共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to advance our understanding of the long-term stability of subsurface ice, the diurnal martian water cycle, and implications for liquid water, we determined diffusion coefficients and adsorption kinetics for the water vapor produced by the sublimation of ice buried beneath various layers of fine-grained (<63, 63-125, and 125-250 μm) basaltic powder under simulated martian conditions. Sublimation rates at shallower depths, <10 mm, were determined to be affected by mass transfer through the atmosphere in addition to the basalt layer. For greater depths, the measured diffusion coefficients for water vapor moving through basalt grains were 1.56±0.53×10−4, 2.05±0.82×10−4, and for the <63, 63-125, and 125-250 μm basaltic layers, respectively. Through the Brunauer, Emmett and Teller (BET) isotherm, which assumes multiple molecular layers of adsorbed water, we determined the adsorption constants of 52.6±8.3 at 270 K for <63 μm, 39.0±6.4 at 267 K for 63-125 μm, and 54.3±9.3 at 266 K for 125-250 μm, resulting in surface areas of 2.6±0.1×104, 1.7±0.3×104, , respectively. These results suggest that while diffusion is too rapid to explain the purported diurnal cycle in water content of the atmosphere, adsorption is efficient and rapid, and does provide an effective mechanism to explain such a cycle. The present diffusion data suggest that very thin, <50 pr μm, shallow, 10 mm, ice deposits would last for >10 h at ∼224 K, just above the freezing point of saturated CaCl2. Temperatures can remain above ∼224 K over most of the planet, which means that water, even as saturated brine, will sublimate before the freezing point is reached and liquid could be formed. On the other hand, 1 m ice layers below 1 m of fine-grained basaltic regolith at 235 K and 10 Pa of atmospheric water could last 600 to 1300 years. At deeper depths and lower temperatures, ice could last since the last major obliquity change 400,000 years ago. 相似文献
2.
We use Viking and new MGS and Odyssey data to characterize the lobate deposits superimposed on aureole deposits along the west and northwest flanks of Olympus Mons, Mars. These features have previously been interpreted variously as landslide, pyroclastic, lava flow or glacial features on the basis of Viking images. The advent of multiple high-resolution image and topography data sets from recent spacecraft missions allow us to revisit these features and assess their origins. On the basis of these new data, we interpret these features as glacial deposits and the remnants of cold-based debris-covered glaciers that underwent multiple episodes of advance and retreat, occasionally interacting with extrusive volcanism from higher on the slopes of Olympus Mons. We subdivide the deposits into fifteen distinctive lobes. Typical lobes begin at a theater-like alcove in the escarpment at the base of Olympus Mons, interpreted to be former ice-accumulation zones, and extend outward as a tongue-shaped or fan-shaped deposit. The surface of a typical lobe contains (moving outward from the basal escarpment): a chaotic facies of disorganized hillocks, interpreted as sublimation till in the accumulation zone; arcuate-ridged facies characterized by regular, subparallel ridges and interpreted as the ridges of surface debris formed by the flow of underlying ice; and marginal ridges interpreted as local terminal moraines. Several lobes also contain a hummocky facies toward their margins that is interpreted as a distinctive type of sublimation till shaped by structural dislocations and preferential loss of ice. Blocky units are found extending from the escarpment onto several lobes; these units are interpreted as evidence of lava-ice interaction and imply that ice was present at a time of eruptive volcanic activity higher on the slopes of Olympus Mons. Other than minor channel-like features in association with lava-ice interactions, we find no evidence for the flow of liquid water in association with these lobate features that might suggest: (1) near-surface groundwater as a source for ice in the alcoves in the lobe source region at the base of the scarp, or (2) basal melting and drainage emanating from the lobes that might indicate wet-based glacial conditions. Instead, the array of features is consistent with cold-based glacial processes. The glacial interpretations outlined here are consistent with recent geological evidence for low-latitude ice-rich features at similar positions on the Tharsis Montes as well as with orbital dynamic and climate models indicating extensive snow and ice accumulation associated with episodes of increased obliquity during the Late Amazonian period of the history of Mars. 相似文献
3.
