首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The presence of water-bearing minerals on Mars has long been discussed, but little or no data exist showing that minerals such as smectites and zeolites may be present on the surface in a hydrated state (i.e., that they could contain H2O molecules in their interlayer or extra-framework sites, respectively). We have analyzed experimental thermodynamic and X-ray powder diffraction data for smectite and the most common terrestrial zeolite, clinoptilolite, to evaluate the state of hydration of these minerals under martian surface conditions. Thermodynamic data for clinoptilolite show that water molecules in its extra-framework sites are held very strongly, with enthalpies of dehydration for Ca-clinoptilolite up to three times greater than that for liquid water. Using these data, we calculated the Gibbs free energy of hydration of clinoptilolite and smectite as a function of temperature and pressure. The calculations demonstrate that these minerals would indeed be hydrated under the very low-P (H2O) conditions existing on Mars, a reflection of their high affinities for H2O. These calculations assuming the partial pressure of H2O and the temperature range expected on Mars suggest that, if present on the surface, zeolites and Ca-smectites could also play a role in affecting the diurnal variations in martian atmospheric H2O because their calculated water contents vary considerably over daily martian temperature ranges. The open crystal structure of clinoptilolite and existing hydration and kinetic data suggest that hydration/dehydration are not kinetically limited. Based on these calculations, it is possible that hydrated zeolites and clay minerals may explain some of the recent observations of significant amounts of hydrogen not attributable to water ice at martian mid-latitudes.  相似文献   

2.
The near-infrared reflectance spectra of the martian surface present strong absorption features attributed to hydration water present in the regolith. In order to characterize the relationships between this water and atmospheric vapor and decipher the physical state of water molecules in martian regolith analogs, we designed and built an experimental setup to measure near-IR reflectance spectra under martian atmospheric conditions. Six samples were studied that cover part of the diversity of Mars surface mineralogy: a hydrated ferric oxide (ferrihydrite), two igneous samples (volcanic tuff, and dunite sand), and three potential water rich soil materials (Mg-sulfate, smectite powder and a palagonitic soil, the JSC Mars-1 regolith stimulant). Sorption and desorption isotherms were measured at 243 K for water vapor pressure varying from 10−5 to ∼0.3 mbar (relative humidity: 10−4 to 75%). These measurements reveal a large diversity of behavior among the sample suite in terms of absolute amount of water adsorbed, shape of the isotherm and hysteresis between the adsorption and desorption branches. Simultaneous in situ spectroscopic observations permit a detailed analysis of the spectral signature of adsorbed water and also point to clear differences between the samples. Ferric (oxy)hydroxides like ferrihydrite or other phases present in palagonitic soils are very strong water adsorbent and may play an important role in the current martian water cycle by allowing large exchange of water between dust-covered regions and atmosphere at diurnal and seasonal scales.  相似文献   

3.
Thermodynamic data for several clays, zeolites, and MgSO4 salts were combined with calculated yearly mean temperatures and water-vapor pressures on the martian surface to predict mineral hydration states from low to middle latitudes. These predictions were used to evaluate whether the necessary amount and distribution of hydrous minerals were compatible with the Mars Odyssey observations of water-equivalent hydrogen (WEH). Our results indicate that zeolites like chabazite or clay minerals like Ca-montmorillonite would have to be unrealistically abundant in the martian soil (as much as 55 wt%) while Mg-sulfate hydrates at concentrations between 2 and 11 wt% could account for the WEH. However, the geographic distribution of WEH is incompatible with a uniformly distributed mineralogy in equilibrium with the annual mean P-T environment. A heterogeneous distribution of a mixture of different hydrous minerals, reflecting a heterogeneous Mars surface geology, may better explain a significant portion of the observed near-equatorial WEH.  相似文献   

