首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
At the mean annual scale, water availability of a basin is substantially determined by how much precipitation will be partitioned into evapotranspiration and run-off. The Budyko framework provides a simple but efficient tool to estimate precipitation partitioning at the basin scale. As one form of the Budyko framework, Fu's equation has been widely used to model long-term basin-scale water balance. The major difficulty in applications of Fu's equation is determining how to estimate the curve shape parameter ω efficiently. Previous studies have suggested that the parameter ω is closely related to the long-term vegetation coverage on large river basins globally. However, on small basins, the parameter ω is difficult to estimate due to the diversity of controlling factors. Here, we focused on the estimation of ω for small basins in China. We identified the major factors controlling the basin-specific (calibrated) ω from nine catchment attributes based on a dataset from 206 small basins (≤50,000 km2) across China. Next, we related the calibrated ω to the major factors controlling ω using two statistical models, that is, the multiple linear regression (MLR) model and artificial neural network (ANN) model. We compared and validated the two statistical models using an independent dataset of 80 small basins. The results indicated that in addition to vegetation, other landscape factors (e.g., topography and human activity) need to be considered to capture the variability of ω on small basins better. Contrary to previous findings reached on large basins worldwide, the basin-specific ω and remote sensing-based vegetation greenness index exhibit a significant negative correlation. Compared with the default ω value of 2.6 used in the Budyko curve method, the two statistical models significantly improved the mean annual ET simulations on validation basins by reducing the root mean square error from 114 mm/year to 74.5 mm/year for the MLR model and 70 mm/year for the ANN model. In comparison, the ANN model can provide a better ω estimation than the MLR model.  相似文献   

2.
The Budyko framework is an efficient tool for investigating catchment water balance, focusing on the effects of seasonal changes in climate (S) and vegetation cover (M) on catchment evapotranspiration (ET). However, the effects of vegetation seasonality on ET remain largely unknown. The present study explored these effects by modelling interannual variations in ET considering vegetation and climate seasonality using the Budyko framework. Reconstructed 15-day GIMMS NDVI3g timeseries data from 1982 to 2015 were used to estimate M and extract the relative duration of the vegetation growing season (GL) in the Yellow River Basin (YRB). To characterize S, seasonal variations in precipitation and potential ET were extracted using a Gaussian algorithm. Analysis of the observed datasets for 19 catchments revealed that interannual variation in the catchment parameter ϖ (in Fuh's equation) was significantly and positively correlated with M and GL. Conversely, ϖ was significantly but negatively correlated with S. Furthermore, stepwise linear regression was used to calibrate the empirical formula of ϖ for these three dimensionless parameters. Following validation, based on observations in the remaining 11 catchments, ϖ was integrated into Fuh's equation to accurately estimate annual ET. Over 79% subcatchments showed an upward trend (0.9 mm yr−1), whereas fewer than 21% subcatchments showed a downward trend (−0.5 mm yr−1) across YRB. In the central region of the middle reach, ET increased with increased M, prolonged GL, and decreased S, whereas in the source region of YRB, ET decreased with decreased M and shortened GL. Our study provides an alternative method to estimate interannual ET in ungauged catchments and offers a novel perspective to investigate hydrological responses to vegetation and climate seasonality in the long-term.  相似文献   