During the past 4 Mars years, Mars Orbiter Camera imaging capabilities have been used to document occurrence of seasonal patches of frost at latitudes as low as 33° S, and even 24° S. Monitoring reveals bright patches on pole-facing slopes; these appear in early southern winter and disappear in mid winter. The frost forms annually. Thermal Emission Spectrometer and daytime Thermal Emission Imaging System observations show surface temperatures on and near pole facing slopes reach the condensation temperature of CO2, indicating the patches consist of carbon dioxide rather than water frost. For several months, temperatures on pole-facing crater walls are so low that even carbon dioxide condenses on them, although the slopes are illuminated by the Sun every day. Thermal model calculations show slopes accumulate a several centimeter thick layer of CO2 frost. The frost becomes visible only months after it has begun to form, and has an orientational preference which is due to illumination bias at the time of observation. H2O condenses at higher temperatures and water frost must therefore also be present. Potential opportunities to observe seasonal water frost at low latitudes are also described. 相似文献
4.
5.
M.L. Litvak I.G. Mitrofanov A.B. Sanin W.V. Boynton D. Hamara R.S. Saunders 《Icarus》2006,180(1):23-37
In this paper, we have analyzed neutron spectroscopy data gathered by the High Energy Neutron Detector (HEND) instrument onboard Mars Odyssey for comparison of polar regions. It is known that observation of the neutron albedo of Mars provides important information about the distribution of water-ice in subsurface layers and about peculiarities of the CO2 seasonal cycle. It was found that there are large water-rich permafrost areas with contents of up to ∼50% water by mass fraction at both the north and south Mars polar regions. The water-ice layers at high northern latitudes are placed close to the surface, but in the south they are covered by a dry and relatively thick (10-20 cm) layer of soil. Analysis of temporal variations of neutron flux between summer and winter seasons allowed the estimation of the masses of the CO2 deposits which seasonally condense at the polar regions. The total mass of the southern seasonal deposition was estimated as 6.3×1015 kg, which is larger than the total mass of the seasonal deposition at the north by 40-50%. These results are in good agreement with predictions from the NASA Ames Research Center General Circulation Model (GCM). But, the dynamics of the condensation and sublimation processes are not quite as consistent with these models: the peak accumulation of the condensed mass of CO2 occurred 10-15 degrees of Ls later than is predicted by the GCM. 相似文献
6.
Following the work of Kieffer and Titus (2001, Icarus 154, 162-180), we present results of thermal IR observations of Korolev crater, located at ∼73° latitude in the martian northern polar region. Similar to techniques employed by Titus et al. (2003, Science 299, 1048-1050), we use infrared images from the Thermal Emission Imaging System (THEMIS) aboard Mars Odyssey to identify several regions within the crater basin with distinct thermal properties that correlate with topography. The THEMIS results show these regions exhibit temperature variations, spatially within the crater and throughout the martian year. In addition to the variations identified in the THEMIS observations, Mars Global Surveyor Thermal Emission Spectrometer (TES) observations show differences in albedo and temperature of these regions on both daily and seasonal cycles. Modeling annual temperature variations of the surface, we use TES observations to examine the thermal properties of these regions. This analysis reveals the crater interior deposits are likely thick layers (several meters) of high thermal inertia material (water ice, or extremely ice-rich regolith). Spatial variations of the physical properties of these regions are likely due to topography and possibly variations in the subsurface material itself. The nature of these deposits may help constrain polar processes, as well as provide context for the polar lander mission, Phoenix. 相似文献
7.
Downward-looking spectra of the martian surface from the Miniature Thermal Emission spectrometer (Mini-TES), onboard each of the two Mars Exploration Rovers, are modeled in order to retrieve surface and near-surface atmospheric temperatures. By fitting the observed radiance in the vicinity of the 15-μm CO2 absorption feature, the surface temperature and the near-surface atmospheric temperature, approximately 1.1 m above the surface, are determined. The temperatures from the first 180 sols (martian days) of each surface mission are used to characterize the diurnal dependence of temperatures. The near-surface atmospheric temperatures are consistently 20 K cooler than the surface temperatures in the warmest part of each sol, which is 1300-1400 LTST (local true solar time) depending on the location. Seasonal cooling trends are seen in the data by displaying the temperatures as a function of sol. Long ground stares, 8.5 min in duration, show as much as 8 K fluctuation in the near-surface atmospheric temperatures during the early afternoon hours when the near-surface atmosphere is unstable. 相似文献
8.