4.
Water is not currently stable in liquid form on the martian surface due to the present mean atmospheric pressure of ~7 mbar and mean global temperature of ~220 K. However, geomorphic features and hydrated mineral assemblages suggest that Mars’ climate was once warmer and liquid water flowed on the surface. These observations may indicate a substantially more massive atmosphere in the past, but there have been few observational constraints on paleoatmospheric pressures. Here we show how the 40Ar/36Ar ratios of trapped gases within martian meteorite ALH 84001 constrain paleoatmospheric pressure on Mars during the Noachian era [~4.56–3.8 billion years (Ga)]. Our model indicates that atmospheric pressures did not exceed ~1.5 bar during the first 400 million years (Ma) of the Noachian era, and were <400 mbar by 4.16 Ga. Such pressures of CO2 are only sufficient to stabilize liquid water on Mars’ surface at low latitudes during seasonally warm periods. Other greenhouse gases like SO2 and water vapor may have played an important role in intermittently stabilizing liquid water at higher latitudes following major volcanic eruptions or impact events.  相似文献   

5.
Abstract— A number of martian meteorite samples contain secondary alteration minerals such as Ca‐Mg‐Fe carbonates, Fe oxides, and clay minerals. These mineral assemblages hint at hydrothermal processes occurring in the martian crust, but the alteration conditions are poorly constrained. This study presents the results of experiments that examined the alteration of a high‐Fe basalt by CO2‐saturated aqueous fluids at 23 and 75 °C and by mixed H2O‐CO2 vapors at 200 and 400 °C and water‐rock ratios of 1:1 and 1:10. Results indicate that observable alteration of the basalt takes place after runs of only seven days. This alteration includes mobilization of silica into phases such as opal‐CT and quartz, as well as the formation of carbonates, oxides, and at some conditions, zeolites and hydrous silicates. The degree of alteration increases with run temperature and, in high‐temperature vapor experiments, with increasing water content of the vapor. The degree of alteration and the mineralogy observed in the martian meteorites suggests that none of these samples were exposed to aqueous fluids for long periods of time. Nakhla and Lafayette probably interacted with water for relatively brief periods of time; if so, silica may have been leached from the parent rocks by the altering fluids. Allan Hills 84001 shows possible evidence for very limited interaction with an aqueous fluid, but the overall slight degree of alteration described for this meteorite strongly suggests that it never interacted extensively or at high temperature with any water‐bearing fluid. Elephant Moraine A79001 may not have been altered by aqueous fluids at all. The results of this study best support models wherein the meteorite parent rocks were wetted intermittently or for brief periods of time rather than models that invoke long‐term reaction with large volumes of water. Our experiments studied alteration of a high‐Fe basalt by dilute, CO2‐saturated, aqueous solutions at 23 and 75 °C and by mixed H2O‐CO2 vapors at 200 and 400 °C. The results suggest that alteration of the parent rock takes place even after very short reaction times of seven days. All experiments produced carbonate minerals, including calcite, and in some cases, magnesite, siderite, and ankerite. A free silica phase, either opal, quartz, or hydrated silica, formed in most experiments. More altered experiments also contained minerals such as zeolites and hydrous phyllosilicates. Clay minerals were not observed to form in any experiments. In aqueous fluids, higher temperature corresponded with a higher degree of alteration, whereas changing fluid composition had no observable effect. In high‐temperature vapors, the degree of alteration was controlled by temperature and the proportion of H2O to CO2, with water‐rock ratio also playing a role in transport of silica. Application of these results to martian meteorites that contain secondary alteration minerals suggests that none of the martian rocks underwent extensive interaction with aqueous fluids. Nakhla and Lafayette contain clay minerals, which suggests that they interacted with water to some extent, possibly at elevated temperatures. Although ALH84001 shows possible evidence of very limited interaction with aqueous fluids, EETA79001 does not. These results support models for the alteration of these meteorites that do not invoke long‐term interaction with water or reaction with large volumes of water. Except for some models for alteration of ALH84001, this conclusion agrees with most of the literature on alteration of martian meteorites.  相似文献   

