首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Groundwater flooding occurred in the upper parts of many chalk rivers in the UK during the exceptionally wet winter of 2000–01. This provided a rare opportunity to investigate the spatial distribution of groundwater discharge and flooding along the normally dry intermittent headwaters of a chalk catchment. The extent of flooding along the River Pang, upstream of the seasonal head, was mapped using aerial photography, and point measurements of flow and water temperature were used to identify the contributing reaches of the river. The results are discussed in the context of the geological and groundwater conditions. The occurrence of flooding can largely be explained by the regional groundwater flow directions, but increased flow in some locations may be as a result of preferential groundwater flow along lines of geological structure. Published by John Wiley & Sons, Ltd.  相似文献   

2.
Interaction between groundwater and surface water in watersheds has significant impacts on water management and water rights, nutrient loading from aquifers to streams, and in‐stream flow requirements for aquatic species. Of particular importance are the spatial patterns of these interactions. This study explores the spatio‐temporal patterns of groundwater discharge to a river system in a semi‐arid region, with methods applied to the Sprague River Watershed (4100 km2) within the Upper Klamath Basin in Oregon, USA. Patterns of groundwater–surface water interaction are explored throughout the watershed during the 1970–2003 time period using a coupled SWAT‐MODFLOW model tested against streamflow, groundwater level and field‐estimated reach‐specific groundwater discharge rates. Daily time steps and coupling are used, with groundwater discharge rates calculated for each model computational point along the stream. Model results also are averaged by month and by year to determine seasonal and decadal trends in groundwater discharge rates. Results show high spatial variability in groundwater discharge, with several locations showing no groundwater/surface water interaction. Average annual groundwater discharge is 20.5 m3/s, with maximum and minimum rates occurring in September–October and March–April, respectively. Annual average rates increase by approximately 0.02 m3/s per year over the 34‐year period, negligible compared with the average annual rate, although 70% of the stream network experiences an increase in groundwater discharge rate between 1970 and 2003. Results can assist with water management, identifying potential locations of heavy nutrient mass loading from the aquifer to streams and ecological assessment and planning focused on locations of high groundwater discharge. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
A three‐dimensional numerical modelling system is developed to study transformation processes of water resources in alluvial fan and river basin along the middle reaches of the Heihe River Basin, Northwest China, an arid and semi‐arid region. Integrating land utilization, remote sensing and geographic information systems, we have developed a numerical modelling system that can be used to quantify the effects of land use and anthropogenic activities on the groundwater system as well as to investigate the interaction between surface water and groundwater. Various hydraulic measurements are used to identify and calibrate the hydraulic boundary conditions and spatial distributions of hydraulic parameters. In the modelling study, various water exchanges and human effects on the watershed system are considered. These include water exchange between surface water and groundwater, groundwater pumping, lateral water recharges from mountain areas, land utilization, and infiltration and evaporation in the irrigation and non‐irrigation areas. The modelling system provides a quantitative method to describe spatial and temporal distributions and transformations between various water resources, and it has application to other watersheds in arid and semi‐arid areas. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
The Edwards artesian aquifer occurs in cavernous limestones of Cretaceous (Albian) age within the Balcones fault zone in south-central Texas. The major recharge and discharge zones of the aquifer are contained within the upper reaches of three river systems: the Nueces, the San Antonio, and the Guadalupe. Within these watersheds, recharge dominates in the semiarid Nueces basin to the west while most discharge occurs farther east from wells in the subhumid San Antonio basin and from springs in the subhumid Guadalupe basin. This long-distance transfer of ground water (up to 240 km) is a result of several factors: depositional and early diagenetic history of the limestone host rock, geometry and magnitudes of fault displacement, and physiographic responses to faulting. The loci of greatest discharge from the aquifer occur in an area that was exposed subaerially with concomitant porosity enhancement due to dissolution of limestone during late Early