3.
许秀丽  李云良  谭志强  张奇 《湖泊科学》2018,30(5):1351-1367
地下水-土壤-植被-大气系统(GSPAC)界面水分传输是湿地生态水文过程研究的关键.本文选取鄱阳湖湿地高位滩地的2种典型植被群落:茵陈蒿(Artemisia capillaris)和芦苇(Phragmites australis)群落为研究对象,运用HYDRUS-1D垂向一维数值模拟,量化了湿地GSPAC系统界面水分通量,阐明了典型丰水年(2012年)和枯水年(2013年)鄱阳湖湿地植被群落的蒸腾用水规律和水源组成.结果表明:(1)茵陈蒿和芦苇群落土壤-大气界面的年降水入渗量为1570~1600 mm,主要集中在雨季4-6月,占年总量的60%;植物-大气界面的年蒸腾总量分别为346~470 mm和926~1057 mm,其中7-8月植被生长旺季最大,占年总量的40%~46%;地下水-根区土壤界面的向上补给水量受不同水文年水位变化的影响显著,地下水年补给量分别为15~513 mm和277~616 mm,主要发生在蒸散发作用强烈和地下水埋深较浅的时段.(2)植被蒸腾用水分为生长初期(4-6月)和生长旺季(7-10月)2个阶段,丰水年植被的整个生长期蒸腾用水充足,枯水年植被生长旺季的蒸腾用水受到严重水分胁迫,实际蒸腾量仅为潜在蒸腾量的一半左右.(3)不同水文年湿地植被生长旺季的水源贡献不同:丰水年茵陈蒿群落以地下水补给为主,芦苇群落以湖水和地下水补给为主;枯水年茵陈蒿群落以降水和前期土壤水储量为主,芦苇群落以地下水补给为主.本研究结果有助于揭示湿地植被的水分利用策略,为阐明湖泊水情变化与植被演替的作用机理提供参考依据.  相似文献   

4.
Because groundwater recharge in dry regions is generally low, arid and semiarid environments have been considered well-suited for long-term isolation of hazardous materials (e.g., radioactive waste). In these dry regions, water lost (transpired) by plants and evaporated from the soil surface, collectively termed evapotranspiration (ET), is usually the primary discharge component in the water balance. Therefore, vegetation can potentially affect groundwater flow and contaminant transport at waste disposal sites. We studied vegetation health and ET dynamics at a Uranium Mill Tailings Radiation Control Act (UMTRCA) disposal site in Shiprock, New Mexico, where a floodplain alluvial aquifer was contaminated by mill effluent. Vegetation on the floodplain was predominantly deep-rooted, non-native tamarisk shrubs (Tamarix sp.). After the introduction of the tamarisk beetle (Diorhabda sp.) as a biocontrol agent, the health of the invasive tamarisk on the Shiprock floodplain declined. We used Landsat normalized difference vegetation index (NDVI) data to measure greenness and a remote sensing algorithm to estimate landscape-scale ET along the floodplain of the UMTRCA site in Shiprock prior to (2000–2009) and after (2010–2018) beetle establishment. Using groundwater level data collected from 2011 to 2014, we also assessed the role of ET in explaining seasonal variations in depth to water of the floodplain. Growing season scaled NDVI decreased 30% (p < .001), while ET decreased 26% from the pre- to post-beetle period and seasonal ET estimates were significantly correlated with groundwater levels from 2011 to 2014 (r2 = .71; p = .009). Tamarisk greenness (a proxy for health) was significantly affected by Diorhabda but has partially recovered since 2012. Despite this, increased ET demand in the summer/fall period might reduce contaminant transport to the San Juan River during this period.  相似文献   

5.
X. Mo  S. Liu  Z. Lin  S. Wang  S. Hu 《水文科学杂志》2013,58(12):2163-2177
Abstract

Using satellite observations of Normalized Difference Vegetation Index (NDVI) from NOAA-AVHRR and Terra-MODIS, together with climatic data in a physical evapotranspiration (ET) model, the spatio-temporal variability of ET is investigated in terrestrial China from 1981 to 2010. The model predictions of actual ET (ETa) are validated with ET values from in situ eddy covariance flux measurements and from basin water balance calculations. The national averaged crop reference ET (ETp) and ETa values are 916 ± 21 and 415 ± 12 mm year-1, respectively. The annual ETa pattern is closely associated with vegetation conditions in the eastern part of China, whereas ETa is low in the sparsely-vegetated areas and deserts in the northwestern region, corresponding to scarce rainfall events and amounts. The trends of ETp and ETa are remarkably different over the country, and the complementary relationship between ETp and ETa is revealed for the study period. Averaged over the whole country, ETa showed an increasing trend from the 1980s to the mid-1990s, followed by a decreasing trend, consistent with the precipitation anomaly. Across the main vegetation types, annual ETa amounts are found to correspond clearly with the bands of precipitation and ETp.  相似文献   

