首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
At the reach scale, a channel adjusts to sediment supply and flow through mutual interactions among channel form, bed particle size, and flow dynamics that govern river bed mobility. Sediment can impair the beneficial uses of a river, but the timescales for studying recovery following high sediment loading in the field setting make flume experiments appealing. We use a flume experiment, coupled with field measurements in a gravel-bed river, to explore sediment transport, storage, and mobility relations under various sediment supply conditions. Our flume experiment modeled adjustments of channel morphology, slope, and armoring in a gravel-bed channel. Under moderate sediment increases, channel bed elevation increased and sediment output increased, but channel planform remained similar to pre-feed conditions. During the following degradational cycle, most of the excess sediment was evacuated from the flume and the bed became armored. Under high sediment feed, channel bed elevation increased, the bed became smoother, mid-channel bars and bedload sheets formed, and water surface slope increased. Concurrently, output increased and became more poorly sorted. During the last degradational cycle, the channel became armored and channel incision ceased before all excess sediment was removed. Selective transport of finer material was evident throughout the aggradational cycles and became more pronounced during degradational cycles as the bed became armored. Our flume results of changes in bed elevation, sediment storage, channel morphology, and bed texture parallel those from field surveys of Redwood Creek, northern California, which has exhibited channel bed degradation for 30 years following a large aggradation event in the 1970s. The flume experiment suggested that channel recovery in terms of reestablishing a specific morphology may not occur, but the channel may return to a state of balancing sediment supply and transport capacity.  相似文献   

2.
3.
The presented paper analyses the variability of grain size distribution parameters of bedload transported by the gravel‐bed Scott River (Svalbard) draining a glacier catchment with an area of 10 km2. The grain size distribution analysis is one of the basic elements of identification of the fluvial transport mechanisms in gravel‐bed rivers. It is used for the determination of threshold values for bedload movement. It is also treated as an important indicator of the origin, routes of distribution, and conditions of transport and deposition of fluvial bedload. The field study in a natural proglacial gravel‐bed channel was carried out at two reaches in the mouth section of Scott River. The study revealed relatively high temporal variability and similar mean parameters of grain size distribution in conditions of low discharges. Bedload transport rates reached a mean of 71.9–76.0 kg d?1 in channel cross‐section. Bedload texture was dominated by gravels with a proportional contribution of the fine‐grained fraction along with very fine‐grained gravels (8‐2 mm) of 38.8%. The medium‐grained fraction (16‐8 mm) constituted 33.7%, with a lower contribution from the coarse‐grained fraction (32‐16 mm) of 23.2%, and the very coarse‐grained fraction (64‐32 mm) of 4.4%. Two periods in the course of bedload transport and distribution of grain size distribution parameters were distinguished based on variation of hydro‐meteorological conditions. The first half of the measurement period was distinguished by significantly higher values of daily loads and increased contribution of the coarse‐grained and very coarse‐grained fraction (28–31% and 6.2–6.6%, respectively). During this time, the river discharged up to 94% of bedload. This resulted in a clear tendency for riverbed scouring. The second half was distinguished by generally low daily bedload transport rates (<10 kg d?1), an increase in contribution of fine‐ and very fine‐grained gravels (42–55.6%), and a change in the tendency to aggradation. Grain size indices were more varied, and grains were usually finer and better sorted. Selective transport processes, often related to redeposition, were dominant in the channel. Along with an increase in flow velocity, conditions for material deposition became more variable. This was manifested in weaker sorting and an increase in grain diameter.  相似文献   

4.
The 1991 eruption of Mount Pinatubo generated extreme sediment yields from watersheds heavily impacted by pyroclastic flows. Bedload sampling in the Pasig–Potrero River, one of the most heavily impacted rivers, revealed negligible critical shear stress and very high transport rates that reflected an essentially unlimited sediment supply and the enhanced mobility of particles moving over a smooth, fine-grained bed. Dimensionless bedload transport rates in the Pasig–Potrero River differed substantially from those previously reported for rivers in temperate regions for the same dimensionless shear stress, but were similar to rates identified in rivers on other volcanoes and ephemeral streams in arid environments. The similarity between volcanically disturbed and arid rivers appears to arise from the lack of an armored bed surface due to very high relative sediment supply; in arid rivers, this is attributed to a flashy hydrograph, whereas volcanically disturbed rivers lack armoring due to sustained high rates of sediment delivery. This work suggests that the increases in sediment supply accompanying massive disturbance induce morphologic and hydrologic changes that temporarily enhance transport efficiency until the watershed recovers and sediment supply is reduced.  相似文献   