6.
The Tyrrhena Terra region of Mars is studied with the imaging spectrometers OMEGA (Observatoire pour la Minéralogie, l’Eau, les Glaces et l’Activité) onboard Mars Express and CRISM (Compact Reconnaissance Infrared Spectrometer for Mars) onboard Mars Reconnaissance Orbiter, through the observation of tens of craters that impacted into this part of the martian highlands. The 175 detections of hydrated silicates are reported, mainly associated with ejecta blankets, crater walls and rims, and central up-lifts. Sizes of craters where hydrated silicates are detected are highly variable, diameters range from less than 1 km to 42 km. We report the presence of zeolites and phyllosilicates like prehnite, Mg-chlorite, Mg-rich smectites and mixed-layer chlorites–smectites and chlorite–vermiculite from comparison of hyperspectral infrared observations with laboratory spectra. These minerals are associated with fresh craters post-dating any aqueous activity. They likely represent ancient hydrated terrains excavated by the crater-forming impacts, and hence reveal the composition of the altered Noachian crust, although crater-related hydrothermal activity may have played a minor role for the largest craters (>20 km in diameter). Most detected minerals formed over relatively high temperatures (100–300 °C), likely due to aqueous alteration of the Noachian crust by regional low grade metamorphism from the Noachian thermal gradient and/or by extended hydrothermal systems associated with Noachian volcanism and ancient large impact craters. This is in contrast with some other phyllosilicate-bearing regions like Mawrth Vallis where smectites, kaolinites and hydrated silica were mainly identified, pointing to a predominance of surface/shallow sub-surface alteration; and where excavation by impacts played only a minor role. Smooth plains containing hydrated silicates are observed at the boundary between the Noachian altered crust, dissected by fluvial valleys, and the Hesperian unaltered volcanic plains. These plains may correspond to alluvial deposition of eroded material. The highlands of Tyrrhena Terra are therefore particularly well suited for investigating the diversity of hydrated minerals in ancient martian terrains.  相似文献   

7.
Steven W. Ruff 《Icarus》2004,168(1):131-143
Spectral features observed in Mars Global Surveyor Thermal Emission Spectrometer data (∼1670-220 cm−1) of martian surface dust provide clues to its mineralogy. An emissivity peak at ∼1630 cm−1 is consistent with the presence of an H2O-bearing mineral. This spectral feature can be mapped globally and shows a distribution related to the classical bright regions on Mars that are known to be dust covered. An important spectral feature at ∼830 cm−1 present in a newly derived average spectrum of surface dust likely is a transparency feature arising from the fine particulate nature of the dust. Its shape and location are consistent with plagioclase feldspars and also zeolites, which essentially are the hydrous form of feldspar. The generally favored visible/near-infrared spectral analog for martian dust, JSC Mars-1 altered tephra, does not display the ∼830 cm−1 feature. Zeolites commonly form from the interaction of low temperature aqueous fluids and volcanic glass in a variety of geologic settings. The combination of spectral features that are consistent with zeolites and the likelihood that Mars has (or had) geologic conditions necessary to produce them makes a strong case for recognizing zeolite minerals as likely components of the martian regolith.  相似文献   

8.
The Thermal Emission Spectrometer (TES) has observed a high-silica material in the dark regions of Mars that is spectrally similar to obsidian glass and may have a volcanic origin. An alternate interpretation is that the spectrally amorphous material consists of clay minerals or some other secondary material, formed by chemical alteration of surface rocks. The regions where this material is observed (e.g., Acidalia Planitia) have relatively high spectral contrast, suggesting that the high-silica material exists as coarse particulates, indurated soils or cements, within rocks, or as indurated coatings on rock surfaces. The geologic interpretation of this spectral result has major implications for understanding magmatic evolution and weathering processes on Mars. One of the complications in interpreting spectral observations of glasses and clay minerals is that both are structurally and compositionally complex. In this study, we perform a detailed spectroscopic analysis of indurated smectite clay minerals and relate their thermal emission spectral features to structural and crystal chemical properties. We examine the spectral similarities and differences between smectite clay minerals and obsidian glass from a structural-chemical perspective, and make further mineralogical interpretations from previous TES results. The results suggest that neither smectite clays nor any clay mineral with similar structural and chemical properties can adequately explain TES observations of high-silica materials in some martian dark regions. If the spectrally amorphous materials observed by TES do represent an alteration product, then these materials are likely to be poorly crystalline aluminosilicates. While all clay minerals have Si/O ratios ?0.4, the position of the emissivity minimum at Mars suggests a Si/O ratio of 0.4-0.5. The spectral observation could be explained by the existence of a silica-rich alteration product, such as Al- or Fe-bearing opal, an intimate physical mixture of relatively pure silica and other aluminosilicates (such as clay minerals or clay precursors), or certain zeolites. The chemical alteration of basaltic rocks on Mars to phyllosilicate-poor, silica-rich alteration products provides a geologically reasonable and consistent explanation for the global TES surface mineralogical results.  相似文献   

