首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A principal goal of the Lunar Soil Characterization Consortium (LSCC) is to evaluate tools that might be successfully used in remote compositional analysis of the lunar surface. Mathematical methods are extremely valuable to assess whether variations exist in a statistically significant manner, independent of their interpretation. The bounds of widely used correlation of visible to near-infrared spectral parameters with composition are first defined and evaluated. We then evaluate direct (or indirect) links between the combined spectral properties of lunar mare soils and their compositional properties (elemental abundance and mineralogy) through a statistical analysis of the variance across each measurement using principal component analysis (PCA). We first separately analyze LSCC elemental abundance, mineralogy, and spectroscopy data (0.35 to 2.5 μm) using PCA to capture the variance of each system with a relatively small number of independent variables. With this compact set of independent variables for each type of data, we derive functions to link composition and spectroscopy. For these mare soils, one of the best empirical predictive capability is that for FeO. This is not surprising since the effect of ferrous iron on optical properties is well documented. Although Al2O3 has no direct effect on optical properties, its strong anticorrelation with FeO also produces a relatively high predictive capability from spectra. Similarly, a high accuracy in predicting the abundance of pyroxene is observed and should be expected since iron-bearing pyroxene is one of the most optically active components of lunar soil. The accuracy for predicting either TiO2 or ilmenite, on the other hand, is disappointing. High- and low-Ti soils are readily distinguished, but these statistics suggest that making subclass distinctions based on spectral predictions of TiO2 would be risky.  相似文献   

2.
We propose a technique that interpolates available lunar prospector gamma-ray spectrometer (GRS) data using Clementine UVVIS spectral reflectance images. The main idea is to use low resolution GRS data as a “ground truth” to establish relationships linking optical data and geochemical information maximizing the respective correlation coefficients. Then the relationships and Clementine UVVIS data are used to derive elemental abundance maps with significantly improved spatial resolution. The main limitation of the technique is its dependence on how well the abundance of the elements correlates with the Clementine UVVIS data. The technique can also be applied to analysis of coming D-CIXS/Smart-1 and AMIE/Smart-1 data to increase resolution of lunar compositional maps. As an illustration of the suggested technique, maps for the elements Fe, Ti, O, Al, Ca, and Mg with pixel size 15 km×15 km are presented. The Fe and Ti distributions resemble qualitatively to the maps obtained with the well-known technique by lucey et al. (2000a. Lunar iron and titanium abundance algorithms based on final processing of Clementine ultraviolet-visible images. J. Geophys. Res. 105, 20,297-20,306), though in our case the ranges of Fe and Ti variations are, respectively, wider and narrower than for lucey's maps. New maps for the elements Fe, Ti, O, Al, Ca, and Mg appear to be informative. For instance, the map of oxygen abundance demonstrates an anomaly in the crater Tycho. The maps of Fe and Al contents show for highland regions slight variations related to maturity degree. Reliability of this relation is confirmed with lunar sample data. The reason of the correlation between chemical composition and exposition age of the lunar surface can be the global transport of the lunar surface material due to meteorite impacts.  相似文献   

3.
We suggest a technique to determine the chemical and mineral composition of the lunar surface using artificial neural networks (ANNs). We demonstrate this powerful non-linear approach for prognosis of TiO2 abundance using Clementine UV-VIS mosaics and Lunar Soil Characterization Consortium data. The ANN technique allows one to study correlations between spectral characteristics of lunar soils and composition parameters without any restrictions on the character of these correlations. The advantage of this method in comparison with the traditional linear regression method and the Lucey et al. approaches is shown. The results obtained could be useful for the strategy of analyzing lunar data that will be acquired in incoming lunar missions especially in case of the Chandrayaan-1 and Lunar Reconnaissance Orbiter missions.  相似文献   