5.
Over the past two decades there has been a growing interest in the geomorphological mosaic along large floodplain rivers where channel dynamics are seen to drive habitat-patch creation and turnover and to contribute to high biological diversity. This has required a new perspective on fluvial geomorphology that focuses on biological scales of space and time. This study examines the spatial pattern of surface fine sediment accumulations along a reach of a large gravel-bed river, the Tagliamento River in NE Italy; an area with a moist Mediterranean climate and seasonal flow regime. The study investigates changes in sediment characteristics during the summer low-flow period between April and September. Focussing on five areas representing a gradient from open, bar-braided to wooded island-braided morphologies, the paper demonstrates the importance of riparian vegetation and aeolian–fluvial interactions.Significant contrasts in particle size distributions and organic content of freshly deposited sand and finer sediments were found between sampling areas, geomorphological settings, and sampling dates. In particular, wooded floodplain and established islands supported consistently finer sediment deposits than both open bar surfaces and the lee of pioneer islands, and in September significantly finer sediments were also found in deposits located in the lee of pioneer islands than on open bar surfaces. Overall, the September samples had a greater variability in particle size characteristics than those obtained from the same sites in April, with a general coarsening of the D5 (φ) (i.e., the coarse tail of the particle size distribution). Also in September, crusts of fine sediment (30 μm < D50 < 64 μm) had formed on the surface of some of the open bar and pioneer island deposits within the more open sampling areas along the study reach. These crusts possessed similar particle size characteristics to aeolian crusts found in more arid environments. They were significantly finer than April samples and September subcrust samples obtained from the same sites and had similar particle size characteristics to some samples taken from wooded floodplain, established island surfaces and the lee of pioneer islands that were not crusted.Local climatological and river level data confirm significant wind and rainfall events during a period of consistently low river levels between the April and September sampling periods. These support deflation, deposition and rain wash of finer sediment during the summer, with windblown sediments being deposited on bar surfaces and in the lee of pioneer islands where wood and young trees provide foci for accelerated sedimentation and island growth as well as on marginal floodplains and established islands. We conclude that along braided rivers in moist settings but with a distinct dry season, aeolian reworking of sediment deposits may have a more important role in driving habitat dynamics than previously considered.  相似文献   

6.
The upper Columbia River, British Columbia, Canada, shows typical anastomosing morphology — multiple interconnected channels that enclose floodbasins — and lateral channel stability. We analysed field data on hydraulic and sedimentary processes and show that the anastomosing morphology of the upper Columbia River is caused by sediment (bedload) transport inefficiency, in combination with very limited potential for lateral bank erosion because of very low specific stream power (≤ 2.3 W/m2) and cohesive silty banks. In a diagram of channel type in relation to flow energy and median grain size of the bed material, data points for the straight upper Columbia River channels cluster separately from the data points for braided and meandering channels. Measurements and calculations indicate that bedload transport in the anastomosing reach of the upper Columbia River decreases downstream. Because of lateral channel stability no lateral storage capacity for bedload is created. Therefore, the surplus of bedload leads to channel bed aggradation, which outpaces levee accretion and causes avulsions because of loss of channel flow capacity. This avulsion mechanism applies only to the main channel of the system, which transports 87% of the water and > 90% of the sediment in the cross-valley transect studied. Because of very low sediment transport capacity, the morphological evolution of most secondary channels is slow. Measurements and calculations indicate that much more bedload is sequestered in the relatively steep upper anastomosing reach of the upper Columbia River than in the relatively gentle lower anastomosing reach. With anastomosing morphology and related processes (e.g., crevassing) being best developed in the upper reach, this confirms the notion of upstream rather than downstream control of upper Columbia River anastomosis.  相似文献   

