首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
El-Niño/Southern Oscillation (ENSO) variability and its relationship with precipitation in the tropics and subtropics are analysed using the ARPEGE-OPA ocean-atmosphere coupled model. Three 150-year simulations are considered, differing by greenhouse gases (GHG) and aerosols concentrations. The first one has constant (1950 level) concentrations, and the two others follow observed values till 1999, then the SRES B2 scenario until 2099. The model is able to reproduce most present-day features characteristic of ENSO in the Pacific. It also displays ENSO as the leading mode of sea-surface temperature (SST) variability, with spatial patterns and explained variance both quite similar to the observation. A detailed analysis of its teleconnections with rainfall variability is carried out on a seasonal basis. Patterns for the last part of the twentieth century compare favourably with the observation, with the notable exception of parts of the Atlantic sector. The overall strong rainfall response arises from the strong interannual variability of simulated ENSO, and also suggests an ability to simulate atmospheric dynamics in a realistic way. In the future climate, the model does not exhibit major changes in the ENSO/rainfall teleconnections. However, on a regional basis, there is some evidence of strengthening (e.g., in parts of Southern Africa) and weakening (e.g., East Africa) in the course of the twenty-first century. In most cases, decadal swings in the correlations suggest that these alterations may partly reflect natural changes in the teleconnections with ENSO, long-term correlation trends (possibly GHG-induced) being comparatively weaker.  相似文献   

2.
Recent changes in dry spell and extreme rainfall events in Ethiopia   总被引:2,自引:1,他引:2  
Summary This paper assesses recent changes in extremes of seasonal rainfall in Ethiopia based on daily rainfall data for 11 key stations over the period 1965–2002. The seasons considered are Kiremt (‘main rains’, June–September) and Belg (‘small rains’, February/March–May). The Mann-Kendall and linear regression trend tests show decreasing trends in the Kiremt and the Belg extreme intensity and maximum consecutive 5-day rains over eastern, southwestern and southern parts of Ethiopia whereas no trends are found in the remaining part of Ethiopia. In general, no trends are found in the yearly maximum length of Kiremt and Belg dry spells (days with rainfall below 1 mm) over Ethiopia.  相似文献   

3.
Summary From a large data set (1927–1992) of rainfall rate in Barcelona, the relationship between maximum rainfall rates for time intervals between 5 minutes and 24 hours has been investigated. Intensity-Duration-Frequency (IDF) curves and their master equation for every return period in Barcelona have been obtained. A cluster analysis has yielded four main classes of extreme rainfall events in this area, corresponding to durations shorter than 35 minutes, 1 hour, 2–6 hours and those longer than 6 hours respectively. An index to classify extreme rainfall events has been proposed. This index gives some information about the severity of storms taking into account the contribution of different scales implied in rainfall processes.  相似文献   

4.
Potential impacts of climate change on heavy rainfall events and flooding in the Australian region are explored using the results of a general circulation model (GCM) run in an equilibrium enhanced greenhouse experiment. In the doubled CO2 simulation, the model simulates an increase in the frequency of high-rainfall events and a decrease in the frequency of low-rainfall events. This result applies over most of Australia, is statistically more significant than simulated changes in total rainfall, and is supported by theoretical considerations. We show that this result implies decreased return periods for heavy rainfall events. The further implication is that flooding could increase, although we discuss here the many difficulties associated with assessing in quantitative terms the significance of the modelling results for the real world.The second part of the paper assesses the implications of climate change for drought occurrence in Australia. This is undertaken using an off-line soil water balance model driven by observed time series of rainfall and potential evaporation to determine the sensitivity of the soil water regime to changes in rainfall and temperature, and hence potential evaporation. Potential impacts are assessed at nine sites, representing a range of climate regimes and possible climate futures, by linking this sensitivity analysis with scenarios of regional climate change, derived from analysis of enhanced greenhouse experiment results from five GCMs. Results indicate that significant drying may be limited to the south of Australia. However, because the direction of change in terms of the soil water regime is uncertain at all sites and for all seasons, there is no basis for statements about how drought potential may change.  相似文献   

