首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
The atmospheres of Jupiter and Saturn exhibit strong and stable zonal winds. How deep the winds penetrate unabated into each planet is unknown. Our investigation favors shallow winds. It consists of two parts. The first part makes use of an Ohmic constraint; Ohmic dissipation associated with the planet's magnetic field cannot exceed the planet's net luminosity. Application to Jupiter (J) and Saturn (S) shows that the observed zonal winds cannot penetrate below a depth at which the electrical conductivity is about six orders of magnitude smaller than its value at the molecular-metallic transition. Measured values of the electrical conductivity of molecular hydrogen yield radii of maximum penetration of 0.96RJ and 0.86RS, with uncertainties of a few percent of R. At these radii, the magnetic Reynolds number based on the zonal wind velocity and the scale height of the magnetic diffusivity is of order unity. These limits are insensitive to difficulties in modeling turbulent convection. They permit complete penetration along cylinders of the equatorial jets observed in the atmospheres of Jupiter and Saturn. The second part investigates how deep the observed zonal winds actually do penetrate. As it applies heuristic models of turbulent convection, its conclusions must be regarded as tentative. Truncation of the winds in the planet's convective envelope would involve breaking the Taylor-Proudman constraint on cylindrical flow. This would require a suitable nonpotential acceleration which none of the obvious candidates appears able to provide. Accelerations arising from entropy gradients, magnetic stresses, and Reynolds stresses appear to be much too weak. These considerations suggest that strong zonal winds are confined to shallow, stably stratified layers, with equatorial jets being the possible exception.  相似文献   

2.
Yuan Lian  Adam P. Showman 《Icarus》2008,194(2):597-615
Three-dimensional numerical simulations of the atmospheric flow on giant planets using the primitive equations show that shallow thermal forcing confined to pressures near the cloud tops can produce deep zonal winds from the tropopause all the way down to the bottom of the atmosphere. These deep winds can attain speeds comparable to the zonal jet speeds within the shallow, forced layer; they are pumped by Coriolis acceleration acting on a deep meridional circulation driven by the shallow-layer eddies. In the forced layer, the flow reaches an approximate steady state where east-west eddy accelerations balance Coriolis accelerations acting on the meridional flow. Under Jupiter-like conditions, our simulations produce 25 to 30 zonal jets, similar to the number of jets observed on Jupiter and Saturn. The simulated jet widths correspond to the Rhines scale; this suggests that, despite the three-dimensional nature of the dynamics, the baroclinic eddies energize a quasi-two-dimensional inverse cascade modified by the β effect (where β is the gradient of the Coriolis parameter). In agreement with Jupiter, the jets can violate the barotropic and Charney-Stern stability criteria, achieving curvatures 2u/∂y2 of the zonal wind u with northward distance y up to 2β. The simulations exhibit a tendency toward neutral stability with respect to Arnol'd's second stability theorem in the upper troposphere, as has been suggested for Jupiter, although deviations from neutrality exist. When the temperature varies strongly with latitude near the equator, our simulations can also reproduce the stable equatorial superrotation with wind speeds greater than . Diagnostics show that barotropic eddies at low latitudes drive the equatorial superrotation. The simulations also broadly explain the distribution of jet-pumping eddies observed on Jupiter and Saturn. While idealized, these simulations therefore capture many aspects of the cloud-level flows on Jupiter and Saturn.  相似文献   

3.
We apply an automated cloud feature tracking algorithm to estimate eddy momentum fluxes in Saturn's southern hemisphere from Cassini Imaging Science Subsystem near-infrared continuum image sequences. Voyager Saturn manually tracked images had suggested no conversion of eddy to mean flow kinetic energy, but this was based on a small sample of <1000 wind vectors. The automated procedure we use for the Cassini data produces an order of magnitude more usable wind vectors with relatively unbiased sampling. Automated tracking is successful in and around the westward jet latitudes on Saturn but not in the vicinity of most eastward jets, where the linearity and non-discrete nature of cloud features produces ambiguous results. For the regions we are able to track, we find peak eddy fluxes and a clear positive correlation between eddy momentum fluxes and meridional shear of the mean zonal wind, implying that eddies supply momentum to eastward jets and remove momentum from westward jets at a rate . The behavior we observe is similar to that seen on Jupiter, though with smaller eddy-mean kinetic energy conversion rates per unit mass of atmosphere (). We also use the appearance and rapid evolution of small bright features at continuum wavelengths, in combination with evidence from weak methane band images where possible, to diagnose the occurrence of moist convective storms on Saturn. Areal expansion rates imply updraft speeds of over the convective anvil cloud area. As on Jupiter, convection preferentially occurs in cyclonic shear regions on Saturn, but unlike Jupiter, convection is also observed in eastward jet regions. With one possible exception, the large eddy fluxes seen in the cyclonic shear latitudes do not seem to be associated with convective events.  相似文献   