4.
Mineralogy of the lunar crust: Results from Clementine   总被引:1,自引:0,他引:1  
Abstract— The central peaks of 109 impact craters across the Moon are examined with Clementine ultraviolet-visible (UVVIS) camera multispectral data. The craters range in diameter from 40 to 180 km and are believed to have exhumed material from 5–30 km beneath the surface to form the peaks, including both upper and lower crustal rocks depending on whether craters have impacted into highlands or basins. Representative five-color spectra from spectrally and spatially distinct areas within the peaks are classified using spectral parameters, including “key ratio” (which is related to mafic mineral abundance) and “spectral curvature” (linked to absorption band shape, which distinguishes between low- and high-Ca pyroxene and olivine). The spectral parameters are correlated to mineralogical abundances, related in turn to highland plutonic rock compositions. The derived rock compositions for the various central peaks are presented in a global map. From these results, it is evident that the lunar crust is compositionally diverse, both globally and at local 100 m scales found within individual sets of central peaks. Although the central peaks compositions imply a crust that is generally consistent with previous models of crustal structure, they also indicate a more anorthositic crust than generally assumed, with a bulk plagioclase content of ~81%, evolving from “pure” anorthosite near the surface towards more mafic, low-Ca pyroxene-rich compositions with depth (comparable to anorthositic norite). Evidence for mafic plutons occurs in both highlands and basins and represent all mafic highland rock types. However, the lower crust is more compositionally diverse than the highlands, with both a greater range of rock types and more diversity within individual sets of central peaks.  相似文献   

5.
The goal of this study is to develop an efficient and accurate model for using visible–near infrared reflectance spectra to estimate the abundance of minerals on the lunar surface. Previous studies using partial least squares (PLS) and genetic algorithm–partial least squares (GA–PLS) models for this purpose revealed several drawbacks. PLS has two limitations: (1) redundant spectral bands cannot be removed effectively and (2) nonlinear spectral mixing (i.e., intimate mixtures) cannot be accommodated. Incorporating GA into the model is an effective way for selecting a set of spectral bands that are the most sensitive to variations in the presence/abundance of lunar minerals and to some extent overcomes the first limitation. Given the fact that GA–PLS is still subject to the effect of nonlinearity, here we develop and test a hybrid partial least squares–back propagation neural network (PLS–BPNN) model to determine the effectiveness of BPNN for overcoming the two limitations simultaneously. BPNN takes nonlinearity into account with sigmoid functions, and the weights of redundant spectral bands are significantly decreased through the back propagation learning process. PLS, GA–PLS and PLS–BPNN are tested with the Lunar Soil Characterization Consortium dataset (LSCC), which includes VIS–NIR reflectance spectra and mineralogy for various soil size fractions and the accuracy of the models are assessed based on R2 and root mean square error values. The PLS–BPNN model is further tested with 12 additional Apollo soil samples. The results indicate that: (1) PLS–BPNN exhibits the best performance compared with PLS and GA–PLS for retrieving abundances of minerals that are dominant on the lunar surface; (2) PLS–BPNN can overcome the two limitations of PLS; (3) PLS–BPNN has the capability to accommodate spectral effects resulting from variations in particle size. By analyzing PLS beta coefficients, spectral bands selected by GA, and the loading curve of the latent variable with the largest weight in PLS–BPNN, we conclude that spectral information incorporated into the three models is directly derived from the diagnostic absorption bands associated with the individual minerals. It is concluded that the PLS–BPNN model should be applicable to both Clementine UV–VIS–NIRs and Moon Mineralogy Mapper (M3) data.  相似文献   

6.
Lunar highland region and associated craters are mostly composed of anorthosite. In the present study, we studied the reflectance spectra of terrestrial anorthosites collected from Sittampundi Anorthosites Complex, which is considered as equivalent (simulant) of lunar highland anorthosites. The objective of the study is to interpret diagnostic spectral features of analog anorthosite for remotely exploring lunar highland region. Reflectance spectra of anorthosites were measured under two different environments, such as controlled field and laboratory conditions. In these two procedures, the laboratory spectra give clear, diagnostic spectral information in the present study. Reflectance spectra captured under 350-2500 nm covering UV, Visible, NIR, and SWIR part of the electromagnetic spectrum. The spectral characteristics of anorthosites measured under various parts of electromagnetic spectrum have diagnostic absorption features at 380-387, 700-740, 930-1100, 1160-1200, 1415, 1920, 2200 and 2330 nm correspondingly due to plagioclase UV absorption, Fe3+ electron transition absorption, Fe2+ pyroxene and olivine absorption, OH/Mn3+ crystal transition absorption, pyroxene absorption, Al-OH absorption and Mg-OH absorption. Mineralogical and chemical analyses were carried out for four anorthosites and compared with the results of chemical component of lunar anorthosite. The percentage of plagioclase content, relative abundance of low and high calcium pyroxene and olivine in different anorthosite samples are correlated with the albedo range, absorption shape, absorption centers and band depth. The similarity in the diagnostic spectral features of the anolog anorthosite with lunar anorthosites could be effectively utilized for remotely mapping the lunar highland region.  相似文献   