Cretaceous time. This area also was subjected to the greatest fault displacement during Miocene time. Thus, faults and associated joints superimposed additional avenues for porosity and permeability development onto an area that already had considerable secondary porosity. Further determinants on aquifer properties resulted from late Tertiary and Quaternary drainage evolution in response to faulting along the Balcones trend. The strike of the fault zone lay at acute angles to the courses of the main trunk streams in the ancestral Guadalupe and San Antonio River systems, whereas in the Nueces basin the trend of the fault zone was normal to the courses of the main streams. Thus, as a fault-line scarp began to form in the eatern basins, scarp-normal streams were incised rapidly into northwest-trending canyons. These steep-gradient streams captured the eastward-flowing major streams in the easten watersheds. These pirate streams incised into the aquifer at the lowest topographic levels within the region because of: 1. The sudden acquisition of extensive catchment areas in a subhumid area; and 2. Steep stream gradients that reflected the larger fault displacement in the east. The low topographic points of discharge became the loci of major springs. Recharge is dominant in the Nueces basin mainly because streams cross permeable limestone units at higher topographic levels than in the San Antonio and Guadalupe basins. The topographic characteristics of the Nueces watershed resulted from a combination of diverse factors: lesser fault displacement, no major stream piracy, and less vigorous erosion because of a semiarid climate.  相似文献   

5.
Mapping groundwater discharge zones at broad spatial scales remains a challenge, particularly in data sparse regions. We applied a regional scale mapping approach based on thermal remote sensing to map discharge zones in a complex watershed with a broad diversity of geological materials, land cover and topographic variation situated within the Prairie Parkland of northern Alberta, Canada. We acquired winter thermal imagery from the USGS Landsat archive to demonstrate the utility of this data source for applications that can complement both scientific and management programs. We showed that the thermally determined potential discharge areas were corroborated with hydrological (spring locations) and chemical (conservative tracers of groundwater) data. This study demonstrates how thermal remote sensing can form part of a comprehensive mapping framework to investigate groundwater resources over broad spatial scales. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Water is the foundation of the composition, de-velopment and stability of the oasis ecosystems in thearid areas, and is the key ecological factor in the aridareas. The study results showed that in the arid areasthe biological process is weak, the biological ecosys-tems are small in scale and low in stability[1— . So the 9]growth of the natural vegetation is directly influencedby the change of groundwater level, leading to thedegradation of ecosystem[10,11]. Analysis on the rela-tionship betwe…  相似文献   

7.
Saturation‐excess runoff is the major runoff mechanism in humid well‐vegetated areas where infiltration rates often exceed rainfall intensity. Although the Soil and Water Assessment Tool (SWAT) is one of the most widely used models, it predicts runoff based mainly on soil and land use characteristics, and is implicitly an infiltration‐excess runoff type of model. Previous attempts to incorporate the saturation‐excess runoff mechanism in SWAT fell short due to the inability to distribute water from one hydrological response unit to another. This paper introduces a modified version of SWAT, referred to as SWAT‐Hillslope (SWAT‐HS). This modification improves the simulation of saturation‐excess runoff by redefining hydrological response units based on wetness classes and by introducing a surface aquifer with the ability to route interflow from “drier” to “wetter” wetness classes. Mathematically, the surface aquifer is a nonlinear reservoir that generates rapid subsurface stormflow as the water table in the surface aquifer rises. The SWAT‐HS model was tested in the Town Brook watershed in the upper reaches of the West Branch Delaware River in the Catskill region of New York, USA. SWAT‐HS predicted discharge well with a Nash‐Sutcliffe Efficiency of 0.68 and 0.87 for daily and monthly time steps. Compared to the original SWAT model, SWAT‐HS predicted less surface runoff and groundwater flow and more lateral flow. The saturated areas predicted by SWAT‐HS were concentrated in locations with a high topographic index and were in agreement with field observations. With the incorporation of topographic characteristics and the addition of the surface aquifer, SWAT‐HS improved streamflow simulation and gave a good representation of saturated areas on the dates that measurements were available. SWAT‐HS is expected to improve water quality model predictions where the location of the surface runoff matters.  相似文献   

8.