4.
The origin of zonal jets on the jovian planets has long been a topic of scientific debate. In this paper we show that deep convection in a spherical shell can generate zonal flow comparable to that observed on Jupiter and Saturn, including a broad prograde equatorial jet and multiple alternating jets at higher latitudes. We present fully turbulent, 3D spherical numerical simulations of rapidly rotating convection with different spherical shell geometries. The resulting global flow fields tend to be segregated into three regions (north, equatorial, and south), bounded by the tangent cylinder that circumscribes the inner boundary equator. In all of our simulations a strong prograde equatorial jet forms outside the tangent cylinder, whereas multiple jets form in the northern and southern hemispheres, inside the tangent cylinder. The jet scaling of our numerical models and of Jupiter and Saturn is consistent with the theory of geostrophic turbulence, which we extend to include the effect of spherical shell geometry. Zonal flow in a spherical shell is distinguished from that in a full sphere or a shallow layer by the effect of the tangent cylinder, which marks a reversal in the sign of the planetary β-parameter and a jump in the Rhines length. This jump is manifest in the numerical simulations as a sharp equatorward increase in jet widths—a transition that is also observed on Jupiter and Saturn. The location of this transition gives an estimate of the depth of zonal flow, which seems to be consistent with current models of the jovian and saturnian interiors.  相似文献   

5.
Yuan Lian  Adam P. Showman 《Icarus》2010,207(1):373-393
Three-dimensional numerical simulations show that large-scale latent heating resulting from condensation of water vapor can produce multiple zonal jets similar to those on the gas giants (Jupiter and Saturn) and ice giants (Uranus and Neptune). For plausible water abundances (3-5 times solar on Jupiter/Saturn and 30 times solar on Uranus/Neptune), our simulations produce ∼20 zonal jets for Jupiter and Saturn and 3 zonal jets on Uranus and Neptune, similar to the number of jets observed on these planets. Moreover, these Jupiter/Saturn cases produce equatorial superrotation whereas the Uranus/Neptune cases produce equatorial subrotation, consistent with the observed equatorial-jet direction on these planets. Sensitivity tests show that water abundance, planetary rotation rate, and planetary radius are all controlling factors, with water playing the most important role; modest water abundances, large planetary radii, and fast rotation rates favor equatorial superrotation, whereas large water abundances favor equatorial subrotation regardless of the planetary radius and rotation rate. Given the larger radii, faster rotation rates, and probable lower water abundances of Jupiter and Saturn relative to Uranus and Neptune, our simulations therefore provide a possible mechanism for the existence of equatorial superrotation on Jupiter and Saturn and the lack of superrotation on Uranus and Neptune. Nevertheless, Saturn poses a possible difficulty, as our simulations were unable to explain the unusually high speed (∼) of that planet’s superrotating jet. The zonal jets in our simulations exhibit modest violations of the barotropic and Charney-Stern stability criteria. Overall, our simulations, while idealized, support the idea that latent heating plays an important role in generating the jets on the giant planets.  相似文献   

6.
We propose a dynamical mechanism that can plausibly explain the origin of the broad prograde equatorial winds observed on Jupiter and Saturn, and examine the feasibility of this mechanism using two- (2D) and three-dimensional (3D) numerical simulation models. The idea is based on combining a narrow Gaussian jet peaking at the equator, which is induced by the momentum transfer from an upward propagating equatorial Kelvin-wave, and a pair of off-equatorial jets due to a meridional-vertical circulation similar to the tropical Hadley circulation on Earth. We employ for this feasibility study a 2D mechanistic mean-flow model which incorporates the influence of prescribed waves, and a 3D general circulation model, based on the generalised primitive equations of atmospheric motion. We then confirm that the dynamical models of both kinds can successfully reproduce theoretically expected flows of a reasonable magnitude, and that when two mechanisms are combined, a broad super-rotating jet is produced with off-equatorial maxima in zonal velocity for both Jupiter and Saturn, approximately in accordance with observations.  相似文献   