7.
We investigate the region of crater Haulani on Ceres with an emphasis on mineralogy as inferred from data obtained by Dawn's Visible InfraRed mapping spectrometer (VIR), combined with multispectral image products from the Dawn Framing Camera (FC) so as to enable a clear correlation with specific geologic features. Haulani, which is one of the youngest craters on Ceres, exhibits a peculiar “blue” visible to near‐infrared spectral slope, and has distinct color properties as seen in multispectral composite images. In this paper, we investigate a number of spectral indices: reflectance; spectral slopes; abundance of Mg‐bearing and NH4‐bearing phyllosilicates; nature and abundance of carbonates, which are diagnostic of the overall crater mineralogy; plus a temperature map that highlights the major thermal anomaly found on Ceres. In addition, for the first time we quantify the abundances of several spectral endmembers by using VIR data obtained at the highest pixel resolution (~0.1 km). The overall picture we get from all these evidences, in particular the abundance of Na‐ and hydrous Na‐carbonates at specific locations, confirms the young age of Haulani from a mineralogical viewpoint, and suggests that the dehydration of Na‐carbonates in the anhydrous form Na2CO3 may be still ongoing.  相似文献   

8.
The near-IR spectral properties of minerals, meteorites, and lunar soil vary with temperature. The manner in which these materials vary is diagnostic of aspects of their composition. We quantify the spectral dependence on temperature by reporting the change in relative reflectance with temperature as a function of wavelength. We call this quantity, ΔRT (in units of K−1), as a function of temperature the “thermo-reflectance spectrum.” The thermo-reflectance spectra of olivine and pyroxene are distinct, and most of the observable structure in thermo-reflectance spectra of the ordinary and carbonaceous chondrites can be understood in terms of a mixture of the thermo-reflectance spectra of olivine and pyroxene. The magnitude of thermo-reflectance spectra of meteorites and lunar soils is much less than that of pure minerals. Lunar soils are particularly subdued. While conventional analysis of remotely obtained spectra of the Moon can neglect temperature effects, spatially resolved measurements of the surface of the asteroid Vesta will likely have a strong temperature-dependent component based on measurements of a eucrite and a howardite.  相似文献   

9.
The distribution of minerals on the lunar surface is information which could contribute to studying lunar origin and evolution. In this paper, the distribution of clinopyroxene, orthopyroxene, olivine, ilmenite, and plagioclase on the lunar surface has been mapped based on Hapke radiative transfer model and linear unmixing of spectra with Clementine UVVIS/NIR data. The results have been validated on the basis of minerals modal abundance data of the Apollo samples, and problems in the minerals abundance mapping have been analyzed. The validation based on analysis data of Apollo samples indicates that plagioclase mapped in this paper represents the total abundance of plagioclase and agglutinitic glass. The minerals mapping results show that the lunar surface is mainly composed of pyroxene, plagioclase, agglutinitic glass, and ilmenite. Basalt in the lunar mare is mainly composed of clinopyroxene and ilmenite, and lunar highland is mainly composed of plagioclase and agglutinitic glass. Orthopyroxene is mainly distributed on the north of Mare Imbrium, on the south of Maria and Aitken Basin. According to our results, there is probably no large area of olivine distribution on the lunar surface which is different from earlier published results. Therefore, emphasis should be put on the olivine distribution in the minerals mapping using hyperspectral data such as M3 of Chandrayaan-1 and IIM of ChangE-1.  相似文献   