6.
Field measurements were conducted to study the influence of aquatic vegetation on flow structures in floodplains under combined currents and wind-driven waves. Wave and turbulent velocities were decomposed from the time series of instantaneous velocity and analysed separately. In the present study, the wind waves were small, leading to the ratios of wave excursion (Ew) to stem spacing (S) for all cases tested here were less than 0.5. This caused the vertical distributions of time-averaged velocity (Uhoriz) and turbulent kinetic energy (TKE) impacted by vegetation similar with the vegetated flow structures under pure current conditions. For emergent vegetation, Uhoriz and TKE distributed uniformly through the entire water column or increased slightly from bed to water surface. Similar distributions were present in the lower part of submerged vegetation. In the upper part of submerged vegetation, Uhoriz and TKE increased rapidly toward water surface and TKE reached its maximum near the top of vegetation. The measured wave orbital velocity (Uw) fitted linear wave theory well through the entire water depth for both the emergent and submerged cases, so that with small Ew/S the wave velocity was not attenuated within vegetation and Uw within canopy can be predicted by the linear wave theory under combined currents and waves. However, wind-driven waves made the turbulence generated near the top of canopy penetrate a deeper depth into vegetation than predictions under pure current conditions.  相似文献   

7.
Estimation of evapotranspiration (ET) is of great significance in modeling the water and energy interactions between land and atmosphere. Negative correlation of surface temperature (Ts) versus vegetation index (VI) from remote sensing data provides diagnosis on the spatial pattern of surface soil moisture and ET. This study further examined the applicability of Ts–VI triangle method with a newly developed edges determination technique in estimating regional evaporative fraction (EF) and ET at MODIS pixel scale through comparison with large aperture scintillometer (LAS) and high‐level eddy covariance measurements collected at Changwu agro‐ecological experiment station from late June to late October, 2009. An algorithm with merely land and atmosphere products from MODIS onboard Terra satellite was used to estimate the surface net radiation (Rn) and soil heat flux. In most cases, the estimated instantaneous Rn was in good agreement with surface measurement with slight overestimation by 12 W/m2. Validation results from LAS measurement showed that the root mean square error is 0.097 for instantaneous EF, 48 W/m2 for instantaneous sensible heat flux, and 30 W/m2 for daily latent heat flux. This paper successfully presents a miniature of the overall capability of Ts–VI triangle in estimating regional EF and ET from limited number of data. For a thorough interpretation, further comprehensive investigation needs to be done with more integration of remote sensing data and in‐situ surface measurements. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
The translation of rainfall to runoff is significantly affected by canopy interception. Therefore, a realistic representation of the role played by vegetation cover when modelling the rainfall–runoff system is essential for predicting water, sediment, and nutrient transport on hillslopes. Here, we developed a new mathematical model to describe the dynamics of interception, infiltration, and overland flow on canopy-covered sloping land. Based on the relationship between rainfall intensity and the maximum interception rate, the interception process was modelled under two simplified scenarios (i.e., reIntm and re > Intm). Parameterization of the model was based on consideration of both vegetation condition and soil properties. By analysing the given examples, we found that Intm reflects the capacity of the canopy to store the precipitation, k reveals the ability of the canopy to retain the intercepted water, and the processes of infiltration and runoff generation are impacted dramatically by Intm and k. To evaluate the model, simulated rainfall experiments were conducted in 2 years (2016 and 2017) across six cultivation plots at Changwu State Key Agro-Ecological Experimental Station of the Chinese Loess Plateau. The parameters were obtained by fitting the unit discharge (simulated rainfall experiments in 2016) using the least squares method, and estimation formulas for parameters pertaining to vegetation/soil factors (measured in 2016) were constructed via multiple nonlinear regressions. By matching the simulated results and unit discharge (simulated rainfall experiments in 2017), the validity of the model was verified, and a reasonable precision (average R2 = .86 and average root mean square error = 6.45) was obtained. The model developed in this research creatively incorporates the canopy interception process to complement the modelling of rainfall infiltration and runoff generation during vegetation growth and offers an improved hydrological basis to analyse matter transport during rainfall events.  相似文献   