7.
Large-scale zonal flows, as observed on the giant planets, can be driven by thermal convection in a rapidly rotating spherical shell. Most previous models of convectively-driven zonal flow generation have utilized stress-free mechanical boundary conditions (FBC) for both the inner and the outer surfaces of the convecting layer. Here, using 3D numerical models, we compare the FBC case to the case with a stress free outer boundary and a non-slip inner boundary, which we call the mixed case (MBC). We find significant differences in surface zonal flow profiles produced by the two cases. In low to moderate Rayleigh number FBC cases, the main equatorial jet is flanked by a strong, high-latitude retrograde jets in the northern and southern hemispheres. For the highest Rayleigh number FBC case, the equatorial jet is flanked by strong reversed jets as well as two additional large-scale alternating jets at higher latitudes. The MBC cases feature stronger equatorial jets but, much weaker, small-scale alternating zonal flows are found at higher latitudes. Our high Rayleigh number FBC results best compare with the zonal flow pattern observed on Jupiter, where the equatorial jet is flanked by strong retrograde jets as well as small-scale alternating jets at high latitude. In contrast, the MBC results compare better with the observed flow pattern on Saturn, which is characterized by a dominant prograde equatorial jet and a lack of strong high latitude retrograde flow. This may suggest that the mechanical coupling at the base of the jovian convection zone differs from that on Saturn.  相似文献   

8.
Previous studies have used models of three-dimensional (3D) Boussinesq convection in a rotating spherical shell to explain the zonal flows on the gas giants, Jupiter and Saturn. In this paper we demonstrate that this approach can also generate flow patterns similar to those observed on the ice giants, Uranus and Neptune. The equatorial jets of Uranus and Neptune are often assumed to result from baroclinic cloud layer processes and have been simulated with shallow layer models. Here we show that vigorous, 3D convection in a spherical shell can produce the retrograde (westward) equatorial flows that occur on the ice giants as well as the prograde (eastward) equatorial flows of the gas giants. In our models, the direction of the equatorial jet depends on the ratio of buoyancy to Coriolis forces in the system. In cases where Coriolis forces dominate buoyancy, cylindrical Reynolds stresses drive prograde equatorial jets. However, as buoyancy forces approach and exceed Coriolis forces, the cylindrical nature of the flow is lost and 3D mixing homogenizes the fluid's angular momentum; the equatorial jet reverses direction, while strong prograde jets form in the polar regions. Although the results suggest that conditions involving strong atmospheric mixing are responsible for generating the zonal flows on the ice giants, our present models require roughly 100 and 10 times the internal heat fluxes observed on Uranus and Neptune, respectively.  相似文献   

9.
Fast rotating giant planets such as Jupiter and Saturn possess alternate prograde and retrograde zonal winds which are stable over long periods of time. We consider a compressible model of convection in a spherical shell with rapid rotation, using the anelastic approximation, to explore the parameter range for which such zonal flows can be produced.We consider models with a large variation in density across the layer. Our models are based only on the molecular H/He region above the metallic hydrogen transition at about 2 Mbar, and we do not include the hydromagnetic effects which may be important if the electrical conductivity is significant. We find that the convective velocities are significantly higher in the low density regions of the shell, but the zonal flow is almost independent of the z-coordinate parallel to the rotation axis. We analyse how this behaviour is consistent with the Proudman-Taylor theorem.We find that deep prograde zonal flow near the equator is a very robust feature of our models. Prograde and retrograde jets alternating in latitude can occur inside the tangent cylinder in compressible as well as Boussinesq models, particularly at lower Prandtl numbers. However, the zonal jets inside the tangent cylinder are suppressed if a no-slip condition is imposed at the inner boundary. This suggests that deep high latitude jets may be suppressed if there is significant magnetic dissipation.Our compressible calculations include the viscous dissipation in the entropy equation, and we find this is comparable to, and in some cases exceeds, the total heat flux emerging from the surface. For numerical reasons, these simulations cannot reach the extremely low Ekman number found in giant planets, and they necessarily also have a much larger heat flux than planets. We therefore discuss how our results might scale down to give solutions with lower dissipation and lower heat flux.  相似文献   