9.
Our ground-based measurements of martian atmospheric water vapor, made throughout Ls=34° to 249°, 24 September 1998 to 23 November 1999, during Mars year 24 (MY 24), show changes in Mars' humidity on hourly, daily, and seasonal timescales. We made concomitant measurement of nearby CO2 bands, and when possible, results were corrected for aerosol extinction using aerosol optical depths derived from our own CO2 analysis. Where there is spatial and temporal overlap, similar results are obtained for water vapor abundances and aerosol opacities as those observed from the Thermal Emission Spectrometer on Mars Global Surveyor. In addition some further discussion of our published earlier water vapor measurements (1991-1995) is included. Six results from this data set are: (1) the measured aerosol opacity in Mars atmosphere was variable but not greater than τ=1, with almost no clear atmosphere being observed, (2) measurements made with the slit crossing many hours of local time on Mars' Earth-facing disk show a diurnal pattern with highest abundances at mid-day and low abundance in very early morning and late afternoon for some but not all measurements, (3) water vapor abundance is patchy on hourly and daily time scales but follows the usual seasonal trends seen by instrumentation on the Mars Atmospheric Water Detector on the Viking Orbiters and by the Thermal Emission Spectrometer on Mars Global Surveyor, (4) there is a slight longitudinal correlation with the ground-ice observed by the Gamma Ray Spectrometer on Mars Odyssey, (5) there is evidence of the Low Southern Latitude Summer Minimum in our water vapor measurements but our data set for southern summer is limited, and (6) MY 24 appears to be wetter than MY 22 and MY 23.  相似文献   

10.
Abstract— We analyzed noble gases from 18 samples of weathering products (“iddingsite”) from the Lafayette meteorite. Potassium‐argon ages of 12 samples range from near zero to 670 ± 91 Ma. These ages confirm the martian origin of the iddingsite, but it is not clear whether any or all of the ages represent iddingsite formation as opposed to later alteration or incorporation of martian atmospheric 40Ar. In any case, because iddingsite formation requires liquid water, this data requires the presence of liquid water near the surface of Mars at least as recently as 1300 Ma ago, and probably as recently as 650 Ma ago. Krypton and Xe analysis of a single 34 μg sample indicates the presence of fractionated martian atmosphere within the iddingsite. This also confirms the martian origin of the iddingsite. The mechanism of incorporation could either be through interaction with liquid water during iddingsite formation or a result of shock implantation of adsorbed atmospheric gas. Our strongest conclusion is that the iddingsite in Lafayette formed on Mars, in agreement with the microstratigraphic arguments of Gooding et al. (1991) and Treiman et al. (1993). A preterrestrial origin of the iddingsite is required both by the many non‐zero K‐Ar ages and by the presence of Xe that is isotopically distinct from any terrestrial Xe. The Xe is accompanied by Kr, but the Kr and Xe have been fractionated if they are derived from the present martian atmosphere. This is presumably the result of either incorporation via interaction with liquid water (Drake et al., 1994; Bogard and Garrison, 1998) or by adsorption from the martian atmosphere, perhaps accompanied by shock (see also Gilmour et al., 1998, 1999). Although the iddingsite is enriched in Kr and Xe compared to whole‐rock analyses, it is not clear whether iddingsite is the dominant carrier of the atmospheric‐derived gas (Drake et al., 1994) or merely a minor carrier (Gilmour et al., 1999). Our 40Ar‐39Ar experiment was disappointing, in that it mostly served to confirm that the iddingsite, which contains fine‐grained clays, is susceptible to recoil loss of 39Ar during irradiation. Only one sample of five gave a clear signal of radiogenic or extraterrestrial 40Ar, and that was only by 3°. Potassium‐argon ages of the second set of samples were more successful, ranging from near 0 to 670 ± 91 Ma. It is not clear whether any or all of the ages represent iddingsite formation, as opposed to later alteration. The fact that a Rb‐Sr experiment (Shih et al., 1998) gave an apparent age for iddingsite of 679 ± 66 Ma (2a) suggests that perhaps formation of iddingsite occurred (or began) ~650 Ma ago and that some samples either formed, or were thermally altered, later. The ages could be even younger than 650 Ma, if the samples have incorporated martian atmospheric 40Ar. This means that liquid water was certainly present on Mars in the last 1300 Ma (the formation age of Lafayette), and probably within the last 650 Ma.  相似文献   