9.
Although hillslope evolution has been subject to much investigation for more than a century, the effect of climate on the morphology of soil‐mantled hillslopes remains poorly constrained. In this study, we perform numerical simulations of volcanic cinder cones in the Golan Heights (eastern Mediterranean) to estimate soil transport efficiency across a significant north–south gradient in mean annual precipitation (1100 to 500 mm). We use the initial cinder cone morphology (constrained by stratigraphy), the modern hillslope form (surveyed with sub‐meter accuracy) and the eruption age (based on 40Ar–39Ar chronology) to predict the best‐fit value of the soil transport coefficient (‘diffusivity’) based on a nonlinear transport model. Our results indicate that the best‐fit diffusivity (K ) varies from 1 to 6 m2 ka?1 among the five cinder cones in our field area. Diffusivity (K ) values vary systematically with precipitation and hillslope aspect; specifically, K is higher on south‐facing (drier) hillslopes and decreases with mean annual precipitation. We interpret this climate dependency to reflect vegetation‐driven variations in apparent soil cohesion, which increases with root network density, and attenuation of rain splash and overland flow erosion, which increases with vegetative ground cover. To assess how vegetative root mass and ground cover vary with precipitation and aspect, we quantified the spatial distribution of NDVI (normalized difference vegetation index) from ASTER satellite images and observed spatial variations that correlate with our calibrated values of K . Analysis of previously studied cinder cones in the USA can be used to extend our framework to arid domains. This endeavor suggests a humped relationship between K and precipitation with maximum diffusivity at mean annual precipitation of 400–600 mm. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
While evapotranspiration (ET) is normally measured as one hydrologic component, evaporation (E), and transpiration (T) result from different physical-biological processes. Using a two-source model, a trapezoid framework has been widely applied in recent years. The key to applying the trapezoid framework model is the determination of the dry/wet boundaries of the land surface temperature-fractional vegetation coverage trapezoid (LST-fc). Although algorithms have been developed to characterize the two boundaries, there remains a significant uncertainty near the wet boundary which scatters in a discrete and uneven manner. It is therefore difficult to precisely locate the wet boundary. To address this problem, a Wet Boundary Algorithm (WBA) was developed in this study with the algorithm applied in the region of Huang-Huai-Hai plain of China, using the Pixel Component Arranging and Comparing Algorithm (PCACA) to retrieve ET from MODerate-resolution Imaging Spectroradiometer (MODIS) Data. The eddy covariance (EC) measurements from Yucheng station was used to verify the modified model where the root mean square error (RMSE) of 17.8 W/m2, Bias of −7.2 W/m2 for latent heat flux (LE) simulation in 28 cloudless test days. The ratio of transpiration to evapotranspiration (T/ET) varied between 0.48 and 0.81 over the Huang-Huai-Hai plain. The spatial and temporal distribution of ET revealed that agriculture practices have a significant influence on the hydrological cycle, where crop growth promotes the magnitude of ET. Likewise, harvesting activities significantly reduce ET. The proposed WBA algorithm significantly reduces the uncertainty of the trapezoid ET model caused by wet edge positioning. The analysis of the impact of agricultural activities on ET provide a better understanding how human activities change the hydrological cycle at regional scales.  相似文献   

