonate aquifer and the rockslide debris aquifer are supported by isotope results. Seasonal changes in groundwater table level due to recharge and surface losses from seasonal outlet have been correlated with isotopic groundwater composition from the rockslide debris aquifer and the downstream springs; this relationship highlights the role of the rockslide dam body on the hydrodynamics of the studied area. Relationships between surface waters and groundwater in the area have been completely understood on the basis of water isotopic fingerprinting, finally obtaining a complete evaluation of groundwater renewable resources and its regimen. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Abstract

Major ions and stable isotopes in groundwaters of the Plio-Quaternary shallow aquifer of the Djerid oases, southern Tunisia, were investigated to elucidate the origin of groundwater recharge and the mineralization processes. It has been demonstrated that the groundwater composition is mainly controlled by the water–rock interaction, the encroachment of brines from the Chotts and the return flow of irrigation waters. The isotopically depleted groundwater samples suggest that the recharge waters derive from an old palaeoclimatic origin. However, the enriched groundwater samples reflect the presence of evaporated recharge water. Furthermore, the large negative deuterium-excess values indicate the effect of secondary evaporation processes, probably related to the return flow of irrigation waters pumped from the underlying aquifer.

Editor D. Koutsoyiannis; Associate editor E. Custodio

Citation Tarki, M., Dassi, L. and Jedoui, Y., 2012. Groundwater composition and recharge origin in the shallow aquifer of the Djerid oases, southern Tunisia: implications of return flow. Hydrological Sciences Journal, 57 (4), 790–804.  相似文献   

13.
Lacustrine groundwater discharge (LGD) and the related water residence time are crucial parameters for quantifying lake matter budgets and assessing its vulnerability to contaminant input. Our approach utilizes the stable isotopes of water (δ18O, δ2H) and the radioisotope radon (222Rn) for determining long‐term average and short‐term snapshots in LGD. We conducted isotope balances for the 0.5‐km2 Lake Ammelshainer See (Germany) based on measurements of lake isotope inventories and groundwater composition accompanied by good quality and comprehensive long‐term meteorological and isotopic data (precipitation) from nearby monitoring stations. The results from the steady‐state annual isotope balances that rely on only two sampling campaigns are consistent for both δ18O and δ2H and suggested an overall long‐term average LGD rate that was used to infer the water residence time of the lake. These findings were supported by the good agreement of the simulated LGD‐driven annual cycles of δ18O and δ2H lake inventories with the observed lake isotope inventories. However, radon mass balances revealed lower values that might be the result of seasonal LGD variability. For obtaining further insights into possible seasonal variability of groundwater–lake interaction, stable water isotope and radon mass balances could be conducted more frequently (e.g., monthly) in order to use the derived groundwater discharge rates as input for time‐variant isotope balances.  相似文献   

14.
The study of water vapour sources and water cycle patterns in the Yellow River source region is of great significance for ensuring water resource security in the arid and semi-arid regions of northern China. We established a precipitation stable isotope observation system in the Yellow River source region for three consecutive years (2020–2022), systematically analysed the spatial and temporal distribution characteristics of precipitation stable isotopes 2H and 18O in the Yellow River source region and their interrelationships with environmental factors and topography, and explored the regional water vapour transport pathways by using the HYSPLIT model and combining with the global reanalysis data. The results show that: (1) the δ18O and δ2H values of precipitation in the Yellow River source region follow the seasonal pattern, with the first half of the year being richer than the second half of the year; (2) the spatial variations of δ18O of precipitation in the Yellow River source region show a low in the southwest and a high in the northeast; (3) the water vapour source in the source area is basically stable, and the complex transport paths and the cross-effects of the local factors determine the stable isotope characteristics of the water, and the stable isotope characteristics of the water are determined by the cross-effects of the local factors, because the source of the water vapour and the local factors such as the height will not change significantly in the short term. Since the source of water vapour and local elevation factors will not change significantly in the short term, the precipitation pattern in the source area of the Yellow River can be considered to be basically stable.  相似文献   