5.
南京过去100年极端日降水量模拟研究   总被引:2,自引:0,他引:2  
万仕全  周国华  潘柱  杨柳  张渊 《气象学报》2010,68(6):790-799
在南京过去100年日降水资料的基础上,利用极值理论中的区组模型和阈值模型分析了极端日降水分布特征.首先通过广义极值(GEV)模型模拟了日降水的年极值序列(AMDR),用极大似然估计(MLE)方法计算了模型的参数,并借助轮廓似然函数估计出参数的精确误差区间,同时采用4种较直观的诊断图形对模型的合理性进行全面评估,结果表明Frechet是区组模型中最适合描述极端日降水分布特征的函数.其次,将日降水序列分3种情景构建极值分布的阈值模型(GPD),考察了观测数据的规模对应用该模型的限制,重点讨论了如何针对给定观测样本选择合适的阈值收集极值信息.分析结果认为,长度不小于50年的气候序列,采用24 mm的日降水量作为临界阈值均能进行GPD分析.该阈值处于年降水序列第91个百分位附近,即对目前长度为50年左右的日观测资料,第91个百分位点以上的数据基本能满足GPD研究的需要.另外,根据GEV和GPD对未来极端降水重现水平的推断情况,GPD预测值的置信区间要比GEV的窄,极值推断的不确定性相对也较小,更适合用于研究中国目前规模不大的气候资料.最后,对GPD模型的形状参数和尺度参数进行变换,分别引入描述线性变化的动态变量,分析降水序列中潜在的变异行为对极值理论应用的影响.这种变异包括降水序列中长期的均值变化及百分位变化,从模拟结果看,暂未发现资料变异行为对极值分析产生显著于扰.  相似文献   

6.
7.
8.
Summary In this paper, the annual extreme rainfall series in the time scale of 1 to 3 days duration at 316 stations, well distributed over the Indian region, covering 80-years of rainfall data from 1901 to 1980 were analysed for trend and persistence using standard statistical tests. It has been found that the annual extreme rainfall records of most stations are free from trend and persistence. However, the extreme rainfall series at stations over the west coast north of 12°N and at some stations to the east of the Western Ghats over the central parts of the Peninsula showed a significant increasing trend at 95% level of confidence. Stations over the southern Peninsula and over the lower Ganga valley have been found to exhibit a decreasing trend at the same level of significance. The data series of the stations which showed trends were subjected to a 10-year moving average and the resulting smoothed series have been discussed. It may be said that this increasing or decreasing trend in the annual extreme rainfall events at a few places will have tremendous implications in the hydrologic studies and dam design projects.With 9 Figures  相似文献   

9.
10.
Global changes in extreme events: regional and seasonal dimension   总被引:3,自引:0,他引:3  
This study systematically analyzes the complete IPCC AR4 (CMIP3) ensemble of GCM simulations with respect to changes in extreme event characteristics at the end of the 21st century compared to present-day conditions. It complements previous studies by investigating a more comprehensive database and considering seasonal changes beside the annual time scale. Confirming previous studies, the agreement between the GCMs is generally high for temperature-related extremes, indicating increases of warm day occurrences and heatwave lengths, and decreases of cold extremes. However, we identify issues with the choice of indices used to quantify heatwave lengths, which do overall not affect the sign of the changes, but strongly impact the magnitude and patterns of projected changes in heatwave characteristics. Projected changes in precipitation and dryness extremes are more ambiguous than those in temperature extremes, despite some robust features, such as increasing dryness over the Mediterranean and increasing heavy precipitation over the Northern high latitudes. We also find that the assessment of projected changes in dryness depends on the index choice, and that models show less agreement regarding changes in soil moisture than in the commonly used ‘consecutive dry days’ index, which is based on precipitation data only. Finally an analysis of the scaling of changes of extreme temperature quantiles with global, regional and seasonal warming shows that much of the extreme quantile changes are due to a seasonal scaling of the regional annual-mean warming. This emphasizes the importance of the seasonal time scale also for extremes. Changes in extreme quantiles of temperature on land scale with changes in global annual mean temperature by a factor of more than 2 in some regions and seasons, implying large changes in extremes in several countries, even for the commonly discussed global 2°C-warming target.  相似文献   