The present work examines the possible use of major ion chemistry and multivariate statistical techniques as a rapid and relatively cost‐effective method of identifying the extent of groundwater and surface water (GW–SW) interaction in an urban setting. The original hydrogeochemical dataset consists of groundwater (n = 114), stream water (n = 42) and drain water (n = 24) samples, collected twice in a year for the pre‐ and post‐monsoon seasons, for three successive years along an 8 km reach of the Delhi segment of River Yamuna, India. The dynamic and similar seasonal changes of hydro‐geochemical facies and major ion trends of river, drain and groundwater samples indicate the existence of an empirical relationship between GW and SW. Results of both R‐ and Q‐mode factor and cluster analyses highlight multi‐scale control of the fluid exchange distributions, with distinct seasonal alteration in mode and extent of GW–SW interaction, namely, the influence of the mixing zones between urban river and groundwater and the pattern of groundwater flow through the river bed. Hierarchical cluster analysis (HCA) of sampling locations efficiently illustrates different groups that comprise samples severely influenced by contaminated surface water downstream and the upstream fresh water samples. These results substantiate the strong exchange processes between GW and SW all along the stretch. The study shows that the combination of an empirical and statistical relationship between different ionic species and sampling locations can provide greater confidence in identifying the extent of GW–SW interaction/exchange processes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Emerging groundwater contaminants such as per- and polyfluoroalkyl substances (PFAS) may impact surface-water quality and groundwater-dependent ecosystems of gaining streams. Although complex near-surface hydrogeology of stream corridors challenges sampling efforts, recent advances in heat tracing of discharge zones enable efficient and informed data collection. For this study, we used a combination of streambed temperature push-probe and thermal infrared methods to guide a discharge-zone-oriented sample collection along approximately 6 km of a coastal trout stream on Cape Cod, MA. Eight surface-water locations and discharging groundwater from 24 streambed and bank seepages were analysed for dissolved oxygen (DO), specific conductance, stable water isotopes, and a range of PFAS compounds, which are contaminants of emerging concern in aquatic environments. The results indicate a complex system of groundwater discharge source flowpaths, where the sum of concentrations of six PFAS compounds (corresponding to the U.S. Environmental Protection Agency third Unregulated Contaminant Monitoring Rule “UCMR 3”) showed a median concentration of 52 ± 331 (SD) ng/L with two higher outliers and three discharges with PFAS concentrations below the quantification limit. Higher PFAS concentration was related (− 0.66 Spearman rank, p < .001) to discharging groundwater that showed an evaporative signature (deuterium excess), indicating flow through at least one upgradient kettle lake. Therefore, more regional groundwater flowpaths originating from outside the local river corridor tended to show higher PFAS concentrations as evaluated at their respective discharge zones. Conversely, PFAS concentrations were typically low at discharges that did not indicate evaporation and were adjacent to steep hillslopes and, therefore, were classified as locally recharged groundwater. Previous research at this stream found that the native brook trout spawn at discharge points of groundwater recharged on local hillslopes, likely in response to generally higher levels of DO. Our study shows that by targeting high oxygen discharges the trout may thereby be avoiding emerging contaminants such as PFAS in groundwater recharged farther from the stream.  相似文献   

10.
