首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Observations made by the ASPERA-3 experiment onboard the Mars Express spacecraft found within the martian magnetosphere beams of planetary ions. In the energy (E/q)-time spectrograms these beams are often displayed as dispersive-like, ascending or descending (whether the spacecraft moves away or approach the planet) structures. A linear dependence between energy gained by the beam ions and the altitude from the planet suggests their acceleration in the electric field. The values of the electric field evaluated from ion energization occur close to the typical values of the interplanetary motional electric field. This suggests an effective penetration of the solar wind electric field deep into the martian magnetosphere or generation of large fields within the magnetosphere. Two different classes of events are found. At the nominal solar wind conditions, a ‘penetration’ occurs near the terminator. At the extreme solar wind conditions, the boundary of the induced magnetosphere moves to a more dense upper atmosphere that leads to a strong scavenging of planetary ions from the dayside regions.  相似文献   

2.
The Analyzer of Space Plasma and Energetic Atoms (ASPERA) on-board the Mars Express spacecraft (MEX) measured penetrating solar wind plasma and escaping/accelerated ionospheric plasma at very low altitudes (250 km) in the dayside subsolar region. This implies a direct exposure of the martian topside atmosphere to solar wind plasma forcing leading to energization of ionospheric plasma. The ion and electron energization and the ion outflow from Mars is surprisingly similar to that over the magnetized Earth. Narrow “monoenergetic” cold ion beams, ion beams with broad energy distributions, sharply peaked electron energy spectra, and bidirectional streaming electrons are particle features also observed near Mars. Energized martian ionospheric ions (O+, O+2, CO+2, etc.) flow in essentially the same direction as the external sheath flow. This suggests that the planetary ion energization couples directly to processes in the magnetosheath/solar wind. On the other hand, the beam-like distribution of the energized plasma implies more indirect energization processes like those near the Earth, i.e., energization in a magnetized environment by waves and/or parallel (to B) electric fields. The general conditions for martian plasma energization are, however, different from those in the Earth's magnetosphere. Mars has a weak intrinsic magnetic field and solar wind plasma may therefore penetrate deep into the dense ionospheric plasma. Local crustal magnetization, discovered by Acuña et al. [Acuña, M.J., Connerey, J., Ness, N., Lin, R., Mitchell, D., Carlsson, C., McFadden, J., Anderson, K., Rème, H., Mazelle, C., Vignes, D., Wasilewski, P., Cloutier, P., 1999. Science 284, 790-793], provide some dayside shielding against the solar wind. On the other hand, multiple magnetic anomalies may also lead to “hot spots” facilitating ionospheric plasma energization. We discuss the ASPERA-3 findings of martian ionospheric ion energization and present evidences for two types of plasma energization processes responsible for the low- and mid-altitude plasma energization near Mars: magnetic field-aligned acceleration by parallel electric fields and plasma energization by low frequency waves.  相似文献   

3.
We present the first results from the ion mass analyzer IMA of the ASPERA-3 instrument on-board of Mars Express. More than 200 orbits for May 2004-September 2004 time interval have been selected for the statistical study of the distribution of the atmospheric origin ions in the planetary wake. This study shows that the martian magnetotail consists of two different ion regimes. Planetary origin ions of the first regime form the layer adjacent to the magnetic pile-up boundary. These ions are accelerated to energy greater than 2000 eV and exhibit a gradual decreasing of energy down to the planetary tail. The second plasma regime is observed in the planetary shadow. The heavy ions (considered as planetary ones) are accelerated to the energy of the solar wind protons. Obviously the acceleration mechanism is different for the different plasma regimes. Study of two plasma regimes in the frame referred to the interplanetary magnetic field (IMF) direction (we used MGS magnetometer data to obtain the IMF clock angle) clearly shows their spatial anisotropy. The monoenergetic plasma in the planetary shadow is observed only in the narrow angular sector around the positive direction of the interplanetary electric field.  相似文献   

4.
The Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) experiment flown on the Mars Express (MEX) spacecraft includes the Electron Spectrometer (ELS) as part of its complement. The ELS instrument measures the differential electron flux spectrum in a 128-level logarithmic energy sweep within a time period of 4 s. The orbital path of MEX traverses the martian sheath, cusps, and tail where ELS recorded periodic electron intensity oscillations. These oscillations comprised periodic variations of up to an order of magnitude (peak to valley) in energy flux, with the largest amplitudes in the tens to hundreds of eV range. The observed oscillations displayed periods ranging from minutes down to the instrument sweep resolution of 4 s. In the cases analyzed here, the frequency of the integrated electron energy flux typically peaked between 0.01 and 0.02 Hz. This frequency range is nearly the same as the typical O+ gyrofrequency in the magnetosheath, calculated using magnetometer data from Mars Global Surveyor. Due to the motion of the spacecraft, it is unclear if the wave structures observed were permanent standing waves or rather constituted waves propagating past the spacecraft.  相似文献   