11.
王彬雁  赵琳娜  许晖  刘莹 《暴雨灾害》2018,11(2):115-123

利用2010—2016年5—9月四川省157个国家自动气象站小时降水资料,采用皮尔逊Ⅲ型概率分布模型对四川全省小时降水进行拟合,给出全省超过不同阈值的降水累积概率空间分布;在此基础上,计算最大小时降水量的概率分布及其重现期极值。结果表明:四川盆地西部沿山一带出现降水频次较少,但易发生较大量级的小时降水,攀西地区东部虽是降水高发区,但出现大量级小时降水的可能性小;50 a一遇小时降水高值中心分布在乐山市北部、遂宁市西北部与绵阳交界处以及达州市北部,其极值可达60 mm以上;100 a一遇小时降水极值分布趋势同50 a一遇的基本一致,其极值达70 mm;小时降水的皮尔逊Ⅲ型概率分布模型偏差系数与降水站点的海拔高度呈对数递减关系,决定系数达0.654 5,表明地形高度对四川小时降水分布有一定影响;此外用k均值聚类法可很好地对四川小时降水进行分区。

  相似文献   

12.

Extreme rainfall events have serious implications for economic sectors with a close link to climate such as agriculture and food security. This holds true in the Central Rift Valley (CRV) of Ethiopia where communities rely on highly climate-sensitive rainfed subsistence farming for livelihoods. This study investigates changes in ten extreme rainfall indices over a period of 40 years (1970–2009) using 14 meteorological stations located in the CRV. The CRV consists of three landscape units: the valley floor, the escarpments, and the highlands all of which are considered in our data analysis. The Belg (March–May) and Kiremt (June–September) seasons are also considered in the analysis. The Mann-Kendall test was used to detect trends of the rainfall indices. The results indicated that at the annual time scale, more than half (57 %) of the stations showed significant trends in total wet-day precipitation (PRCPTOT) and heavy precipitation days (R10mm). Only 7–35 % of stations showed significant trends, for the other rainfall indices. Spatially, the valley floor received increasing annual rainfall while the escarpments and the highlands received decreasing annual rainfall over the last 40 years. During Belg, 50 % of the stations showed significant increases in the maximum number of consecutive dry days (CDD) in all parts of the CRV. However, most other rainfall indices during Belg showed no significant changes. During Kiremt, considering both significant and non-significant trends, almost all rainfall indices showed an increasing trend in the valley floor and a decreasing trend in the escarpment and highlands. During Belg and Kiremt, the CDD generally showed increasing tendency in the CRV.

  相似文献   

13.
A number of indices have been employed to describe weather extremes on the basis of climate regimes and public concerns. In this study, we combined these traditional indices into four groups according to whether they relate to warm (Twarm), cold (Tcold), wet (Pwet), or dry (Pdry) extremes. Analysis of the combined indices calculated for the daily temperatures and precipitation at 750 meteorological stations in Korea, China, and Japan for 1960s?C2000s shows increasing trends in Twarm and Pdry events and decreasing trends in Tcold events in recent decades, particularly in the northern part of East Asia. A notable regional variation is an increase in the Pwet events in the Korean Peninsula. We applied the same analysis to a 200-year global climate model simulation for 1900?C2099 using the National Center for Atmospheric Research-Community Climate System Model 3. During the 20th century, the changes in Twarm and Tcold calculated from the model data are largely consistent with those calculated from the observations, especially in northern East Asia. The model projections for the 21st century indicate statistically significant increasing Twarm and decreasing Tcold trends in extreme events over the region. Results obtained from historical archives and model simulations using our combined weather extreme indices suggest that northern East Asia will be subject to increased warm and dry extremes and the Korea Peninsula will experience more wet extremes.  相似文献   