11.
Studies of evapotranspiration (ET) processes in forests often only measure one component of total ET, most commonly interception. This study examined all three components of annual ET (interception, evaporation from the forest floor and transpiration) and the correlations between them at 18 plantation forest sites in two species. All plantations had closed canopies, and sparse or no understorey. Single‐sided leaf area index averaged 3.5 (standard deviation ±0.5) in Eucalyptus globulus Labill. and 6.1 (±0.8) in Pinus radiata D.Don. Measurements included annual totals of rainfall in the open and under the canopy, stem flow (four sites only), evaporation from the forest floor and transpiration by the overstorey. Interception (I) averaged 19% (±4.9) of annual rainfall in E. globulus compared with 31% (±11.1) in P. radiata. However, higher annual interception in P. radiata did not result in higher total ET because annual evaporation from the forest floor (E) averaged 29% (±4.9) of rainfall in E. globulus but only 15% (±3.5) in P. radiata. Hence, the relative contribution of annual I plus E to ET did not differ significantly between the two species, averaging 48% (±7.3) of annual rainfall in E. globulus compared with 46% (±11.8) in P. radiata. As reported previously, transpiration did not differ significantly between the two species either, but was strongly related to depth‐to‐groundwater. In closed canopy plantations, mean annual ET did not differ between the two species. We conclude that when grown in plantations under similar soil and climatic conditions, conifer and broad‐leaved tree species can have similar annual ET, once the canopy of the plantation has closed. Lower average annual interception in broad‐leaved trees was offset by higher soil evaporation. These results highlight the importance of measuring all components of ET in studies of vegetation water use. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
滆湖水体光学性质初步研究   总被引:2,自引:1,他引:2  
基于2009年7月至2010年6月滆湖全湖15个采样点的水体光学参数及相关水质理化因子数据,分析滆湖水体周年光合有效辐射(PAR)衰减特性,以期为滆湖沉水植物生态修复提供相关水体光学资料.结果表明,滆湖水体PAR衰减系数(Kd)周年变化范围为1.32~17.42 m-1.秋季Kd相对最小,平均值为2.35 m-1,变化范围为1.32 ~3.70 m-1;夏季Kd相对最大,平均值为6.23 m-1,变化范围为3.68~17.42 m-1.春、秋、冬季,滆湖水体真光层平均深度均满足沉水植物的生长需求,而在夏季滆湖水体真光层平均深度仅为0.84m,小于全湖平均水深(1.20 m),因此夏季PAR是限制沉水植物恢复的因子之一.滆湖水体Kd与透明度(SD)在秋、冬季的关系为:Kd =2.089 +0.705/SD.叶绿素a浓度和悬浮物浓度是影响滆湖水体Kd的重要因子之一.  相似文献   

13.
Rivers are closely related to climate, and the hydrogeomorphic features and stability of river channels respond sensitively to climatic change. However, the history of instrumental observations of climatic, hydrological and channel changes is short, notably limiting our ability to understand the complex river responses to long-term climate change and human activity. In this study, we show that cave stalagmite records reflected the variations in precipitation and temperature in the Yellow River basin, and the net primary productivity (NPP) of vegetation over the past 1800 years can therefore be reconstructed. We found that the reconstructed annual mean precipitation (Pm) and NPP closely related to the 1800-year variation of the lower Yellow River (LYR) channel instability indexed by the frequency of the LYR levee breaching events (LBEs) (Fb) derived from historical documents. The temporal variations in Pm, NPP and Fb exhibited an anti-phase relationship (negative correlation) and in-phase relationship (positive correlation), referred to as Type I and Type II relationships, respectively. The two types alternately appeared, dividing the studied period into several sub-periods. Type I occurred when the vegetation remained in a quasi-natural condition, and Type II occurred when the vegetation had been altered by humans to some degree. These features reflect complex river behaviours in response to climate change and human activity and may be explained by the interaction between climate, vegetation and human activity on the millennial timescale. © 2018 John Wiley & Sons, Ltd.  相似文献   

14.
Abstract

Reliable estimation of sensible heat flux (H) is important in energy balance models for quantifying evapotranspiration (ET). This study was conducted to evaluate the value of adding the Priestley-Taylor (PT) equation to the METRIC (Mapping Evapotranspiration at high Resolution with Internalized Calibration) model. METRIC was used to estimate energy fluxes for 10 Landsat images from the 2005, 2006 and 2007 crop growing seasons in south-central Nebraska, USA, where each image owing to recent rainfall exhibited high residual moisture content even at the hot pixel. The METRIC model performed satisfactorily for net radiation (Rn ) and soil heat flux (G) estimation with a root mean square error (RMSE) of 52 and 24 W m-2, respectively. A RMSE of 122 W m-2 for H indicated the limitation of the METRIC model in estimating H for high residual moisture content of the hot pixel (Alfalfa reference ET fraction, ET r F > 0.15). The modified METRIC model (wet METRIC or wMETRIC) incorporating the PT equation was applied to calculate H at the anchor pixels (hot and cold) for high residual moisture content of the hot pixel. The α coefficient of the PT equation was locally calibrated using hourly meteorological data from an automatic weather station and Rn and G data from a Bowen ratio flux tower. The mean α coefficient value was 1.14. The wMETRIC model reduced the RMSE of H from 122 to 64 W m-2 and that of latent heat flux, LE, from 163 to 106 W m-2. The RMSE of daily ET decreased from 1.7 to 1.1 mm d-1 with wMETRIC. The results indicate that treatment of anchor pixels for high residual moisture content with the PT approach gives improved estimation of H, LE and daily ET. It is recommended that the wMETRIC model be used for estimating ET if the hot pixel has high residual moisture (i.e. reference ET fraction > 0.15).