10.
In this study we examine the spectral and morphometric properties of the four important lunar mare dome fields near Cauchy, Arago, Hortensius, and Milichius. We utilize Clementine UV-vis multispectral data to examine the soil composition of the mare domes while employing telescopic CCD imagery to compute digital elevation maps in order to determine their morphometric properties, especially flank slope, height, and edifice volume. After reviewing previous attempts to determine topographic data for lunar domes, we propose an image-based 3D reconstruction approach which is based on a combination of photoclinometry and shape from shading. Accordingly, we devise a classification scheme for lunar mare domes which is based on a principal component analysis of the determined spectral and morphometric features. For the effusive mare domes of the examined fields we establish four classes, two of which are further divided into two subclasses, respectively, where each class represents distinct combinations of spectral and morphometric dome properties. As a general trend, shallow and steep domes formed out of low-TiO2 basalts are observed in the Hortensius and Milichius dome fields, while the domes near Cauchy and Arago that consist of high-TiO2 basalts are all very shallow. The intrusive domes of our data set cover a wide continuous range of spectral and morphometric quantities, generally characterized by larger diameters and shallower flank slopes than effusive domes. A comparison to effusive and intrusive mare domes in other lunar regions, highland domes, and lunar cones has shown that the examined four mare dome fields display such a richness in spectral properties and 3D dome shape that the established representation remains valid in a more global context. Furthermore, we estimate the physical parameters of dome formation for the examined domes based on a rheologic model. Each class of effusive domes defined in terms of spectral and morphometric properties is characterized by its specific range of values for lava viscosity, effusion rate, and duration of the effusion process. For our data set we report lava viscosities between about 102 and , effusion rates between 25 and , and durations of the effusion process between three weeks and 18 years. Lava viscosity decreases with increasing R415/R750 spectral ratio and thus TiO2 content; however, the correlation is not strong, implying an important influence of further parameters like effusion temperature on lava viscosity.  相似文献   

11.
We describe the future SMART-1 European Space Mission whose objective is to study the lunar surface from a polar lunar orbit. In particular, it is anticipated that selected regions of the Moon will be photographed using the AMIE camera with a mean spatial resolution of about 100 m in three spectral channels (0.75, 0.92, and 0.96 m) over a wide range of phase angles. Since these spectral channels and the AMIE resolution are close to those of the UVVIS camera onboard the Clementine spacecraft, the simultaneous processing of SMART-1 and Clementine data can be planned, for example, to obtain phase-ratio images. These images carry information on the structural features of the lunar surface. In particular, UVVIS/Clementine data revealed a photometric anomaly at the Apollo-15 landing site associated with the blowing of the lunar regolith by the lander engine. Anomalies were found in the ejection zones of several fresh craters.  相似文献   

12.
In this study we propose a regression model for the estimation of lunar elemental abundances from spectral features extracted from Clementine multispectral imagery in the visible and near-infrared domain. We extract a set of spectral features, including the continuum slope, the FWHM of the ferrous absorption trough near 1000 nm, and the wavelengths and relative depths of the absorption minima and inflection points present in the trough. As a “ground truth” for the elemental abundances we rely on the Lunar Prospector gamma ray spectrometer (LP GRS) data. With respect to the elemental abundances of the Apollo and Luna landing sites independently derived from returned samples, the best examined regression model is a second-order polynomial. The proposed regression-based approach allows an estimation of the elemental abundances of Ca, Al, Fe, Mg, and O at an accuracy of about 1 wt% and some tenths of a weight percent for Ti. We examine the influence of calibration of the Clementine UVVIS+NIR data and find that its effect on the results obtained with the regression approach is minor. Furthermore, we define a three-endmember model which allows the petrographic mapping of the lunar surface materials in terms of their Fe, Mg, and Al abundances. We examine the global distribution of Mg-rich rocks, the distribution of cryptomaria, and the occurrence of aluminous mare basalts in the Frigoris region. A possible regional compositional anomaly in northwestern Oceanus Procellarum is found, which corresponds to an extended area displaying spectral characteristics consistent with mare basalt containing significant amounts of olivine. On local scales, we examine in terms of our regression model the highland craters Proclus and Tycho, the compositionally anomalous central peaks of the craters Copernicus and Bullialdus, and the pyroclastic deposits on the floor of Alphonsus and on the northern rim of Petavius. As a general result, we show that the regression-based approach allows the detection of the main lunar terrain classes and rock types based on multispectral imagery in the visible and near-infrared domain.  相似文献   

13.
We conducted spectral analysis of central region of the Mare Moscoviense area on the far side of the Moon using the Hyperspectral Imager (HySI) data from the Chandrayaan-1 mission in an effort to identify and map the major lithological units present in the area. Various spectral band parameters, namely, band curvature, band tilt and band strength have been used for lithological discrimination based on the nature of the spectral profile. These band parameters essentially measure the shape, position and strength of the absorption feature near 1000 nm arising due to electronic transition of Fe2+ in crystallographic sites of major rock forming silicates. Spectral band parameters have been used for generating rock type composite image. Based on spectral studies and rock type composite image as obtained using band parameters, five major compositional units have been identified: highland basin soils, ancient mature mare, highland contaminated mare, buried unit with abundant low-Ca pyroxene (LCP), and youngest mare unit. In the present study, a multispectral approach in the form of spectral band parameters has been adopted for analysing the HySI hyperspectral data from Chandrayaan-1 mission. Present study clearly shows that the spectral band parameters obtained using selected HySI channels could efficiently be used to discriminate and delineate the major litho-units present across the central part of Mare Moscoviense and the same approach can thus be used for lithological mapping of other parts of lunar surface using HySI data.  相似文献   