5.
The asymmetry of fluxes of solar wind and planetary ions is studied by using the ASPERA-3 observations onboard the Mars Express spacecraft in February 2004 to March 2006. Due to the small scale of the Martian magnetosphere and its induced origin, the flow pattern near Mars is sensitive to the directions of the interplanetary magnetic and electric (-V×B) fields. Asymmetry of the magnetic field draping produces an asymmetry in plasma flows in the plane containing the IMF. The crustal magnetic fields on Mars also influence the flow pattern. Scavenging of planetary ions is less efficient in the regions of strong crustal magnetization and therefore the escape fluxes of planetary ions in the southern hemisphere are smaller. The results of the observations are compared to simulations based on a 3D hybrid model with several ion species.  相似文献   

6.
Recently aurora-type UV emissions were discovered on the nightside of Mars [Bertaux, J.-L., Leblanc, F., Witasse, O., et al., 2005. Discovery of an aurora on Mars. Nature 439, doi:10.1038/nature03603]. It was suggested that these emissions are produced by suprathermal electrons with energies of tens of eV, rather than by the electrons with spectra peaked above 100 eV [Leblanc, F., Witasse, O., Winningham J., et al., 2006. Origin of the martian aurora observed by spectroscopy for investigation of characteristics of the atmosphere of Mars (SPICAM) onboard Mars Express. J. Geophys. Res. 111, A09313, doi:10.1029/2006JA011763]. In this paper we present observations of fluxes of suprathermal electrons (Ee≈30-100 eV) on the Martian nightside by the ASPERA-3 experiment onboard the Mars Express spacecraft. Narrow spikes of suprathermal electrons are often observed in energy-time spectrograms of electron fluxes at altitudes between 250 and 600 km. These spikes are spatially organized and form narrow strips in regions with strong upward or downward crustal magnetic field. The values of electron fluxes in such events generally could explain the observed auroral UV emissions although a question of their origin (transport from the dayside or local precipitation) remains open.  相似文献   

7.
We present measurements with an Energetic Neutral Atom (ENA) imager on board Mars Express when the spacecraft moves into Mars eclipse. Solar wind ions charge exchange with the extended Mars exosphere to produce ENAs that can spread into the eclipse of Mars due to the ions' thermal spread. Our measurements show a lingering signal from the Sun direction for several minutes as the spacecraft moves into the eclipse. However, our ENA imager is also sensitive to UV photons and we compare the measurements to ENA simulations and a simplified model of UV scattering in the exosphere. Simulations and further comparisons with an electron spectrometer sensitive to photoelectrons generated when UV photons interact with the spacecraft suggest that what we are seeing in Mars' eclipse are ENAs from upstream of the bow shock produced in charge exchange with solar wind ions with a non-zero temperature. The measurements are a precursor to a new technique called ENA sounding to measure solar wind and planetary exosphere properties in the future.  相似文献   

8.
Energetic electron fluxes from more than two years of ASPERA-3 observations are organized in different coordinate systems for the investigation of asymmetries in the global dynamics of the Martian magnetosphere. A clear asymmetry is found in the distribution of high-flux events with respect to the solar wind convective electric field (Esw) direction. These events are frequently detected below the average magnetic pile-up boundary (MPB) location at the terminator region of the hemisphere to which the Esw points and extend toward the tail. A detailed investigation of the electron fluxes at the terminator region also reveals that the largest contribution to this Esw asymmetry comes from locations of moderate or strong crustal fields. These observations have implications about reconnection processes in the terminator and provide new insight on magnetic anomaly effects in the global dynamics of the Mars-solar wind interaction.  相似文献   

9.
Measurements of energetic neutral atoms (ENA) generated in the magnetosheath at Mars are reported. These ENAs are the result of charge exchange collisions between solar wind protons and neutral oxygen and hydrogen in the exosphere of Mars. The peak of the observed ENA flux is . For the case studied here, i.e., the passage of Mars Express through the martian magnetosheath around 20:15 UT on 3 May 2004, the measurements agree with an analytical model of the ENA production at the planet. It is possible to find parameter values in the model such that the observed peak in the ENA count rate during the spacecraft passage through the magnetosheath is reproduced.  相似文献   