Citation Singh, R. K. & Irmak, A. (2011) Treatment of anchor pixels in the METRIC model for improved estimation of sensible and latent heat fluxes. Hydrol. Sci. J. 56(5), 895–906.  相似文献   

15.
A Note has been published for this article in Hydrological Processes 18(4) 2004, 825. Both water and heat balances were studied in a conifer plantation watershed in south‐west Japan, within the warm‐temperate East Asia monsoon area. Forest cover in the watershed consists mainly of Japanese cedar (Cryptomeria japonica) and Japanese cypress (Chamaecyparis obtusa) plantations. Precipitation and runoff have been observed since 1991, so evapotranspiration can be compared with the water balance. Two meteorological observation towers were built to monitor evapotranspiration in the watershed. The annual average precipitation, amount of runoff and losses were 2166, 1243 and 923 mm, respectively. The evapotranspiration (latent heat flux) agreed well with the water balance losses. The average annual evapotranspiration at the tower built in the centre of the watershed was 902 mm; evapotranspiration at the other tower, further upslope, was 875 mm. The observed evapotranspiration was 39% to 40% of the average precipitation (2166 mm). The mean net radiation was c. 2·6 GJ m?2 year?1, and is considered a representative value of the net radiation (Rn) in coniferous plantations in this region. This region is classified in the humid zone based on the ratio of net radiation (Rn) to the energy required to evaporate the rainfall (λR). The mean annual evaporation of canopy‐intercepted water was 356 mm or about 15% of the average precipitation. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
BOOK REVIEWS     
Abstract

A distributed eco-hydrological model based on soil—vegetation—atmosphere transfer processes is applied to estimate actual evapotranspiration (ET) and gross primary production (GPP) over the Wuding River basin, Loess Plateau, China, based on digital elevation model, vegetation and soil information between 2000 and 2003 over three grid sizes: 250 m, 1 km and 8 km. The spatial patterns of annual ET and GPP are related to precipitation variability and land-use/cover conditions. The grid size is shown to affect the spatial patterns of annual ET and GPP, the effect on GPP being more significant than that on ET. Geostatistical and regression analyses demonstrate that precipitation and vegetation influence the scaling effect of ET and GPP in a complex way. When precipitation is high, the scaling effect of ET is more dependent on precipitation. The scaling effect of ET and GPP from 1-km to 8-km grid size is much larger than that from 250-m to 1-km grid size, showing the 1-km grid size to be a feasible choice for simulation of their spatial patterns. Although the annual GPP is more sensitive to the grid size than annual ET, both daily ET and daily GPP averaged over the whole basin seem to be insensitive to the grid size, illustrating that the coarse grid size can be used to simulate spatially-averaged variables without losing much accuracy.  相似文献   