7.
S.S. Li  R.G. Millar  S. Islam   《Geomorphology》2008,95(3-4):206-222
A two-dimensional (2D) numerical hydrodynamic-morphological model is developed to investigate gravel transport and channel morphology in a large wandering gravel-bed river, the Fraser River Gravel Reach, in British Columbia, Canada. The model takes into count multi-fraction bedload transport, including the effects of surface coarsening, hiding and protrusion. Model outputs together with river discharge statistics were analyzed, producing distributed sediment budget and well-defined, localised zones of aggradation and degradation along the gravel reach. Long-term channel response to gravel extraction from aggrading zones as a flood hazard mitigation measure was also investigated numerically to assess the effectiveness of such an extraction. The total computed sediment budget agrees well with results based on field measurements of gravel transport available to us. This study points to the importance of a number of factors to bedload predictions: the gravel-to-sand ratio, the adequacy of resolving the wandering planform, and the distinction between bed shear stress driving bedload transport and bed resistance on the flow. These are in addition to the physical processes governing the flow field and gravel mobilization. The methodology presented in this paper can provide a scientific basis for gravel management including monitoring and extraction in order to maintain adequate flood protection and navigation, while preserving the ecosystem.  相似文献   

8.
Bedload yields have been calculated using eight bedload equations at a total of 11 gauging sites in four coastal river basins in New South Wales. Comparisons of yields calculated by each equation at each site show enormous variations. Furthermore, on the Manning River, where calculations could be made on the four main tributaries and compared to those from the trunk channel below their combined confluence, there was no recognisable continuity of results. For the following reasons, the use of bedload formulae on these rivers appears to be a futile exercise. Firstly, the formulae appear to be inherently unstable under natural field conditions. Secondly, application of the formulae must rely on extrapolated flow data, as actual flow measurements are rarely conducted at discharges that are more than a small fraction of largest discharges recorded at any site. Thirdly, formulae must be applied assuming an unlimited availability of bed material; yet the rivers studied here behave as ‘conveyor belts’ of considerable power but with very low and irregular rates of sediment feed. Finally, temporal step‐functional shifts in climate and flow regimes are shown to have an important impact on estimation of sediment yields. The implication of these results is that, until there is a carefully monitored scientific program of bedload measurement or estimates of reservoir sedimentation on the rivers of south eastern Australia, there can be no reliable evaluation of sediment yields from these rivers. As a result, the impact of gravel extraction, the dispersal of mine tailings, or the construction of dams can not be adequately assessed for this region, nor probably for the rest of Australia.  相似文献   

9.
长江河口枯季河床沉积物与河床沙波现场观测研究   总被引:2,自引:1,他引:2  
于2002年3月利用浅地层剖面仪、双频道测深仪、旁侧声纳和ADCP流速剖面仪、ENDECO海流仪、OBS测沙仪在江阴至横沙岛航行150km,取得河床沉积物、河床形态和与此相关的动力因子实测资料。采用沉积学和泥沙运动力学相结合的方法进行研究,结果表明:观测期间该河段河床沉积物颗粒组成以细砂为主,中值粒径为2φ左右,分选较好;河床泥沙以单颗粒群体跳跃运动为主,在河床上形成沙波形态,并发育良好;其河床沙波的形成、发展和消失与河床沉积物颗粒度特征和涨落潮水流强弱息息相关。  相似文献   

10.
We present data from a proglacial river in Iceland that exhibits very different sedimentological characteristics when compared to its alpine counterparts. The braidplain is characterised by coarse outburst gravels that inhibit sediment transport and channel change. Bedload transport is restricted to the movement of fine-grained gravels that pass through the channel system without promoting significant changes in channel geometry. Bar forms are erosional features, inherited from the last major peak flow, rather than depositional in nature. On the basis of our observations we conclude that braidplain morphology is controlled by low frequency, high magnitude flow events, possibly associated with glacial outburst floods. This is in marked contrast to process-form relationships in more dynamic alpine proglacial channels that are characterised by high rates of sediment transport and channel change.  相似文献   