10.
The Neutral Particle Detector (NPD), an Energetic Neutral Atom (ENA) sensor of the Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) on board Mars Express, detected intense fluxes of ENAs emitted from the subsolar region of Mars. The typical ENA fluxes are (4-7) × 105 cm−2 sr−1 s−1 in the energy range 0.3-3 keV. These ENAs are likely to be generated in the subsolar region of the martian exosphere. As the satellite moved away from Mars, the ENA flux decreased while the field of view of the NPD pointed toward the subsolar region. These decreases occurred very quickly with a time scale of a few tens of seconds in two thirds of the orbits. Such a behavior can be explained by the spacecraft crossing a spatially constrained ENA jet, i.e., a highly directional ENA emission from a compact region of the subsolar exosphere. This ENA jet is highly possible to be emitted conically from the subsolar region. Such directional ENAs can result from the anisotropic solar wind flow around the subsolar region, but this can not be explained in the frame of MHD models.  相似文献   

11.
We present measurements of the altitude and eastward velocity component of mesospheric clouds in 35 imaging sequences acquired by the Mars Odyssey (ODY) spacecraft’s Thermal Emission Imaging System visible imaging subsystem (THEMIS-VIS). We measure altitude by using the parallax drift of high-altitude features, and the velocity by exploiting the time delay in the THEMIS-VIS imaging sequence.We observe two distinct classes of mesospheric clouds: equatorial mesospheric clouds observed between 0° and 180° Ls; and northern mid-latitude clouds observed only in twilight in the 200–300° Ls period. The equatorial mesospheric clouds are quite rare in the THEMIS-VIS data set. We have detected them in only five imaging sequences, out of a total of 2048 multi-band equatorial imaging sequences. All five fall between 20° south and 0° latitude, and between 260° and 295° east longitude. The mid-latitude mesospheric clouds are apparently much more common; for these we find 30 examples out of 210 northern winter mid-latitude twilight imaging sequences. The observed mid-latitude clouds are found, with only one exception, in the Acidalia region, but this is quite likely an artifact of the pattern of THEMIS-VIS image targeting. Comparing our THEMIS-VIS images with daily global maps generated from Mars Orbiter Camera Wide Angle (MOC-WA) images, we find some evidence that some mid-latitude mesospheric cloud features correspond to cloud features commonly observed by MOC-WA. Comparing the velocity of our mesospheric clouds with a GCM, we find good agreement for the northern mid-latitude class, but also find that the GCM fails to match the strong easterly winds measured for the equatorial clouds.Applying a simple radiative transfer model to some of the equatorial mesospheric clouds, we find good model fits in two different imaging sequences. By using the observed radiance contrast between cloud and cloud-free regions at multiple visible-band wavelengths, these fits simultaneously constrain the optical depths and particles sizes of the clouds. The particle sizes are constrained primarily by the relative contrasts at the available wavelengths, and are found to be quite different in the two imaging sequences: reff = 0.1 μm and reff = 1.5 μm. The optical depths (constrained by the absolute contrasts) are substantial: 0.22 and 0.5, respectively. These optical depths imply a mass density that greatly exceeds the saturated mass density of water vapor at mesospheric temperatures, and so the aerosol particles are probably composed mainly of CO2 ice. Our simple radiative transfer model is not applicable to twilight, when the mid-latitude mesospheric clouds were observed, and so we leave the properties of these clouds as a question for further work.  相似文献   

12.
J.S. Halekas  D.A. Brain 《Icarus》2010,206(1):64-73
We present the results of the first systematic survey of current sheets encountered by Mars Global Surveyor in its ∼400 km mapping orbit. We utilize an automated procedure to identify over 10,000 current sheet crossings during the ∼8 year mapping mission. The majority of these lie on the nightside and in the polar regions, but we also observe over 1800 current sheets at solar zenith angle <60°. The distribution and orientation of current sheets and their dependence on solar wind drivers suggests that most magnetotail current sheets have a local induced magnetospheric origin caused by magnetic field draping. On the other hand, most current sheets observed on the day side likely result from solar wind discontinuities advected through the martian system. However, the clustering of low altitude dayside current sheet crossings around the perimeters of strongly magnetized crustal regions, and the smaller than expected rotations in the IMF draping direction, suggest that crustal magnetic fields may also play an indirect role in their formation. The apparent thicknesses of martian current sheets, and the characteristics of electrons observed in and around the current sheets, suggest one of two possibilities. Martian current sheets at low altitudes are either stationary, with thicknesses of a few hundred km and currents carried by low energy (<10 eV) electrons, or they move at tens of km/s, with thicknesses of a few thousand km and currents carried by ions.  相似文献   