Quantitative evaluation of groundwater/surface water exchange dynamics is universally challenging in large river systems, because existing methodology often does not yield spatially-distributed data and is difficult to apply in deeper water. Here we apply a combined near-surface geophysical and direct groundwater chemical toolkit to refine fresh groundwater discharge estimates to the Colorado River through a 4-km2 wetland that borders the town of Moab, Utah, USA. Preliminary characterization of raw electromagnetic imaging (EMI) data, collected by kayak and by walking, was used to guide additional direct-contact electrical measurements and installation of new monitoring wells. Chemical data from the wells strongly supported the EMI spatial characterization of preferential fresh groundwater discharge embedded in natural brine groundwaters and weighted to the southern wetland section. Inversion of the EMI data revealed sub-meter scale detail regarding bulk electrical conductivity zonation across approximately 15.5 km of transects, collected in only 3 days. This electrical detail indicates processes such as salinization of the unsaturated zone and direct discharge through the Colorado River sediments and a tributary creek bed. Overall, the study contributed to a substantial reduction in fresh groundwater discharge estimates previously made using sparse existing well data and a simplified assumption of diffuse fresh groundwater discharge below the entire wetland. EMI will likely become a widely used tool in systems with natural electrical contrast as groundwater/surface water hydrogeologists continue to recognize the prevalence of preferential groundwater discharge processes.  相似文献   

11.
Groundwater discharge along a channelized Coastal Plain stream   总被引:1,自引:1,他引:0  
In the Coastal Plain of the southeastern USA, streams have commonly been artificially channelized for flood control and agricultural drainage. However, groundwater discharge along such streams has received relatively little attention. Using a combination of stream- and spring-flow measurements, spring temperature measurements, temperature profiling along the stream-bed, and geologic mapping, we delineated zones of diffuse and focused discharge along Little Bayou Creek, a channelized, first-order perennial stream in western Kentucky. Seasonal variability in groundwater discharge mimics hydraulic-head fluctuations in a nearby monitoring well and spring-discharge fluctuations elsewhere in the region, and is likely to reflect seasonal variability in recharge. Diffuse discharge occurs where the stream is incised into the semi-confined regional gravel aquifer, which is comprised of the Mounds Gravel. Focused discharge occurs upstream where the channel appears to have intersected preferential pathways within the confining unit. Seasonal fluctuations in discharge from individual springs are repressed where piping results in bank collapse. Thereby, focused discharge can contribute to the morphological evolution of the stream channel.  相似文献   

12.
Riparian land use is a key driver of stream ecosystem processes but its effects on water quality are still a matter of debate when proposing measures to improve freshwater quality. The aim of this study was to examine the influence of riparian land use on stream habitat and water chemistry, and to assess in what extent stream habitat also affects water quality. To that end, we selected eight reaches in the Ave River basin (northwestern Portugal) and compared longitudinal variations in water chemistry and stream habitat between reaches with different land use (urban, agricultural and natural), and between reaches with natural riparian areas and different habitats. Stream habitat was assessed using the Fluvial Functional Index, the HABSCORE, and the Riparian Forest Quality Index. Longitudinal variations in water chemistry were determined measuring differences in concentrations of ammonium, nitrate, phosphate and oxygen, and conductivity, pH and temperature between the downstream and the upstream ends of each reach. Nitrate concentration tended to decrease along reaches with more natural riparian areas and to increase along reaches with more urban and agricultural land uses. Longitudinal variations in water chemistry also differed between reaches with natural riparian areas, suggesting that water quality also depends on stream habitat. Moreover, longitudinal variation in water chemistry was proven a simple, useful and low-cost approach to assess the influence of land cover and stream habitat on water quality. Overall results demonstrated that both riparian land use and stream habitat influence water quality and that riparian forests are essential to reduce nutrient export to downstream ecosystems.  相似文献   

13.