10.
A simple model shows that acceleration of Jupiter and Saturn's multiple jets at altitudes confined near the top of the adiabatic region (e.g., at a few bars pressure) can produce jets that penetrate deeply into the molecular envelope. This result disproves the common assertion that jet acceleration near the outer margin can only produce zonal winds that are confined to these outer layers.  相似文献   

11.
Moist convective storms constitute a key aspect in the global energy budget of the atmospheres of the giant planets. Among them, Saturn is known to develop the largest scale convective storms in the Solar System, the Great White Spots (GWS) which occur rarely and have been detected once every 30 years approximately. On the average, Saturn seems to show much less convective storms than Jupiter with smaller size and reduced frequency and intensity. Here we present detailed simulations of the onset and development of storms at the Equator and mid-latitudes of Saturn. These are the regions where most of the recent convective activity of the planet has been observed. We use a 3D anelastic model with parameterized microphysics (Hueso and Sánchez-Lavega, 2001, Icarus 151, 257) studying the onset and evolution of water and ammonia moist convective storms up to sizes of a few hundred km. Water storms, while more difficult to initiate than in Jupiter, can be very energetic, arriving to the 150 mbar level and developing vertical velocities on the order of 150 m s−1. Ammonia storms develop easier but with a much smaller intensity unless very large abundances of ammonia (10 times solar) are present in Saturn's atmosphere. The Coriolis forces play a major role in the morphology and properties of water based storms.  相似文献   

12.
We have investigated the formation of jet scale meridional circulation cells on Jupiter in response to radiative and zonal momentum forcing. In the framework of semi-geostrophic theory, the meridional streamfunction is described by an elliptic equation with a source term dependent on the sum of the latitudinal derivative of the radiative forcing and the vertical derivative of the zonal momentum forcing. Using this equation with analytic terms similar to the assumed forcing on Jupiter, we obtained two set of atmospheric circulations cells, a stratospheric and a tropospheric one. A possible shift in the overturning circulation of the high and deep atmosphere can be induced by breaking the latitudinal alignment of radiative heating with the enforced belt and zones. A series of numerical simulations was conducted with the Jovian GCM OPUS, which was initiated with observational data obtained from the Cassini CIRS temperature cross-section and a corresponding geostrophic zonal wind field. Newtonian forcing of potential temperature as well as zonal momentum was applied respectively towards latitudinally and vertically uniform equilibrium fields. In accordance with the analytic illustrations two rows of jet scale circulation cells were created. The stratospheric circulation showed the distribution of upwelling over zones and downwelling over belts, consistent with cloud observations. The tropospheric cells featured a partial reversal of the downward vertical velocity over the belts and a considerable reduction of the upward movement over the zones in the domain, consistent with recent detections of high water clouds and lightning in belts. We also used the modeled new forcing fields as source terms for the semi-geostrophic Poisson equation to attribute the origin of the modeled secondary circulation. In this analysis, the stratospheric circulation cells observed in the model are primarily generated in response to radiative forcing, while momentum forcing induces the shifted configurations in the deep atmosphere.  相似文献   

13.
Peter J Gierasch 《Icarus》2004,167(1):212-219
The linear stability of a zonal jet that decays with depth is investigated under the assumption that the thermal stratification is very small. A westerly cosine jet is found to be more stable than it is in a thin fluid shell with two-dimensional flow. This is in agreement with observations of Jupiter and Saturn, where jet curvature exceeds the barotropic stability criterion. This result constitutes an alternative hypothesis to that of Ingersoll and Pollard [Icarus 52 (1982) 62], who showed that deep jets extending through the interior are also more stable than thin shell jets. The flow regime assumed in the present work requires that a small stratification can exist and persist even in the presence of horizontal temperature gradients. Further work will be needed to test whether this is realistic.  相似文献   