14.
Age of geological units, surface mineralogical composition, volcanism, tectonics and cratering are major keys for unravelling the geodynamic and geological history of a planet. Thanks to the extensive exploration of the 1960s and 1970s and the compositional mapping of the 1990s missions (Galileo, Clementine and Luna Prospector), the Moon has a unique geological dataset among the extraterrestrial Solar System bodies. The recent and on-going missions, along with the future plans for lunar exploration, will together acquire an extraordinary amount of data. This should provide a solid basis to meet broad objectives like the constraints on the heterogeneity of Lunar composition and the presence of water deposits, the understanding of volcanic and tectonic evolution as well as more specific issues such as the genetic classification of volcanic domes, origin of the dark-halos craters, lava flow emplacement mechanisms, and the kinematics and deformational styles of tectonic structures. The Italian small mission MAGIA (Missione Altimetrica Gravimetrica geochImica lunAre) will be equipped with an integrated context camera and imaging spectrometer, a high resolution camera and a radar altimeter. The spatial and spectral resolution of these instruments will provide data products complementing past and ongoing Lunar mission data, particularly for the polar regions where a full resolution coverage is planned. A general review of some still unanswered questions on lunar surface composition, cold traps, volcanism, tectonics and cratering records is presented here in order to illustrate the potential contribution of MAGIA to these subjects.  相似文献   

15.
Abstract— Plans are underway for spacecraft missions to the planet Mercury beginning in the latter part of this decade (NASA's MESSENGER (MErcury, Surface, Space ENvironment, GEochemistry, Ranging) and ESA's BepiColombo). Mercury is an airless body whose surface is apparently very low in ferrous iron. Much of the mercurian surface material is expected to be optically mature, a state produced by the “space weathering” process from direct exposure to the space environment. If appropriate analog terrains can be identified on the Moon, then study of their reflectance spectra and composition will improve our understanding of space weathering of low‐Fe surfaces and aid in the interpretation of data returned from Mercury by the spacecraft. We have conducted a search for areas of the lunar surface that are optically mature and have very low ferrous iron content using Clementine ultraviolet‐visible (UV‐vis) image products. Several regions with these properties have been identified on the farside. These areas, representing mature pure anorthosites (>90% plagioclase feldspar), are of interest because only relatively immature pure anorthosites have previously been studied with Earth‐based spectrometry. A comparison of Mercury with the lunar analogs reveals similarities in spectral characteristics, and there are hints that the mercurian surface may be even lower in FeO content than the lunar pure anorthosites. We also investigate the potential for use of spectral features other than the commonly studied “1 μm” mafic mineral absorption band as tools for compositional assessment when spacecraft spectral measurements of Mercury become available. Most low‐Fe minerals plausibly present on Mercury lack absorption bands, but plagioclase possesses an iron impurity absorption at 1.25 μm. Detection of this diagnostic band may be possible in fresh crater deposits.  相似文献   

16.
The lunar rock and mineral characterization consortium (LRMCC) has conducted coordinated mineralogy/petrography/spectroscopy analyses of a suite of pristine lunar basalts. Four basalt slabs (two low‐Ti, two high‐Ti) and paired thin sections were analyzed. Thin sections were analyzed for mineralogy/petrography, while the slabs were used to prepare particulate separates of major mineral phases and bulk samples. Mineral separates and particulate bulk samples were crushed to controlled grain sizes and their reflectance spectra measured in the NASA RELAB at Brown University. The resulting data set provides an essential foundation for spectral mixing models, offers valuable endmember constraints for space weathering analyses, and represents critical new ground truth results for lunar science and exploration efforts.  相似文献   