The rise in stream stage during high flow events (floods) can induce losing stream conditions, even along stream reaches that are gaining during baseflow conditions. The aquifer response to flood events can affect the geochemical composition of both near‐stream groundwater and post‐event streamflow, but the amount and persistence of recharged floodwater may differ as a function of local hydrogeologic forcings. As a result, this study focuses on how vertical flood recharge varies under different hydrogeologic forcings and the significance that recharge processes can have on groundwater and streamflow composition after floods. River and shallow groundwater samples were collected along three reaches of the Upper San Pedro River (Arizona, USA) before, during and after the 2009 and 2010 summer monsoon seasons. Tracer data from these samples indicate that subsurface floodwater propagation and residence times are strongly controlled by the direction and magnitude of the dominant stream–aquifer gradient. A reach that is typically strongly gaining shows minimal floodwater retention shortly after large events, whereas the moderately gaining and losing reaches can retain recharged floodwater from smaller events for longer periods. The moderately gaining reach likely returned flood recharge to the river as flow declined. These results indicate that reach‐scale differences in hydrogeologic forcing can control (i) the amount of local flood recharge during events and (ii) the duration of its subsurface retention and possible return to the stream during low‐flow periods. Our observations also suggest that the presence of floodwater in year‐round baseflow is not due to long‐term storage beneath the streambed along predominantly gaining reaches, so three alternative mechanisms are suggested: (i) repeated flooding that drives lateral redistribution of previously recharged floodwater, (ii) vertical recharge on the floodplain during overbank flow events and (iii) temporal variability in the stream–aquifer gradient due to seasonally varying water demands of riparian vegetation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Integrated river basin models should provide a spatially distributed representation of basin hydrology and transport processes to allow for spatially implementing specific management and conservation measures. To accomplish this, the Soil and Water Assessment Tool (SWAT) was modified by integrating a landscape routing model to simulate water flow across discretized routing units. This paper presents a grid‐based version of the SWAT landscape model that has been developed to enhance the spatial representation of hydrology and transport processes. The modified model uses a new flow separation index that considers topographic features and soil properties to capture channel and landscape flow processes related to specific landscape positions. The resulting model is spatially fully distributed and includes surface, lateral and groundwater fluxes in each grid cell of the watershed. Furthermore, it more closely represents the spatially heterogeneous distributed flow and transport processes in a watershed. The model was calibrated and validated for the Little River Watershed (LRW) near Tifton, Georgia (USA). Water balance simulations as well as the spatial distribution of surface runoff, subsurface flow and evapotranspiration are examined. Model results indicate that groundwater flow is the dominant landscape process in the LRW. Results are promising, and satisfactory output was obtained with the presented grid‐based SWAT landscape model. Nash–Sutcliffe model efficiencies for daily stream flow were 0.59 and 0.63 for calibration and validation periods, and the model reasonably simulates the impact of the landscape position on surface runoff, subsurface flow and evapotranspiration. Additional revision of the model will likely be necessary to adequately represent temporal variations of transport and flow processes in a watershed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
A myriad of downstream communities and industries rely on streams fed by both groundwater discharge and glacier meltwater draining the Cordillera Blanca, Northern Peruvian Andes, which contains the highest density of glaciers in the tropics. During the dry season, approximately half the discharge in the region's proglacial streams comes from groundwater. However, because of the remote and difficult access to the region, there are few field methods that are effective at the reach scale to identify the spatial distribution of groundwater discharge. An energy balance model, Rhodamine WT dye tracing, and high‐definition kite‐borne imagery were used to determine gross and net groundwater inputs to a 4‐km reach of the Quilcay River in Huascaran National Park, Peru. The HFLUX computer programme ( http://hydrology.syr.edu/hflux.html ) was used to simulate the Quilcay River's energy balance using stream temperature observations, meteorological measurements, and kite‐borne areal photography. Inference from the model indicates 29% of stream discharge at the reach outlet was contributed by groundwater discharge over the study section. Rhodamine WT dye tracing results, coupled with the energy balance, show that approximately 49% of stream water is exchanged (no net gain) with the subsurface as gross gains and losses. The results suggest that gross gains from groundwater are largest in a moraine subreach but because of large gross losses, net gains are larger in the meadow subreaches. These insights into pathways of groundwater–surface water interaction can be applied to improve hydrological modelling in proglacial catchments throughout South America. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