11.
Field data from four separate locations indicate that the rate at which river channel gradient decreases downstream is fundamentally different in areas of long-term erosion and deposition. Gradient ( S ) and distance from the drainage divide ( x ) are related such that S is proportional to x φ. In areas of deposition φ<−3, whilst in areas of erosion φ>−1.1. These differences produce downstream increases and decreases in stream power and bed shear stress which also coincide with areas of erosion and deposition. This is the first time that such a basin-wide coincidence has been demonstrated.
A strong positive correlation between stream power, bed shear stress and bedload transport rates has been clearly shown by previous empirical studies of loose-bed channels. It is proposed that large-scale patterns of erosion and deposition in alluvial basins result from downstream changes in bedload transport rates, produced by the observed trends in these two parameters. If this proposal is to be fully tested, further work is needed to assess the affects of downstream fining of bed material, short-term fluctuations in discharge and downstream exchange of particles between the suspended load and bedload.  相似文献   

12.
Factors of importance to the generation of complex sediment rating curves involving hysteresis effects are discussed. Temporary storage of sediments in channels, and interaction between fluvial processes and some other sediment producing process, may be recognized as two fundamentally different situations associated with the phenomenon. An examination of sediment transport in glacierized river basins shows that variable discharge in broad shallow channels may cause temporary storage of sediments within the channel system. Implications for the sediment budget in river systems are discussed.  相似文献   

13.
This study determines the spatial and temporal variability of in-channel storage within a small semiarid drainage basin in equatorial East Africa, and establishes a tentative sediment budget for coarse (>200 μm) in-channel sediments. Detailed measurements of in-channel sediment storage (mass) within third and fourth-order ephemeral channels were obtained using channel-pit excavations and probing with metal rods. Eighty-seven monumented cross-sections were established in February 1986 and resurveyed in December 1986, following the last runoff event of the year. These provided data on change in sediment storage on a 30-m channel reach basis. In addition, measurements of bankfull channel width, mean depth, cross-sectional area, wetted perimeter, hydraulic radius, channel slope and distance from the basin outlet were measured at each cross section. Total in-channel sediment storage was approximately 8640 t with 83% of this total stored within the Main (fourth-order) Channel. Stepwise multiple regression of In-transformed data indicated that bankfull channel width and distance from the outlet (which is strongly related with slope) were significantly related to in-channel storage. The variation in the ratio of stream power:critical power along the Main Channel may explain the distribution of in-channel sediments. Net aggradation of 50 to 60 t during 1986 was minor in relation to the total in-channel storage reservoir, but indicates that a static equilibrium condition cannot be assumed. Bedload output during 1986 was approximately 125 t, and the computed input of coarse sediments to the major channels within the basin was approximately 185 t. The sediment delivery ratio for the coarse material was approximately 68%, which indicates a relatively efficient transport system. [Key words: geomorphology, sediment budget, in-channel sediment storage, semiarid, drainage basin.]  相似文献   

14.
The dynamics between sediment erosion and accumulation at an alluvial basin margin affected by changes in the surface hydrology are explored using scaled analogue models produced in a flume. The presented results differ from previous counterparts in that accumulation or erosion has not been forced at a spreading outlet, but occurred at a slope change produced by previously accumulated sediment. Cyclical upstream incision produced by increased stream discharge generated incised valleys, and these were subsequently filled by sediment carried by less efficient streams generated during the low discharge period. High resolution mapping using 2.5 mm contour maps allowed the study of sediment accumulation and terrain modelling. The results of three selected experiments are analysed. The only variable explored was discharge. The basin margin was simulated by a ramp inserted in a low sloping flume, consisting of two segments of different slopes selected to emulate high and low efficiency flume fans produced elsewhere. Water and fine‐medium sand entered the ramp along a narrow (0.1 m) channel and flow expanded but without occupying the complete 1.2 m flume width. Flows were highly concentrated and noncohesive. Fan‐like accumulation (slope: 0.11) began during low discharge (LD) periods at the ramp slope break, and proceeded upstream, onlapping quickly at first, but shifting to mostly progradation at the end of the period. High discharges (HD) usually generated two or three incised channels at the beginning of the period, but one of them prevailed and rapidly eroded parts of the LD fan and moved the sediment to a more distal low‐sloping fan (slope: 0.045). Both LD and HD fans passed downstream into a system of small parallel channels resembling a braided alluvial plain ending in sediment lobes. The mapping of the accumulated sediment during the various periods allowed calculation of sediment budgets for the entire flume. The stratal architecture of the deposits was investigated along five parallel trenches cut after experiment termination. The regression analysis of depositional profiles at fan‐like features (expanding flow) and at braided plains (parallel flow) indicated that these fan‐like systems are linear and dependent on applied discharge, while the latter showed an exponential decrease of slope downstream, with a starting value set up by the fan slope. Two main types of stratigraphic units were generated, the LDST and HDST (system tracts). The LDST has a nonerosive base over ‘bedrock’ and the previous HDST, filling proximal erosional topography and prograding as well, generating an onlap–downlap array. Its geometry is highly variable and dependent on pre‐existing topography. The HDST base is an important erosive surface comparable to sequence boundaries. However, there are places without erosion due to a marginal position with respect to the main stream. Indeed, the results suggest that the three‐dimensional variability of erosion and depositional processes might produce very different architectures along the same basin margin.  相似文献   