11.
A number of mineral species were exposed to martian surface conditions of atmospheric pressure and composition, temperature, and UV light regime, and their evolution was monitored using reflectance spectroscopy. The stabilities for different groups varied widely. Phyllosilicate spectra all showed measurable losses of interlayer H2O, with some structural groups showing more rapid H2O loss than others. Loss of OH from the phyllosilicates is not always accompanied by a change in metal-OH overtone absorption bands. OH-bearing sulfates, such as jarosite and alunite, show no measurable change in spectral properties, suggesting that they should be spectrally detectable on Mars on the basis of diagnostic absorption bands in the 0.4-2.5 μm region. Fe3+- and H2O-bearing sulfates all showed changes in the appearance and/or reduction in depths of hydroxo-bridged Fe3+ absorption bands, particularly at 0.43 μm. The spectral changes were often accompanied by visible color changes, suggesting that subsurface sulfates exposed to the martian surface environment may undergo measurable changes in reflectance spectra and color over short periods of time (days to weeks). Organic-bearing geological materials showed no measurable change in CH related absorption bands, while carbonates and hydroxides also showed no systematic changes in spectral properties. The addition of ultraviolet irradiation did not seem to affect mineral stability or rate of spectral change, with one exception (hexahydrite). In some cases, spectral changes could be related to the formation of specific new phases. The data also suggest that hydrated minerals detected on Mars to date retain their diagnostic spectral properties that allow their unique identification.  相似文献   

12.
The origin of water on Mars   总被引:1,自引:0,他引:1  
This paper considers the origin of water on Mars, in the context of a dynamical model that accounts for most of the Earth's water as a product of collisions between the growing Earth and planet-sized “embryos” from the asteroid belt. Mars' history is found to be different; to explain the present mass of Mars requires that it suffer essentially no giant collisions and the bulk of its growth is through addition of smaller bodies. Asteroids and comets from beyond 2.5 AU provide the source of Mars' water, which totals 6-27% of the Earth's present ocean (1 Earth ocean≡1.5×1021 kg), equivalent to 600-2700-m depth on the martian surface. The D/H ratio of this material is 1.2-1.6 times Standard Mean Ocean Water, the smaller value obtaining for the larger amount of water accreted. The upper half of the range of total water accreted, while many times less than that acquired by the Earth, is consistent with geological data on Mars, and the D/H value is that derived for martian magmatic water from SNC meteorites. Both together are consistent with published interpretations of the high D/H in present-day martian atmospheric water in terms of water loss through atmospheric escape.  相似文献   

13.
We present the seasonal and geographical variations of the martian water vapor monitored from the Planetary Fourier Spectrometer Long Wavelength Channel aboard the Mars Express spacecraft. Our dataset covers one martian year (end of Mars Year 26, Mars Year 27), but the seasonal coverage is far from complete. The seasonal and latitudinal behavior of the water vapor is globally consistent with previous datasets, Viking Orbiter Mars Atmospheric Water Detectors (MAWD) and Mars Global Surveyor Thermal Emission Spectrometer (MGS/TES), and with simultaneous results obtained from other Mars Express instruments, OMEGA and SPICAM. However, our absolute water columns are lower and higher by a factor of 1.5 than the values obtained by TES and SPICAM, respectively. In particular, we retrieve a Northern midsummer maximum of 60 pr-μm, lower than the 100-pr-μm observed by TES. The geographical distribution of water exhibits two local maxima at low latitudes, located over Tharsis and Arabia. Global Climate Model (GCM) simulations suggest that these local enhancements are controlled by atmospheric dynamics. During Northern spring, we observe a bulge of water vapor over the seasonal polar cap edge, consistent with the northward transport of water from the retreating seasonal cap to the permanent polar cap. In terms of vertical distribution, we find that the water volume mixing ratio over the large volcanos remains constant with the surface altitude within a factor of two. However, on the whole dataset we find that the water column, normalized to a fixed pressure, is anti-correlated with the surface pressure, indicating a vertical distribution intermediate between control by atmospheric saturation and confinement to a surface layer. This anti-correlation is not reproduced by GCM simulations of the water cycle, which do not include exchange between atmospheric and subsurface water. This situation suggests a possible role for regolith-atmosphere exchange in the martian water cycle.  相似文献   