The results of a study evaluating the recharge/discharge conditions of an unconfined stressed granitic aquifer situated in a semi‐arid region of Andhra Pradesh, Southern India are presented. Over the last three decades, excessive withdrawal of groundwater has drastically lowered the water table to the bedrock. The watershed studied was divided into four zones based on geomorphology and hydrogeological conditions. Using environmental chloride data pertaining to groundwater, soil depth profiles, and some hydrogeologic and hydrochemical observations, a recharge model for the watershed was developed. The model revealed that the bulk of the vertical recharge in the western elevated land occurs through preferred pathways and that a small fraction occurs through the soil matrix. In addition, the watershed has a poor hydrogeologic fabric, as indicated by the small range of matrix flow recharge (1 to 1·5% of rainfall) among the four zones. The dominating preferential flow was high (~16% of the annual average rainfall) in the valley fills, but decreased to 5–5·5% in the plains. Furthermore, although the bulk of the recharge occurs vertically, considerable lateral movement of groundwater down the slope indicates that sequential hydrochemical changes occur. Distinct geomorphological features that exist in the watershed support the proposed model. Situations similar to those described above may exist in numerous watersheds in the granitic hard rock region; therefore, information obtained from investigations conducted in this watershed can aid in the development of plans enabling the sustainable exploitation of watersheds that have not yet been developed, as well as implementation of appropriate rainwater conservation measures in over‐exploited watersheds. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
A comprehensive framework for the assessment of water and salt balance for large catchments affected by dryland salinity is applied to the Boorowa River catchment (1550 km2), located in south‐eastern Australia. The framework comprised two models, each focusing on a different aspect and operating on a different scale. A quasi‐physical semi‐distributed model CATSALT was used to estimate runoff and salt fluxes from different source areas within the catchment. The effects of land use, climate, topography, soils and geology are included. A groundwater model FLOWTUBE was used to estimate the long‐term effects of land‐use change on groundwater discharge. Unlike conventional salinity studies that focus on groundwater alone, this study makes use of a new approach to explore surface and groundwater interactions with salt stores and the stream. Land‐use change scenarios based on increased perennial pasture and tree‐cover content of the vegetation, aimed at high leakage and saline discharge areas, are investigated. Likely downstream impacts of the reduction in flow and salt export are estimated. The water balance model was able to simulate both the daily observed stream flow and salt load at the catchment outlet for high and low flow conditions satisfactorily. Mean leakage rate of about 23·2 mm year?1 under current land use for the Boorowa catchment was estimated. The corresponding mean runoff and salt export from the catchment were 89 382 ML year?1 and 38 938 t year?1, respectively. Investigation of various land‐use change scenarios indicates that changing annual pastures and cropping areas to perennial pastures is not likely to result in substantial improvement of water quality in the Boorowa River. A land‐use change of about 20% tree‐cover, specifically targeting high recharge and the saline discharge areas, would be needed to decrease stream salinity by 150 µS cm?1 from its current level. Stream salinity reductions of about 20 µS cm?1 in the main Lachlan River downstream of the confluence of the Boorowa River is predicted. The FLOWTUBE modelling within the Boorowa River catchment indicated that discharge areas under increased recharge conditions could re‐equilibrate in around 20 years for the catchment, and around 15 years for individual hillslopes. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
Mountainous areas are characterized by steep slopes and rocky landforms, with hydrological conditions varying rapidly from upstream to downstream, creating variable interactions between groundwater and surface water. In this study, mechanisms of groundwater–surface water interactions within a headwater catchment of the North China Plain were assessed along the stream length and during different seasons, using hydrochemical and stable isotope data, and groundwater residence times estimated using chlorofluorocarbons. These tracers indicate that the river is gaining, due to groundwater discharge in the headwater catchment both in the dry and rainy seasons. Residence time estimation of groundwater using chlorofluorocarbons data reveals that groundwater flow in the shallow sedimentary aquifer is dominated by the binary mixing of water approximating a piston flow model along 2 flow paths: old water, carried by a regional flow system along the direction of river flow, along with young water, which enters the river through local flow systems from hilly areas adjacent to the river valley (particularly during the rainy season). The larger mixing ratio of young water from lateral groundwater recharge and return flow of irrigation during the rainy season result in higher ion concentrations in groundwater than in the dry season. The binary mixing model showed that the ratio of young water versus total groundwater ranged from 0.88 to 0.22 and 1.0 to 0.74 in the upper and lower reaches, respectively. In the middle reach, meandering stream morphology allows some loss of river water back into the aquifer, leading to increasing estimates of the ratio of young water (from 0.22 to 1). This is also explained by declining groundwater levels near the river, due to groundwater extraction for agricultural irrigation. The switch from a greater predominance of regional flow in the dry season, to more localized groundwater flow paths in the wet season is an important groundwater–surface water interactions mechanism, with important catchment management implications.  相似文献   

19.