14.
15.
Summary A method is developed for analysing climate series. It is based on the assumption that climate undergoes abrupt changes by natural means. It is a generalization of an existing method for dividing a series into two parts. It is assumed that increasing concentrations of greenhouse gases will lead to a gradual climate change (trend) and that this change will be superimposed upon the natural abrupt changes (jumps). On the basis of these facts, jumps in the direction of a climate change resulting from the increased concentrations of greenhouse gases are expected to be stronger than those in the opposite direction and previous jumps in the same direction. Different criteria are used to support this assumption. The method of analysis is applied to time series of summer and winter temperatures of 13 European stations.The largest increases in temperature do not occur in the recent past; they occur around 1910 in winter and about 1930 in summer. As the test for detection of the enhanced greenhouse effect is made stricter, the assumption put forward becomes weaker. Most time series do not have significant trends within various sub-periods. Differences in variability between successive sub-periods are generally not significant. There is agreement between the results reported here and others in the literature. So far, there is no definite evidence that the increasing concentration of greenhouse gases is affecting the climate of Europe.With 6 Figures  相似文献   

16.
17.
18.
A critical test of a general circulation model is its performance on the regional scale. In this paper we examine the summer climatology of the CSIRO4 (4-layer) climate model over the Australian tropical region. The benchmark for the study is the positioning of the monsoon equatorial trough. We compare the CSIRO4 model climatology with the climatologies from the GFDL and GISS models and we report on the sensitivity of the position of the monsoon shear line and the strength of the monsoon westerly winds to the doubling of carbon dioxide in the atmosphere. The model results show that under the greenhouse scenario the monsoon is strengthened, but the average location of the monsoon shear line is not sensitive to the doubling of CO2. Offprint requests to: BF Ryan  相似文献   

19.
The extent of agreement amongst current global climate models (GCMs) on the global pattern of rainfall change simulated under enhanced greenhouse conditions is assessed. We consider the results of five experiments which use a simple mixed layer ocean formulation and five which use a fully dynamic ocean model (coupled experiments). For many regions of the northern hemisphere there is strong agreement amongst both mixed layer and coupled experiments on the sign of simulated rainfall change. However, in the southern hemisphere there are large, and apparently systematic, differences between the coupled and mixed layer experiments. In particular, whereas the mixed layer experiments agree on simulated rainfall increase in summer in the tropics and subtropics of the Australian sector, the coupled experiments agree (although more weakly) on rainfall decreases. These differences appear to relate to the much reduced warming simulated by the coupled experiments in the high latitudes of the southern hemisphere. However, recent oceanographie evidence suggests that this suppressed warming may be considerably overestimated. We conclude therefore that despite the in-principle advantages of coupled models, it may be too soon to base some regionally specific climate change scenarios solely on the results of coupled experiments.  相似文献   

20.
Changes in climate are expected to lead to changes in the characteristics extreme rainfall frequency and intensity. In this study, we propose an integrated approach to explore potential changes in intensity-duration-frequency (IDF) relationships. The approach incorporates uncertainties due to both the short simulation periods of regional climate models (RCMs) and the differences in IDF curves derived from multiple RCMs in the North American Regional Climate Change Assessment Program (NARCCAP). The approach combines the likelihood of individual RCMs according to the goodness of fit between the extreme rainfall intensities from the RCMs’ historic runs and those from the National Centers for Environmental Prediction (NCEP) North American Regional Reanalysis (NARR) data set and Bayesian model averaging (BMA) to assess uncertainty in IDF predictions. We also partition overall uncertainties into within-model uncertainty and among-model uncertainty. Results illustrate that among-model uncertainty is the dominant source of the overall uncertainty in simulating extreme rainfall for multiple locations in the U.S., pointing to the difficulty of predicting future climate, especially extreme rainfall regimes. For all locations a more intense extreme rainfall occurs in future climate; however the rate of increase varies among locations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号