13.
The Mars Global Surveyor Mars Orbiter Camera wide-angle cameras were used to obtain images of the north and south seasonal and residual polar caps between 1999 and 2003. Wide-angle red camera images were used in assembling mosaics of the north and south polar recessions and regression rates were measured and compared. There are small variations in the north polar recession between 2000 and 2002, especially between LS=7° and LS=50°, however there is no evidence for the plateau in the recession curves that has been observed in some prior years. The south polar recession changes very little from year to year, and the 2001 dust storm had little if any effect on the average cap recession that year. Albedo values of the geographic north pole were measured using wide-angle red and blue camera images, and the residual south polar cap configuration was compared between the three years observed by MOC. The albedo of the geographic north pole generally varies between 0.5 and 0.6 as measured from MOC wide-angle red camera images. There were only minor variations near the edges of the residual south polar cap between the three years examined.  相似文献   

14.
The Electron Spectrometer (ELS) instrument of the ASPERA-3 package on the Mars Express satellite has recorded photoelectron energy spectra up to apoapsis (∼10,000 km altitude). The characteristic photoelectron shape of the spectrum is sometimes seen well above the ionosphere in the evening sector across a wide range of near-equatorial latitudes. Two numerical models are used to analyze the characteristics of these high-altitude photoelectrons. The first is a global, multi-species MHD code that produces a 3-D representation of the magnetic field and bulk plasma parameters around Mars. It is used here to examine the possibility of magnetic connectivity between the high-altitude flanks of the martian ionosheath and the subsolar ionosphere. It is shown that some field lines in this region are draped interplanetary magnetic lines while others are open field lines (connected to both the IMF and the crustal magnetic field sources). The second model is a kinetic electron transport model that calculates the electron velocity space distribution along a selected, non-uniform, magnetic field line. It is used here to simulate the high-altitude ELS measurements. It is shown that the photoelectrons are essentially confined to the source cone, as governed by magnetic field inhomogeneity along the field line. Reasonable agreement is shown between the data and the model results, and a method is demonstrated for inferring properties of the local and photoelectron source region magnetic field from the ELS measurements. Specifically, the number of sectors in which photoelectrons are measured is a function of the magnetic field intensity ratio and the field's angle with respect to the detector plane. In addition, the sector of the photoelectron flux peak is a function of the magnetic field azimuthal angle in the detector plane.  相似文献   

15.
The Analyzer of Space Plasma and EneRgetic Atoms (ASPERA-3) on board Mars Express is designed to study the interaction between the solar wind and the atmosphere of Mars and to characterize the plasma and neutral gas environment in near-Mars space. Neutral Particle Detectors (NPD-1 and 2), which form part of the ASPERA-3 instrument suite, are Energetic Neutral Atom (ENA) detectors which use the time-of-flight (ToF) technique to resolve the energy of detected particles. In the present study, we perform a statistical analysis of NPD ToF data collected between 14 March 2004 and 17 June 2004 when Mars Express was located at the dayside of Mars looking toward the planet. After pre-processing and removal of UV contamination, the ToF spectra were fitted with simple analytical functions so as to derive a set of parameters. The behavior of these parameters, as a function of spacecraft position and attitude, is compared with a model, which describes ENA generation by charge exchange between shocked solar wind protons and extended Martian exosphere. The observations and the model agree well, indicating that the recorded signals are charge-exchanged shocked solar wind.  相似文献   

16.
Viking/MAWD experiment and more recent MGC/TES observations have provided to date the most detailed information about the annual atmospheric water cycle on Mars. Their data agree in major details but still reveal some disagreements. These disagreements turn out to be most significant in the perihelion season and especially during the major dust storms. We consider the potential influence of aerosol scattering on 1.38 μm water retrieval under various types of observation geometry. In order to obtain new retrievals of water vapor abundance from MAWD data, we apply radiative transfer calculations. The resulting seasonal and spatial distribution of water turns out to be more consistent with TES results, implying a remarkable stability of the martian seasonal water cycle. Mapping data corresponding to particular seasons reveals a distinct wave structure in the global distribution of the water column. We interpret it as a manifestation of a strong control over the water cycle on Mars from the atmospheric circulation.  相似文献   