17.
Abstract— Lunar meteorite Queen Alexandra Range 93069 is a clast-rich, glassy-matrix regolith breccia of ferroan, highly aluminous bulk composition. It is similar in composition to other feldspathic lunar meteorites but differs in having higher concentrations of siderophile elements and incompatible trace elements. Based on electron microprobe analyses of the fusion crust, glassy matrix, and clasts, and instrumental neutron activation analysis of breccia fragments, QUE 93069 is dominated by nonmare components of ferroan, noriticanorthosite bulk composition. Thin section QUE 93069,31 also contains a large, impact-melted, partially devitrified clast of magnesian, anorthositic-norite composition. The enrichment in Fe, Sc, and Cr and lower Mg/Fe ratio of lunar meteorites Yamato 791197 and Yamato 82192/3 compared to other feldspathic lunar meteorites can be attributed to a small proportion (5–10%) of low-Ti mare basalt. It is likely that the nonmare components of Yamato 82192/3 are similar to and occur in similar abundance to those of Yamato 86032, with which it is paired. There is a significant difference between the average FeO concentration of the lunar highlands surface as inferred from the feldspathic lunar meteorites (mean: ~5.0%; range: 4.3–6.1%) and a recent estimate based on data from the Clementine mission (3.6%).  相似文献   

18.
Clast 100 in regolith breccia 15295 could be a key to resolving the relationship(s) between mare basalts and lunar picritic glasses. The clast is basaltic, with texture, mineralogy, mineral compositions, and calculated bulk composition suggesting that it crystallized in a thick lava flow or shallow intrusive body from a very‐low‐titanium (VLT) basaltic magma. The estimated bulk composition of clast 15295,100 is primitive (i.e., magnesian) compared to those of known VLT basalts, and is very close to those of VLT picritic green glasses, especially the Apollo 14 A green glass. From these similarities, we infer that clast 15295,100 is a crystalline product of a picritic magma similar to the Apollo 14 A glass. Clementine and M3 remotely sensed data of the lunar surface were used to find areas that have chemical compositions consistent with those of clast 15295,100, not only near the Apollo 15 site, but in a broad region surrounding the site. Two regions are consistent with clast's 15295,100 compositional data. The larger region is in southern Mare Imbrium, and a smaller region is in the eastern half of Sinus Aestuum. These locations should be considered as candidates for future missions focusing on sample science.  相似文献   

19.
We use multispectral reflectance data from the lunar Clementine mission to investigate the impact ejecta deposits of simple craters in two separate lunar mare basalt regions, one in Oceanus Procellarum and one in Mare Serenitatis. Over 100 impact craters are studied, and for a number of these we observe differences between the TiO2 (and FeO) contents of their ejecta deposits and the lava flow units in which they are located. We demonstrate that, in the majority of cases, these differences cannot plausibly be attributed to uncorrected maturity effects. These observations, coupled with morphometric crater relationships that provide maximum crater excavation depths, allow the investigation of sub-surface lava flow stratigraphy. We provide estimated average thicknesses for a number of lava flow units in the two study regions, ranging from ∼80 m to ∼600 m. In the case of the Serenitatis study area, our results are consistent with the presence of sub-surface horizons inferred from recent radar sounding measurements from the JAXA Kaguya spacecraft. The average lava flow thicknesses we obtain are used to make estimates of the average flux of volcanic material in these regions. These are in broad agreement with previous studies, suggesting that the variation in mare basalt types we observe with depth is similar to the lateral variations identified at the surface.  相似文献   

20.
Abstract— High signal‐to‐noise near‐infrared spectrometer (NIS) spectra acquired during the low phase flyby of the near‐Earth asteroid rendezvous (NEAR) mission to 433 Eros are analyzed to determine mineral chemistry and proportions of mafic silicates across the asteroid's surface at 2.68 × 5.50 km spatial resolution. Spectral band parameters are derived, and compared with those of laboratory samples of known mineral composition, grain size distribution and terrestrial, meteoritic and lunar pyroxene spectral properties. The NIS derived band parameters are consistent with ordinary chondrite meteorites. We invoke the presence of a clinopyroxene component in the spectra, which is consistent with ordinary chondrite mineralogy and/or some degree of partial melting of ordinary chondritic material. Spectra measured across the surface of Eros can reveal small but real spectral variations. Most relative spectra are uniform to within 1–2%. Some areas suggest compositional variations of a few percent. Spectral slope variations of a few percent are seen indicating a non‐uniform distribution of materials affecting the slope parameter but with no resolved absorption bands. We find no correlation of slope with viewing geometry or compositional variation. The band parameter values do not consistently indicate a specific ordinary chondrite class but Eros is definitely undifferentiated with possible compositional variations of no more than 1–2%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号