14.
We combine high-resolution observations of the dynamical behavior of small vortices (diameters ?5000 km) located at latitude 60°N on Jupiter with forward modeling, using the EPIC atmospheric model, to address two open questions: the dependence of the zonal winds with depth, and the strength of vortices that are too small to apply cloud tracking to their internal structure. The observed drift rates of the vortices can only be reproduced in the model when the zonal winds increase slightly with depth below the cloud tops, with a vertical shear that is less than was measured at 7°N at the southern rim of a 5-μm hotspot by the Galileo Probe Doppler Wind Experiment (DWE). This supports the idea that Jupiter's vertical shear may vary significantly with latitude. Our simulations suggest that the morphology of the mergers between vortices mainly depends on their maximum tangential velocities, the best results occurring when the tangential velocity is close to the velocity difference of the alternating jets constraining the zone in which the vortices are embedded. We use this correlation, together with the high-resolution data available for the White Ovals, to derive an empirical relationship between the maximum tangential velocity of a jovian vortex and its size, normalized by the strength and size of the encompassing shear zone. The Great Red Spot stands out as a significant anomaly to this relationship, but interestingly it is becoming less so with time.  相似文献   

15.
W.B. Hubbard 《Icarus》1982,52(3):509-515
It is assumed that observed zonal currents in the atmospheres of Jupiter and Saturn correspond to a state of permanent rotation, and that the angular velocity is constant on cylindrical surfaces parallel to the rotation axis. The equation of hydrostatic equilibrium for a rotating planet is solved under these restrictive assumptions, and the effect of the hypothesized rotation state on the planet's gravity harmonics and external shape is investigated. Spacecraft data on zonal currents are used to derive nearly model-independent corrections to the first four zonal gravity harmonic coefficients, which can be used to correct observed gravity harmonics to values appropriate for solid-body rotation. If the assumed rotation state is applicable, then zonal currents lead to measurable topography of isopycnic surfaces with respect to the reference fihure defined by the magnetospheric rotation period and the gravity harmonics. The amplitude of the topography is on the order of 5 km for Jupiter and 60 km for Saturn.  相似文献   

16.
For a variety of reasons, Jupiter's polar areas are probably the less observed regions of the planet. To study the dynamics and cloud vertical structure in the polar regions of the planet (latitudes 50° to 80° in both hemispheres) we have used images of Jupiter obtained from the ultraviolet to near infrared (258 to 939 nm) by the Cassini Imagining Science Subsystem (ISS) in December 2000. The temporal coverage was complemented with archived images from the Hubble Space Telescope (1993-2006) in a similar spectral range. The zonal wind velocities have been measured at three Cassini ISS wavelengths (CB2, MT3 and UV1, corresponding to 750, 890 and 258 nm) sounding different altitude levels. The three eastward jets detected in CB2 images (lower cloud) go to zero velocity when measured in the UV1 filter (upper haze). A radiative transfer analysis has been performed to characterize the vertical structure of cloud and hazes distribution at the poles. We also present a characterization (phase speed, amplitude and zonal wavenumber) of the previously detected circumpolar waves at 67° N and S at 890 nm and at about 50° N and −57° S at 258 nm that are a permanent phenomenon in Jupiter with some variability in its structure during the analyzed period. From the ensemble of data analyzed we propose the waves are Rossby waves whose dynamic behavior constrains plausible values for their meridional and vertical wavenumbers. This work demonstrates the long-term nature of Jupiter's polar waves, providing a dynamical and vertical characterization which supports a detailed analysis of these phenomena in terms of a Rossby wave model.  相似文献   