17.
As a critical water discharge term in basin‐scale water balance, accurate estimation of evapotranspiration (ET) is therefore important for sustainable water resources management. The understanding of the relationship between ET and groundwater storage change can improve our knowledge on the hydrological cycle in such regions with intensive agricultural land usage. Since the 1960s, the North China Plain (NCP) has experienced groundwater depletion because of overexploitation of groundwater for agriculture and urban development. Using meteorological data from 23 stations, the complementary relationship areal evapotranspiration model is evaluated against estimates of ET derived from regional water balance in the NCP during the period 1993–2008. The discrepancies between calculated ET and that derived by basin water balance indicate seasonal and interannual variations in model parameters. The monthly actual ET variations during the period from 1960 to 2008 are investigated by the calibrated model and then are used to derive groundwater storage change. The estimated actual ET is positively correlated with precipitation, and the general higher ET than precipitation indicates the contributions of groundwater irrigation to the total water supply. The long term decreasing trend in the actual ET can be explained by declining in precipitation, sunshine duration and wind speed. Over the past ~50 years, the calculated average annual water storage change, represented by the difference between actual ET and precipitation, was approximately 36 mm, or 4.8 km3; and the cumulative groundwater storage depletion was approximately 1700 mm, or 220 km3 in the NCP. The significantly groundwater storage depletion conversely affects the seasonal and interannual variations of ET. Irrigation especially during spring cause a marked increase in seasonal ET, whereas the rapid increasing of agricultural coverage over the NCP reduces the annual ET and is the primary control factor of the strong linear relationship between actual and potential ET. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Thus far, measurements and estimations of actual evapotranspiration (ET) from high‐altitude grassland ecosystems in remote areas like the Qinghai‐Tibetan plateau are still insufficient. To address these issues, a comparison between the results of the eddy covariance (EC) measurements and the estimates, considering the Katerji and Perrier (KP), the Todorovic (TD) and the Priestley–Taylor (PT) models, was carried out over an alpine grassland (38o03'1.7'' N, 100o 27’ 26'' E; 3032 m a.s.l.) during the growing seasons in 2008 and 2009. The results indicated that the KP model after a particularly simple calibration gave the most effective ET values in different time scales, the PT model slightly underestimate ET at night and the TD model significantly overestimated ET at noon. In addition, the canopy resistance calculated by the TD model was completely different from that calculated using the inverted EC‐measured data and the KP model, which may be due to some unrealistic assumptions made by the TD model. The KP parameters were a = 0.17 and b = 1.50 for the alpine grassland and appeared to be interannually stable. However, the PT parameter showed some interannual variations (α = 0.83 and 0.74 for 2008 and 2009, respectively). Therefore, the KP model was preferred to estimate the actual ET at both hourly and daily time scales. The PT model, being the simplest approach and field condition dependent, was recommended when available weather data were rare. On the contrary, the TD model always overestimated the actual ET and should be avoided in case of the alpine grassland ecosystems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Understanding transpiration and plant physiological responses to environmental conditions is crucial for the design and management of vegetated engineered covers. Engineered covers rely on sustained transpiration to reduce the risk of deep drainage into potentially hazardous wastes, thereby minimizing contamination of water resources. This study quantified temporal trends of plant water potential (ψp), stomatal conductance (gs), and transpiration in a 4‐year‐old evergreen woody vegetation growing on an artificial sandy substrate at a mine waste disposal facility. Transpiration averaged 0.7 mm day?1 in winter, when rainfall was frequent, but declined to 0.2 mm day?1 in the dry summer, when the plants were quite stressed. In winter, the mean ψp was ?0.6 MPa at predawn and ?1.5 MPa at midday, which were much higher than the corresponding summer values of ?2.0 MPa and ?4.8 MPa, respectively. The gs was also higher in winter (72.1–95.0 mmol m?2 s?1) than in summer (<30 mmol m?2 s?1), and negatively correlated with ψp (p < 0.05, r2 = 0.71–0.75), indicating strong stomatal control of transpiration in response to moisture stress. Total annual transpiration (147.2 mm) accounted for only 22% of the annual rainfall (673 mm), compared with 77% to 99% for woody vegetation in Western Australia. The low annual transpiration was attributed to the collective effects of a sparse and young vegetation, low moisture retention of the sandy substrate, and a superficial root system constrained by high subsoil pH. Amending the substrate with fine‐textured materials should improve water storage of the substrate and enhance canopy growth and deep rooting, while further reducing the risk of deep drainage during the early stages of vegetation establishment and in the long term. Overall, this study highlights the need to understand substrate properties, vegetation characteristics, and rainfall patterns when designing artificial ecosystems to achieve specific hydrological functions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
以滇池典型生态修复区——大泊口水域为研究对象,研究了富营养化高原湖泊种子库时空特征、种子库与地表覆盖水生植被及水环境的相关关系和恢复潜力.利用高密度样方原位观测与温室控制种子萌发实验相结合,基于20142016共3年的长期定位研究,分析湖泊平均种子库密度、分布格局及与覆盖水生植物S?rensen相似性关系,结果显示:年...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号