14.
Tetsuya Tokano 《Icarus》2003,164(1):50-78
In an effort to test and to understand the global hydrogen distribution in the shallow subsurface of Mars retrieved by the Mars Odyssey gamma-ray spectrometer, the present state and movement of water are investigated by a coupled global subsurface-atmosphere water cycle model. It was found that the observed global subsurface hydrogen distribution is largely consistent with the modeled global water cycle, so a large fraction of hydrogen is likely to exist as water, at low and mid latitudes in the form of adsorbed water. Under the present climate the water content in the shallow subsurface becomes higher in the northern hemisphere than in the southern hemisphere as a result of global water cycle, regardless of the initial water distribution in the soil or adsorptive capacity. The higher annual maximum soil temperature in the south, stronger net northward transport of atmospheric water vapor, and the emission of vapor from the northern residual polar cap in northern summer contribute to this hemispheric asymmetry. The generally higher adsorptive capacity of clay minerals in the northern plains may further increase this bias. The longitudinal inhomogeneity is caused by several factors, such as thermal inertia, adsorptive capacity, and atmospheric surface pressure. The water abundance is locally high in low thermal inertia regions (e.g., Arabia Terra) and at deep places where the surface pressure is high (e.g., Hellas); it is low in soil with a low adsorptive capacity (e.g., Tharsis) and high thermal inertia regions (e.g., Solis Planum). Most of the soil humidity near the surface at low and mid latitudes may originate from the atmosphere. The model implies that the upper soil layer should be largely ice-free because otherwise an excessive sublimation and vapor emission into the atmosphere in warm seasons would violate the observational constraints. Moreover, the more uniform latitudinal variation of the observed hydrogen abundance near the surface compared to that of deeper layers is indicative of the presence of adsorbed water instead of ground ice because the adsorbed water content does not as steeply depend on latitude as the ground ice stability. Concerning the regolith mineralogy, montmorillonite can much better account for the observed water cycle than palagonite. While the presence of permanent ground ice appears likely in the polar region below a thin layer, large seasonal cycle of phase change between pore ice and adsorbed water may be possible. Regolith adsorption/desorption is neither negligible nor crucial for the seasonal atmospheric water cycle, but the surface-atmosphere coupling is a major prerequisite for the long-term evolution of subsurface water distribution.  相似文献   

15.
Measurements of martian atmospheric water vapor made throughout Ls = 18.0°-146.4° (October 3, 1996-July 12, 1997) show changes in Mars humidity on hourly, daily, and seasonal time scales. Because our observing program during the 1996-1997 Mars apparition did not include concomitant measurement of nearby CO2 bands, high northern latitude data were corrected for dust and aerosol extinction assuming an optical depth of 0.8, consistent with ground-based and HST imaging of northern dust storms. All other measurements with airmass greater than 3.5 were corrected using a total optical depth of 0.5. Three dominant results from this data set are as follows: (1) pre- and post-opposition measurements made with the slit crossing many hours of local time on Mars’ Earth-facing disk show a distinct diurnal pattern with highest abundances around and slightly after noon with low abundances in the late afternoon, (2) measurements of water vapor over the Mars Pathfinder landing site (Carl Sagan Memorial Station) on July 12, 1997, found 21 ppt μm in the spatial sector centered near 19° latitude, 36° longitude while abundances around the site varied from as low as 6 to as high as 28 ppt μm, and (3) water vapor abundance is patchy on hourly and daily time scales but follows the usual seasonal trends.  相似文献   