15.
The nature and evolution of deep-sea channel systems   总被引:1,自引:0,他引:1  
Abstract A distinction is drawn between sea-floor canyons, which are incised into bedrock, and fan valleys and deep-sea channels, which are cut in unconsolidated sediment. The formation of continental margin canyons/fans and deep-sea channels is an inevitable consequence of continental margin rifting and sea-floor subsidence. Such submarine sediment transport systems are amongst the longest-lived physiographic features on earth, with the Bounty Channel system being more than 50 Myr old. Many deep-sea channels form the distal part of ocean-margin sediment transport systems, being incised 100–350 m into ocean-floor sediments, traversing great distances over the ocean-basin floor, and generally terminating on an abyssal plain. The course of each deep-sea channel is, however, unique. Channel locations are controlled primarily by inherited basement relief, and, during their evolution, by rates and patterns of lithospheric subsidence and sedimentation. In the early stages of ocean-basin formation, deep-sea channels may issue from the axial parts of marginal rifts, or directly from slope canyon-fan systems. As an ocean basin widens, margin-connected channels may become trapped within the strip of oldest (and therefore deepest) oceanic crust at the continent/ocean interface, and will therefore be margin-parallel features. In some cases, as for the Cascadia Channel, channels may escape from the ocean-margin deep, bypassing the spreading ridge via a fracture zone. Deep-sea channels and their associated sediments are influenced also by global sea-level change, by rate of turbidity current generation from the headward continental margin, by rates of pelagic sediment supply, by differential levee development consequent upon the Coriolis effect, and by the operation of deep-sea current systems with their associated sediment drifts. The survival of deep-sea channels as long-lived features necessitates that rates of long-term subsidence at the channel terminus exceed sediment accumulation.  相似文献   

16.
The influence of relative sediment supply on riverine habitat heterogeneity   总被引:1,自引:0,他引:1  
The diversity of aquatic habitats in streams is linked to physical processes that act at various spatial and temporal scales. Two components of many that contribute to creating habitat heterogeneity in streams are the interaction between sediment supply and transport capacity and the presence of local in-stream structures, such as large woody debris and boulders. Data from previously published flume and field studies and a new field study on tributaries to the South Yuba River in Nevada County, California, USA, were used to evaluate the relationship between habitat heterogeneity, local in-stream structural features and relative sediment supply. Habitat heterogeneity was quantified using spatial heterogeneity measures from the field of landscape ecology. Relative sediment supply, as expressed by the sediment supply/transport capacity ratio, which controls channel morphology and substrate textures, two key physical habitat characteristics, was quantified using a dimensionless bedload transport ratio, q. Calculated q values were plotted against an ecologically meaningful heterogeneity index, Shannon's Diversity Index, measured for each study reach, as well as the percent area of in-stream structural elements. The results indicate two potential mechanisms for how relative sediment supply may drive geomorphic diversity in natural river systems at the reach scale. When less mobile structural elements form a small proportion of the reach landscape, the supply/capacity ratio dictates the range of sediment textures and geomorphic features observed within the reach. In these settings, channels with a moderate relative sediment supply exhibit the highest textural and geomorphic diversity. In contrast, when less mobile structural elements are abundant, forced local scour and deposition creates high habitat heterogeneity, even in the presence of high relative sediment supply.  相似文献   