The Mars Global Surveyor Mars Orbiter Camera wide-angle cameras were used to obtain images of the north and south seasonal and residual polar caps between 1999 and 2003. Wide-angle red camera images were used in assembling mosaics of the north and south polar recessions and regression rates were measured and compared. There are small variations in the north polar recession between 2000 and 2002, especially between LS=7° and LS=50°, however there is no evidence for the plateau in the recession curves that has been observed in some prior years. The south polar recession changes very little from year to year, and the 2001 dust storm had little if any effect on the average cap recession that year. Albedo values of the geographic north pole were measured using wide-angle red and blue camera images, and the residual south polar cap configuration was compared between the three years observed by MOC. The albedo of the geographic north pole generally varies between 0.5 and 0.6 as measured from MOC wide-angle red camera images. There were only minor variations near the edges of the residual south polar cap between the three years examined. 相似文献
9.
Bruce A. Cantor 《Icarus》2007,186(1):60-96
From 15 September 1997 through 21 January 2006, only a single planet-encircling martian dust storm was observed by MGS-MOC. The onset of the storm occurred on 26 June 2001 (Ls=184.7°), earliest recorded to date. It was initiated in the southern mid-to-low latitudes by a series of local dust storm pulses that developed along the seasonal cap edge in Malea and in Hellas basin (Ls=176.2°-184.4°). The initial expansion of the storm, though asymmetric, was very rapid in all directions (3-32 m s−1). The main direction of propagation, however, was to the east, with the storm becoming planet encircling in the southern hemisphere on Ls=192.3°. Several distinct centers of active dust lifting were associated with the storm, with the longest persisting for 86 sols (Syria-Claritas). These regional storms helped generate and sustain a dust cloud (“haze”), which reached an altitude of about 60 km and a peak opacity of τdust∼5.0. By Ls=197.0°, the cloud had encircled the entire planet between 59.0° S and 60.0° N, obscuring all but the largest volcanoes. The decay phase began around Ls∼200.4° with atmospheric dust concentrations returning to nominal seasonal low-levels at Ls∼304.0°. Exponential decay time constants ranged from 30-117 sols. The storm caused substantial regional albedo changes (darkening and brightening) as a result of the redistribution (removal and deposition) of a thin veneer of surface dust at least 0.1-11.1 μm thick. It also caused changes in meteorological phenomena (i.e., dust storms, dust devils, clouds, recession of the polar caps, and possibly surface temperatures) that persisted for just a few weeks to more than a single Mars year. The redistribution of dust by large annual regional storms might help explain the long period (∼30 years) between the largest planet-encircling dust storms events. 相似文献
10.
Gullies are extremely young erosional/depositional systems on Mars that have been carved by an agent that was likely to have been comprised in part by liquid water [Malin, M.C., Edgett, K.S., 2000. Evidence for recent groundwater seepage and surface runoff on Mars. Science 288, 2330-2335; McEwen, A.S. et al., 2007. A closer look at water-related geologic activity on Mars. Science 317, 1706-1709]. The strong latitude and orientation dependencies that have been documented for gullies require (1) a volatile near the surface, and (2) that insolation is an important factor for forming gullies. These constraints have led to two categories of interpretations for the source of the volatiles: (1) liquid water at depth beneath the melting isotherm that erupts suddenly (“groundwater”), and (2) ice at the surface or within the uppermost layer of soil that melts during optimal insolation conditions (“surface/near-surface melting”). In this contribution we synthesize global, hemispheric, regional and local studies of gullies across Mars and outline the criteria that must be met by any successful explanation for the formation of gullies. We further document trends in both hemispheres that emphasize the importance of top-down melting of recent ice-rich deposits and the cold-trapping of atmospherically-derived H2O frost/snow as important components in the formation of gullies. This provides context for the incorporation of high-resolution multi-spectral and hyper-spectral data from the Mars Reconnaissance Orbiter that show that (1) cold-trapping of seasonal H2O frost occurs at the alcove/channel-level on contemporary Mars; (2) gullies are episodically active systems; (3) gullies preferentially form in the presence of deposits plausibly interpreted as remnants of the Late Amazonian emplacement of ice-rich material; and (4) gully channels frequently emanate from the crest of alcoves instead of the base, showing that alcove generation is not necessarily a product of undermining and collapse at these locations, a prediction of the groundwater model. We interpret these various lines of evidence to mean that the majority of gullies on Mars are explained by the episodic melting of atmospherically emplaced snow/ice under spin-axis/orbital conditions characteristic of the last several Myr. 相似文献
11.