15.
The origin and the chemical and isotopic evolution of dissolved inorganic carbon (DIC) in groundwater of the Okavango Delta in semi-arid Botswana were investigated using DIC and major ion concentrations and stable oxygen, hydrogen and carbon isotopes (δD, δ18O and δ13CDIC). The δD and δ18O indicated that groundwater was recharged by evaporated river water and unevaporated rain. The river water and shallow (<10 m) groundwater are Ca–Na–HCO3 type and the deep (≥10 m) groundwater is Na–K–HCO3 to HCO3–Cl–SO4 to Cl–SO4–HCO3. Compared to river water, the mean DIC concentrations were 2 times higher in shallow groundwater, 7 times higher in deep groundwater and 24 times higher in island groundwater. The δ13CDIC indicate that DIC production in groundwater is from organic matter oxidation and in island groundwater from organic matter oxidation and dissolution of sodium carbonate salts. The ionic and isotopic evolution of the groundwater relative to evaporated river water indicates two independent pools of DIC.  相似文献   

16.
The Pantanal wetland is one of the least explored regions of South America. It is characterized by an outstanding flora and fauna adapted to a seasonal flood pulse controlled by a dry and a wet season within each year. The resulting inundation covers in average an area of approximately 150 000 km2 and is seen as the most important driver for ecological integrity. Evaporation from the large floodplain is supposed to influence the climate of the whole continent. The regional groundwater is connected to the surface water and plays an important role for the characteristic flooding regime by regulating the wetland's water table. The water balance assessment of the wetland and the internal water exchange between surface and groundwater is therefore of high relevance for the conservation of the Pantanal biodiversity. Despite of its importance, water balance studies including groundwater–surface water interactions based on field data are rarely undertaken. This is mainly due to the remoteness and difficulty in accessing this area, which results in lack of data. In our study, we developed a new tracer‐based model to simulate the spatio–temporal surface and subsurface fluxes for a range of water bodies. The model was able to simulate these fluxes considering a dynamic simulation of inflow and outflow using a newly collected 2‐year dataset of water levels, stable water isotopes and chloride collected from several water bodies in the northern Pantanal region. Quantitative differences between water bodies according to their location in the floodplain were determined by the flooding regime and connectivity as well as site‐specific characteristics, such as hydraulic conductivity and water depth. Our model simulated water balance fluxes with a Nash–Sutcliffe efficiency of 0.61, whereas it simulated stable water isotopic compositions better than chloride. We present the first study based on field data for the Pantanal, which is able to quantify water balances fluxes. Because their representation in global climate and land cover products is insufficient, our simulation results are valuable for validating large‐scale models. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Yinchuan Basin, a semi‐arid area located in Northwest China, is currently subject to increasing pressure from the altered hydrology due to the anthropogenic activities as well as increasing water demands for regional development. Sustainable water management across the region must be underpinned by a clear understanding of the factors that constrain water supply in this area. We measured the stable isotope of oxygen and hydrogen to determine the likely processes that control the interrelations among precipitation, surface water (Yellow River), and groundwater. The hydrogen and oxygen values demonstrate that 2 primary hydrochemical processes, mixing and evaporation/condensation, occurred in the Basin. Recharge proportions of precipitation and Yellow River were quantitatively evaluated based on the isotope mass balance method. The proportions of the Yellow River and atmospheric precipitation recharge are 87.7% and 12.3%, respectively. The evaporation proportions calculated with 18O and D by Rayleigh fractional equation are close to each other, which demonstrate that evaporation intensity increases following the flow direction of the Yellow River. The findings obtained in this study are useful for recognizing the significance of Yellow River to Yinchuan Basin, and some optimal allocation schemes can be adopted for a prospective development of this reputed area in Northwest China.  相似文献   