16.
Microscopic liquid layers of water can evolve via adsorption on grain and mineral surfaces at and in the soil of the surface of Mars. The upper parts of these layers will start to freeze at temperatures clearly below the freezing point of bulk water (freezing point depression). A sandwich structure with layers of ice (top), liquid water (in between) and mineral surface (bottom) can evolve. The properties of the interfacial water (of adsorption water and premelted ice) on grain surfaces are described by a sandwich-model of a layer of liquid-like adsorption water between the adsorbing mineral surface layer and an upper ice layer. It is shown that the thickness or number of mono-layers of the interfacial water (of adsorption water and premelted ice) depends on temperature and atmospheric relative humidity. The derived equations for the sandwich model fit well to a known phenomenological relation between thickness of the liquid layer and relative humidity, and can be a tool to estimate or to determine for appropriate materials Hamaker's constant for van der Waals interactions on grains and in porous media. The curvature of grain surfaces is shown to have no remarkable effects for particles in the μm-range and larger. The application of these equations to thermo-physical conditions on Mars shows that the thickness of frost-layers, which can evolve over several hours on cooling surface parts of Mars, is typically of the order or a few tenths of one millimeter or less. This is in agreement with observations. Furthermore, an equation is derived, which relates the freezing point depression for van der Waals force governed interfacial water to the value of the Hamaker constant, to the latent heat of solidification, to the mass density of water ice, and to the thickness of the liquid-like layer. Again, this equation fits well to a known phenomenological relation between freezing point depression and thickness of the liquid-like layer. The derived equation shows that the lower limiting temperature of the liquid phase can reach about 180 K under martian conditions having an atmospheric water content of around 10 pr μm. An “Equilibrium Moisture Content” (EMC)/“Equilibrium Relative Humidity” (ERH) relation for the water content of martian soil has been derived, which relates, for equilibrium conditions, soil water content and atmospheric relative humidity. This relation indicates that the content of liquid interfacial water in the upper surface of Mars can reach up to 10% by weight and more in course of saturation during night hours, and it can be of about 2% by weight during the dry daytime hours.  相似文献   

17.
The role of water ice clouds in the martian water cycle and climate depends on cloud properties such as particle size and number distribution. These properties, in turn, depend on heterogeneous nucleation parameters which are poorly understood. Here we report laboratory experiments performed under martian temperature and water partial pressure conditions (158–185 K, 9 × 10−7–1 × 10−4 Torr H2O) to determine the critical saturation ratio for ice onset, Scrit, as a function of temperature and dust composition. Using infrared spectroscopy to monitor ice nucleation and growth, we find a significant barrier to ice formation, with a pronounced temperature dependence. Even on clay minerals which show uptake of non-crystalline water before ice nucleation, we find a saturation ratio of 2.5 or more (RHice > 250%) is needed to begin ice growth at temperatures near 160 K. These results could lead to changes of four orders of magnitude in the nucleation rate relative to the presumptions used currently in Mars microphysical models, which commonly set the contact parameter, m, to a single value of 0.95. Our results range from m = 0.84 to m = 0.98. For ice nucleation on Arizona Test Dust, the temperature dependence is described by m = 0.0046 * Tnucl + 0.1085, while m = 0.0055 * Tnucl + 0.0003 on a smectite-rich clay sample. Our findings suggest that cloud formation will be more difficult than previously thought, potentially leading to areas of increased near-surface humidity but generally drier conditions in the atmosphere of Mars, overall.  相似文献   