17.
Using the sequence of 70-day continuum-band (751 nm) images from the Cassini Imaging Science System (ISS), we record over 500 compact oval spots and study their relation to the large-scale motions. The ∼100 spots whose vorticity could be measured—the large spots in most cases—were all anticyclonic. We exclude cyclonic features (chaotic regions) because they do not have a compact oval shape, but we do record their interactions with spots. We distinguish probable convective storms from other spots because they appear suddenly, grow rapidly, and are much brighter than their surroundings. The distribution of lifetimes for spots that appeared and disappeared during the 70-day period follows a decaying exponential with time constant (mean lifetime) of 3.5 days for probable convective storms and 16.8 days for all other spots. Extrapolating the exponential beyond 70 days seriously underestimates the number of spots that existed for the entire 70-day period. This and other evidences (size, shape, distribution in latitude) suggest that these long-lived spots with lifetime larger than 70 days are from a separate population. The zonal wind profile obtained manually by tracking individual features (this study) agrees with that obtained automatically by correlating brightness variations in narrow latitude bands (Porco et al., 2003). Some westward jets have developed more curvature and some have developed less curvature since Voyager times, but the number of westward jets that violate the barotropic stability criterion is about the same. In the northern hemisphere the number of spots is greatest at the latitudes of the westward jets, which are the most unstable regions according to the barotropic stability criterion. During the 70-day observation period the Great Red Spot (GRS) absorbed nine westward-moving spots that originated in the South Equatorial Belt (SEB), where most of the probable convective storms originate. Although the probable convective storms do not directly transform themselves into westward-moving spots, their common origin in the SEB suggests that moist convection and the westward jet compose a system that has maintained the GRS over its long lifetime.  相似文献   

18.
Chihiro Tao  Sarah V. Badman 《Icarus》2011,213(2):581-592
Planetary aurora display the dynamic behavior of the plasma gas surrounding a planet. The outer planetary aurora are most often observed in the ultraviolet (UV) and the infrared (IR) wavelengths. How the emissions in these different wavelengths are connected with the background physical conditions are not yet well understood. Here we investigate the sensitivity of UV and IR emissions to the incident precipitating auroral electrons and the background atmospheric temperature, and compare the results obtained for Jupiter and Saturn. We develop a model which estimates UV and IR emission rates accounting for UV absorption by hydrocarbons, ion chemistry, and non-LTE effects. Parameterization equations are applied to estimate the ionization and excitation profiles in the H2 atmosphere caused by auroral electron precipitation. The dependences of UV and IR emissions on electron flux are found to be similar at Jupiter and Saturn. However, the dependences of the emissions on electron energy are different at the two planets, especially for low energy (<10 keV) electrons; the UV and IR emissions both decrease with decreasing electron energy, but this effect in the IR is less at Saturn than at Jupiter. The temperature sensitivity of the IR emission is also greater at Saturn than at Jupiter. These dependences are interpreted as results of non-LTE effects on the atmospheric temperature and density profiles. The different dependences of the UV and IR emissions on temperature and electron energy at Saturn may explain the different appearance of polar emissions observed at UV and IR wavelengths, and the differences from those observed at Jupiter. These results lead to the prediction that the differences between the IR and UV aurora at Saturn may be more significant than those at Jupiter. We consider in particular the occurrence of bright polar infrared emissions at Saturn and quantitatively estimate the conditions for such IR-only emissions to appear.  相似文献   

19.
A simple jovian cloud scheme has been developed for the Oxford Planetary Unified model System (OPUS). NH3-ice, NH4SH-solid, H2O-ice and H2O-liquid clouds have been modeled in Southern hemisphere limited area simulations of Jupiter. We found that either three or four of the condensates existed in the model. For a deep atmospheric water abundance close to solar composition, an NH3-ice deck above 0.7 bar, an NH4SH-solid deck above 2.5 bar and a H2O-liquid deck with a base at about 7.5 bar and frozen cloud tops formed. If a depleted deep water abundance is assumed, however, a very compact cloud structure develops, where an H2O-ice cloud forms by direct sublimation above 3 bar. The condensates constitute good tracers of atmospheric motion, and we have confirmed that zonal velocities determined from manual feature tracking in the modeled cloud layers agree reasonably well with the modeled zonal velocities. Dense and elevated clouds form over latitudes with strong atmospheric upwelling and depleted clouds exist over areas with strong downwelling. In the NH3-ice deck this leads to elevated cloud bands over the zones in the domain and thin clouds over the belts, which is consistent with the observationally deduced distribution. Due to changes in the vertical velocity pattern in the deeper atmosphere, the NH4SH-solid and water cloud decks are more uniform. This modeled cloud structure thus includes the possibility of more frequent water cloud observations in belts, as this deeper deck could be more easily detected under areas with thin NH3-ice clouds. Large scale vortices appeared spontaneously in the model and were characterized by elevated NH3-ice clouds, as expected from observations. These eddies leave the most discernible imprint on the lighter condensate particles of the uppermost layer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号