18.
N. Subba Rao 《水文研究》2012,26(22):3344-3350
A pollution index of groundwater (PIG) is proposed for quantification of water contamination. PIG quantifies the status of concentrations of water quality measures with respect to their drinking water quality standards. The validity of the proposed index is verified by choosing the data of groundwater quality of the Varaha River Basin (Visakhapatnam District, Andhra Pradesh, India) as a case study. The computed index from the study area varies from 0.83 to 2.55. The index disseminates the area into zones of insignificant (PIG <1.0), low (PIG: 1.0 to 1.5), moderate (PIG: 1.5 to 2.0), high (PIG 2.0 to 2.5) and very high (PIG >2.5) pollution. Insignificant pollution zone is observed from the upstream area, where the groundwater is dominated by , and very high pollution zone from the downstream area, where the groundwater is associated with Cl?. This indicates that the quality of groundwater in the study area is mainly influenced by the source of geogenic origin, but it is subsequently modified by the effects of anthropogenic and marine sources. Geochemical ratios (Na+ : Cl?, : Cl?, Na+ : Ca2+ and Mg2+ : Ca2+) also form the quantitative basis of the index. The present study paves the way to implement appropriate management strategies at a specific site to circumvent the pollution. As the classification of the pollution zones with PIG depends upon the drinking water quality standards, it becomes a universal assessment tool for groundwater contamination at any test area. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
The Guarani Aquifer System (GAS) has been studied since the 1970s, a time frame that coincides with the advent of isotopic techniques in Brazil. The GAS isotope data from many studies are organized in different phases: (a) the advent of isotope techniques, (b) consolidation and new applications, (c) isotope assessments and hydrochemistry evolution, and (d) a roadmap to a new conceptual model. The reasons behind the phases, their methodological approaches, and impacts on the regional flow conceptual models are examined. Starting with local δ2H and δ18O assessments of values for water fingerprinting and estimates of recharge palaeoclimate scenarios, studies evolved to more integrated approaches based on multiple tracers. Stable isotope application techniques were consolidated during the 1980s, when new dating approaches dealing with radiogenic and heavy isotopes were introduced. Through the execution of an international transboundary project, the GAS was studied and extensively sampled for isotopes. These results have triggered wider application of isotope techniques, reflecting also world research trends. Presently, hydrochemical evolution models along flow lines from recharge to discharge areas, across large‐scale tectonic features within the entire sedimentary basin, are being combined with residence time estimates at GAS outcrop areas and deep confined units. In a complex system, it is normal that many, and even contradictory hypotheses are proposed, but isotope techniques provide a unique chance to test them. Stable isotope assessments are still needed near recharge areas, and they can be combined with groundwater classical dating procedures, complemented by newer techniques (3H‐3He, CFCs, and SF6). Recent noble gas sampling and world pioneer analytical efforts focused on the confined units in the GAS will certainly led to new findings on the overall GAS circulation. The objective of this article is to discuss how isotope information can contribute to the evolution of conceptual groundwater flow models for regional continental aquifers, such as the GAS.  相似文献   

20.
Abstract

Groundwater vulnerability assessment based on the DRASTIC index has been widely used since the 1980s to map potential risks of groundwater contamination. However, its applicability and usefulness are affected by two uncertain and subjective factors. One is the discretization of continuous input variables and the other is the assignment of different weights to the index variables. In this study, an entropy-weighted fuzzy-optimization approach was developed to augment and improve the classic DRASTIC method by reducing the uncertainties associated with variable discretization and weight assignment. The modified DRASTIC method was applied to a study site in Shandong, north China. The entropy-weighted fuzzy-optimization approach is shown to provide a more rigorous delineation of the relative vulnerability distribution. Meanwhile, the new approach does not require the use of more parameters. The results suggest that this approach significantly improves and enhances the ability of the classic DRASTIC method in a more systematic and rigorous way.

Editor D. Koutsoyiannis

Citation Yu, C., Zhang, B.X., Yao, Y.Y., Meng, F.H., and Zheng, C.M., 2012. A field demonstration of the entropy-weighted fuzzy DRASTIC method for groundwater vulnerability assessment. Hydrological Sciences Journal, 57 (7), 1420–1432.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号