17.
Sediment is fractionated by size during its cascade from source to sink in sediment routing systems. It is anticipated, therefore, that the grain size distribution of sediment will undergo down‐system changes as a result of fluvial sorting processes and selective deposition. We assess this hypothesis by comparing grain size statistical properties of samples from within the erosional source region with those that have undergone different amounts of transport. A truncated Pareto distribution describes well the coarser half of the clast size distribution of regolith, coarse channel bed sediment and proximal debris flows (particularly their levees), as well as the coarser half of the clast size distribution of gravels that have undergone considerable amounts of transport in rivers. The Pareto shape parameter a evolves in response to mobilization, sediment transport and, importantly, the selective extraction of particles from the surface flow to build underlying stratigraphy. A goodness of fit statistic, the Kolmogorov–Smirnov vertical difference, illustrates the closeness of the observed clast size distributions to the Pareto, Weibull and log‐normal models as a function of distance from the depositional apex. The goodness of fit of the particle size distribution of regolith varies with bedrock geology. Bedload sediment at catchment outlets is fitted well by the log‐normal and truncated Pareto models, whereas the exponential Weibull model provides a less good fit. In the Eocene Escanilla palaeo‐sediment routing system of the south‐central Pyrenees, the log‐normal and truncated Pareto models provide excellent fits for distances of up to 80 km from the depositional apex, whereas the Weibull fit progressively worsens with increasing transport distance. A similar trend is found in the Miocene–Pliocene gravels of the Nebraskan Great Plains over a distance of >300 km. Despite the large fractionation in mean grain size and gravel percentage from source region to depositional sink, particle size distributions therefore appear to maintain log‐normality over a wide range of transport distance. Use of statistical models enables down‐system fractionation of sediment released from source regions to be better understood and predicted and is a potentially valuable tool in source‐to‐sink approaches to basin analysis.  相似文献   

18.
北洛河下游河槽形成与输沙特性   总被引:8,自引:0,他引:8  
齐璞  孙赞盈 《地理学报》1995,50(2):168-177
北洛河发湖泊于黄河粗沙来源区,年均含沙量达128kg/m^3年均流量仅25m^3.s,是典型的多沙河流,但由于泥沙主要由高含沙洪水输送,平水流量小,含沙量低,经常保持窄深稳定河槽,使高含沙洪水挟带的泥沙能顺利输送而不淤,并形成弯曲性河流。  相似文献   

19.
黄河下游泥沙输移数值模拟   总被引:2,自引:0,他引:2  
励强  徐小惠 《地理研究》1989,8(2):55-63
本文从数学模型入手,探讨黄河下游在多年平均来水来沙条件下,泥沙输移与泥沙淤积的特性,得出黄河下游泥沙沿程淤积分布不均匀主要是由于粗沙、中沙沿程淤积不均匀造成的,如果使来沙减少42.6%,黄河下游可望达到冲淤平衡.  相似文献   

20.
Deep-water navigation channels in the tidal reaches of the lower Yangtze River are affected by water and sediment fluxes that produce complex shoals and unstable channel conditions. The Fujiangsha reach is particularly difficult to manage, as it has many braided channels within the tidal fluctuation zone. In this study, hydrologic and topographic data from the Fujiangsha reach from 2012 to 2017 were used to examine the variations in deposition and erosion, flow diversion, shoals, and channel conditions. Since the Three Gorges Dam became operational and water storage was initiated, the Fujiangsha reach has shown an overall tendency toward erosion. Channels deeper than 10 m accounted for 83.7% of the total erosion of the Fujiangsha reach during 2012–2017. Moreover, the dominant channel-forming sediments have gradually changed from suspended sediments to a mixed load of suspended and bed-load sediments. Deposition volumes of these sediments has varied significantly among different channels, but has mainly occurred in the Fubei channel. Furthermore, periodic variations in the Jingjiang point bar have followed a deposition-erosion-deposition pattern, and the downstream Shuangjian shoal mid-channel bar has been scoured and shortened. Approximately 44.0% of the bed load from the upstream Fujiangsha reach is deposited within the 12.5-m deep Fubei channel. The increased erosion and river flow from the Jingjiang point bar and the Shuangjian shoal during the flood season constituted 59.3% and 40.7%, respectively, of the total amount of siltation in the Fubei channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号