17.
Recent observations suggest methane in the martian atmosphere is variable on short spatial and temporal scales. However, to explain the variability by loss reactions requires production rates much larger than expected. Here, we report results of laboratory studies of methane adsorption onto JSC-Mars-1, a martian soil simulant, and suggest that this process could explain the observations. Uptake coefficient (γ) values were measured as a function of temperature using a high-vacuum Knudsen cell able to simulate martian temperature and pressure conditions. Values of γ were measured from 115 to 135 K, and the data were extrapolated to higher temperatures with more relevance to Mars. Adsorptive uptake was found to increase at lower temperatures and larger methane partial pressures. Although only sub-monolayer methane surface coverage is likely to exist under martian conditions, a very large mineral surface area is available for adsorption as atmospheric methane can diffuse meters into the regolith. As a result, significant methane may be temporarily lost to the regolith on a seasonal time scale. As this weak adsorption is fully reversible, methane will be re-released into the atmosphere when surface and subsurface temperatures rise and so no net loss of methane occurs. Heterogeneous interaction of methane with martian soil grains is the only process proposed thus far which contains both rapid methane loss and rapid methane production mechanisms and is thus fully consistent with the reported variability of methane on Mars.  相似文献   

18.
The technique of electron reflectometry, a method for remote estimation of planetary magnetic fields, is expanded from its original use of mapping crustal magnetic fields at the Moon to achieving the same purpose at Mars, where the presence of a substantial atmosphere complicates matters considerably. The motion of solar wind electrons, incident on the martian atmosphere, is considered in detail, taking account of the following effects: the electrons' helical paths around the magnetic field lines to which they are bound, the magnetic mirror force they experience due to converging field lines in the vicinity of crustal magnetic anomalies, their acceleration/deceleration by electrostatic potentials, their interactions with thermal plasma, their drifts due to magnetic field line curvature and perpendicular electric fields and their scattering off, and loss of energy through a number of different processes to, atmospheric neutrals. A theoretical framework is thus developed for modeling electron pitch angle distributions expected when a spacecraft is on a magnetic field line which is connected to both the martian crust and the interplanetary magnetic field. This framework, along with measured pitch angle distributions from the Mars Global Surveyor (MGS) Magnetometer/Electron Reflectometer (MAG/ER) experiment, can be used to remotely measure crustal magnetic field magnitudes and atmospheric neutral densities at ∼180 km above the martian datum, as well as estimate average parallel electric fields between 200 and 400 km altitude. Detailed analysis and full results, concerning the crustal magnetic field and upper thermospheric density of Mars, are left to two companion papers.  相似文献   

19.
The neutral particle detector (NPD) on board Mars Express has observed energetic neutral atoms (ENAs) from a broad region on the dayside of the martian upper atmosphere. We show one such example for which the observation was conducted at an altitude of 570 km, just above the induced magnetosphere boundary (IMB). The time of flight spectra of these ENAs show that they had energies of 0.2-2 keV/amu, with an average energy of ∼1.1 keV/amu. Both the spatial distribution and the energy of these ENAs are consistent with the backscattered ENAs, produced by an ENA albedo process. This is the first observation of backscattered ENAs from the martian upper atmosphere. The origin of these ENAs is considered to be the solar wind ENAs that are scattered back by collision processes in the martian upper atmosphere. The particle flux and energy flux of the backscattered ENAs are and , respectively.  相似文献   

20.
The evolution of the Martian atmosphere and the potential existence of a past hydrosphere is a scientific issue of great interest in planetary research. Although the first missions to Mars had a focus on surface features and atmospheric properties, some of the missions (e.g., The Soviet Mars 2, 3 and 5) also carried instruments addressing the solar wind interaction with the Martian atmosphere and ionosphere and the potential existence of an intrinsic magnetic field on Mars. However, it took until 1989 before a spacecraft, Phobos-2, was able to carry out a more detailed investigation of the solar wind interaction with Mars. Phobos-2 gave valuable data on the Solar wind interaction with Mars during about 2 months of operations, leading to a better understanding of the solar wind impact on a weakly magnetized planet. However, Phobos-2 also raised a number of critical issues that has left science without adequate data since 1989.Investigations planned for Mars Express will cast new light on important aspects of the solar wind interaction with Mars. ASPERA-3 (Analyzer of Space Plasma and Energetic Atoms) on Mars Express will focus on the overall plasma outflow and monitor remotely the outflow and inflow of energetic neutral atoms produced by charge exchange processes. This report will discuss some of the unsolved issues about the solar wind interaction with Mars and how we plan to address these issues with Mars Express.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号