18.
Phyllosilicates, carbonates, zeolites, and sulfates on Mars give clues about the planet's past environmental conditions, but little is known about the specific conditions in which these minerals formed within the crust and at the surface. The aim of the present study was to gain increased understanding on the formation of secondary phases by hydrothermal alteration of basaltic glass. The reaction processes were studied under varying conditions (temperature, pCO2, water:rock ratio, and fluid composition) with relevance to aqueous hydrothermal alteration in fully and partly saturated Martian basalt deposits. Analyses made on reaction products using X‐ray diffraction (XRD) and scanning electron microscope (SEM) were compared with near infrared spectroscopy (NIR) to establish relative detectability and spectral signatures. This study demonstrates that comparable alteration minerals (phyllosilicates, carbonates, zeolites) form from vapor condensing on mineral surfaces in unsaturated sediments and not only in fully water‐saturated sediments. In certain environments where water vapor might be present, it can alter the basaltic bedrock to a suite of authigenic phases similar to those observed on the Martian surface. For the detection of the secondary phases, XRD and SEM‐EDS were found to be superior to NIR for detecting and characterizing zeolites. The discrepancy in detectability of zeolites between NIR and XRD/SEM‐EDS might indicate that zeolites on Mars are more abundant than previously thought.  相似文献   

19.
James L. Gooding 《Icarus》1978,33(3):483-513
Chemical weathering on Mars is examined theoretically from the standpoint of heterogeneous equilibrium between solid mineral phases and gaseous O2, H2O, and CO2 in the Martian atmosphere. Thermochemical calculations are performed in order to identify important gas-solid decomposition reactions involving the major mineral constituents of mafic igneous rocks. Where unavailable in the thermochemical literature, Gibbs free energy and enthalpy of formation are estimated for certain minerals and details of these estimation procedures are given. Partial pressure stability diagrams are presented to show pertinent mineral reaction boundaries at 298 and at 240°K. In the present Martian environment, the thermodynamically stable products of gas-solid weathering of individual minerals at 240°K should be Fe2O3, as hematite or maghemite (from fayalite, magnetite, and Fe-bearing pyroxenes), quartz (from all silicates), calcite (from Ca-bearing pyroxenes and plagioclase), magnesite (from forsterite and Mg-bearing pyroxenes), corundum (from all Al-bearing silicates), Ca-beidellite (from anorthite), and szomolnokite, FeSO4 or FeSO4·H2O (from iron sulfides). Albite, microcline, and apatite should be stable with respect to gas-solid decomposition, suggesting that gas-solid weathering products on Mars may be depleted in Na, K, and P (and, possibly, Cl and F). Certain montmorillonite-type clay minerals are thermodynamically favorable intermediate gas-solid decomposition products of Al-bearing pyroxenes and may be metastable intermediate products of special mineral surface reaction mechanisms. However, the predicted high thermodynamic susceptibility of these clay minerals to subsequent gas-solid decomposition implies that they should ultimately decompose in the present Martian surface environment. Kaolinite is apparently the only clay mineral which should be thermodynamically stable over all ranges of temperature and water vapor abundance in the present environment at the Martian surface. Considering thermodynamic criteria, including possible gas-solid decomposition reactions, it is doubtful that significant amounts of goethite and clay minerals can be currently forming on Mars by mechanisms known to operate to Earth. If major amounts of goethite and clay minerals occur on Mars, they probably owe their existence to formation in an environment characterized by the presence of liquid water or by mechanism possibly unique to Mars. In any case, any goethite or montmorillonite-type clay mineral on Mars must ultimately decompose.  相似文献   

20.
Observations of ozone on Mars were made using the Goddard Space Flight Center's Infrared Heterodyne Spectrometer and Heterodyne Instrument for Planetary Wind and Composition at the NASA Infrared Telescope Facility. Ozone is an important observable tracer of martian photochemistry. Infrared heterodyne spectroscopy with spectral resolution ?106 is the only technique that directly measures ozone in the martian atmosphere from the surface of the Earth. Ozone column abundances down to the martian surface were acquired in seven data sets taken between 1988 and 2003 at various orbital positions (LS=40°, 74°, 102°, 115°, 202°, 208°, 291°). Ozone abundances are compared with those retrieved using ultraviolet techniques, showing good agreement. Odd hydrogen (HOX) chemistry predicts anticorrelation of ozone and water vapor abundances. Retrieved ozone abundances consistently show anticorrelation with corresponding water vapor abundances, providing strong confirmation of odd hydrogen activity. Deviation from strict anticorrelation between the observed total column densities of ozone and water vapor suggests that constituent vertical distribution is an additional, significant factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号