针对当前城市化所引起水系衰减、河流连通受阻以及由此所引起洪涝与水环境的问题,以秦淮河中、下游为例,选取1979和2006年两期流域遥感影像,分析了城市化影响下的下垫面变化特征;选取1980s和2009年的地形图对河流水系进行提取,借鉴景观生态学中河流廊道空间结构分析方法,通过不同时期水系分级,探讨了城市化对水系结构及其连通性的影响.结果表明:(1)城市化使得2006年城镇用地面积相比1979年增加84.54 km2,增加了9倍多,大量林草地、耕地以及水域转变成城镇用地;(2)河流长度在过去的30年里减少了41%,河道主干化趋势明显;河流发育呈现由多元到单一、由复杂到简单的趋势;(3)连通性参数连接率、实际结合度分别由原来的1.28、0.43下降到0.79、0.26,河流的连通性呈下降趋势.该研究将为城市化地区河流水系保护提供支持与参考.  相似文献   

20.
Investigating factors controlling the temporal patterns of nitrogen (N) and dissolved organic carbon (DOC) exports on the basis of a comparative study of different land uses is beneficial for managing water resources, especially in agricultural watersheds. We focused our research on an agricultural watershed (AW) and a forested watershed (FW) located in the Shibetsu watershed of eastern Hokkaido, Japan, to investigate the temporal patterns of N and DOC exports and factors controlling those patterns at different timescales (inter‐annual, seasonal, and hydrological event scales). Results showed that the annual patterns of N and DOC exports significantly varied over time and were probably controlled by climate. Higher discharge volumes in 2003, a wet year, showed higher N and DOC loadings in both watersheds. However, this process was also regulated by land use associated with N inputs. Higher concentrations and loadings were shown in the agricultural watershed. At the seasonal scale, N and DOC exports in the AW and the FW were more likely controlled by sources associated with land use. The Total N (TN) and Nitrate‐N (NO3?‐N) had higher concentrations during snowmelt season in the AW, which may be attributed to manure application in late autumn or early winter in the agricultural watershed. Concentrations of TN, NO3?‐N, dissolved organic nitrogen (DON), and DOC showed higher values during the summer rainy season in the FW, related to higher litter decomposition during summer and autumn and the fertilizer application in the agricultural area during summer. Higher DOC concentrations and loadings were observed during the rainy season in the AW, which is probably attributed to higher DOC production related to temperature and microbial activity during summer and autumn in grasslands. Correlations between discharge and concentrations differed during different periods or in different watersheds, suggesting that weather discharge can adequately represent the fact that N export depends on N concentrations, discharge level, and other factors. The differing correlations between N/DOC concentrations and the Si concentration indicated that the N/DOC exports might occur along different flow paths during different periods. During baseflow, the high NO3?‐N exports were probably derived from deep groundwater and might have percolated from uplands during hydrological events. During hydrological events, NO3?‐N exports may occur along near‐surface flow paths and in deep groundwater, whereas DOC exports could be related to near‐surface flow paths. At the event scale, the relationships between discharge and concentrations of N and DOC were regulated by antecedent soil moisture (shallow groundwater condition) in each watershed. These results indicated that factors controlling N and DOC exports varied at different timescales in the Shibetsu area and that better management of manure application during winter in agricultural lands is urgently needed to control water pollution in streams. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号