The evolution and dynamics of the north-polar cap (residual-ice-cap/layered-deposits complex) of Mars is simulated with a thermomechanical ice-sheet model. We consider a scenario with ice-free initial conditions at 5 Ma before present due to the large obliquities which prevailed prior to this time. The north-polar cap is then built up to its present shape, driven by a parameterized climate forcing (surface temperature, surface mass balance) based on the obliquity and eccentricity history. The effects of different ice rheologies and different dust contents are investigated. It is found that the build-up scenarios require an accumulation rate of approximately 0.15-0.2 mm a−1 at present. The topography evolution is essentially independent of the ice dynamics due to the slow ice flow. Owing to the uncertainties associated with the ice rheology and the dust content, flow velocities can only be predicted within a range of two orders of magnitude. Likely present values are of the order of 0.1-1 mm a−1, and a strong variation over the climatic cycles is found. For all cases, computed basal temperatures are far below pressure melting. 相似文献
12.
We present a new high-resolution map of thermal inertia derived from observations of planetary brightness temperature by the Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) obtained during the entire MGS primary mapping mission. Complete seasonal coverage provides a nearly global view of Mars, including the polar regions, at a spatial resolution of approximately 3 km. Our map of nighttime thermal-bolometer-based thermal inertia covers approximately 60% of the surface between 80° S and 80° N latitudes. We confirm the global pattern of high and low thermal inertia seen in lower resolution mapping efforts and provide greater detail concerning a third surface unit with intermediate values of both thermal inertia and albedo first identified by Mellon et al. 2000, Icarus 148, 437-455. Several smaller regional units with distinct characteristics are observed. Most notably, a unit of low thermal inertia () and low-to-intermediate albedo (0.09-0.22) dominates the region polewards of 65° S. We consider possible causes for these characteristics and conclude that a low-density mantle formed by desiccation of a previously ice-rich near-surface layer is the most likely explanation for the observed thermophysical properties. Global comparison of thermal inertia and elevation shows that high and low thermal inertia values can be found over a broad range of elevation, with only low values (30-) occurring at the highest elevations and the highest values occurring only at lower elevations. However, the lowest values () are found only at lower elevations, implying that the distribution of low thermal inertia material is not solely controlled by atmospheric pressure and the trapping of fines at high elevations. A new estimate of thermal inertia for the Viking and Pathfinder landing sites helps establish an important link between surface characteristics observed in situ and those derived from remote-sensing data. 相似文献
13.
Three decades of slope streak activity on Mars 总被引:1,自引:0,他引:1
Slope streaks are surficial mass movements that are abundant in the dust-covered regions of Mars. Targeting of slope streaks seen in Viking images with the Mars Orbiter Camera provides observations of slope streak dust activity over two to three decades. In all study areas, new and persisting dark slope streaks are observed. Slope streaks disappeared in one area, with persisting streaks nearby. New slope streaks are found to be systematically darker than persisting streaks, which indicates gradual fading. Far more slope streaks formed at the study sites than have faded from visibility. The rate of formation at the study sites was 0.03 new slope streaks per existing streak per Mars year. Bright slope streaks do not presently form in sudden events as dark slope streaks do. Instead, bright streaks might form from old dark slope streaks, perhaps transitioning through a partially faded stage. 相似文献
14.
Previous simulations of martian global dust storms with a simple low-order model showed the desired interannual variability of storms if one of the model parameters—the threshold wind speed for starting saltation and lifting dust from the surface—was finely tuned. In this paper we show that the fine-tuning of this parameter could be the result of negative feedback in which processes associated with global dust storms raise the threshold and small-scale processes like dust devils, which are active in years between the storms, lower the threshold. 相似文献
15.
Franck Montmessin Jean-Loup Bertaux Oleg Korablev François Forget Didier Fussen Aurélie Rébérac 《Icarus》2006,183(2):403-410
The formation of CO2 ice clouds in the upper atmosphere of Mars has been suggested in the past on the basis of a few temperature profiles exhibiting portions colder than CO2 frost point. However, the corresponding clouds were never observed. In this paper, we discuss the detection of the highest clouds ever observed on Mars by the SPICAM ultraviolet spectrometer on board Mars Express spacecraft. Analyzing stellar occultations, we detected several mesospheric detached layers at about 100 km in the southern winter subtropical latitudes, and found that clouds formed where simultaneous temperature measurements indicated that CO2 was highly supersaturated and probably condensing. Further analysis of the spectra reveals a cloud opacity in the subvisible range and ice crystals smaller than 100 nm in radius. These layers are therefore similar in nature as the noctilucent clouds which appear on Earth in the polar mesosphere. We interpret these phenomena as CO2 ice clouds forming inside supersaturated pockets of air created by upward propagating thermal waves. This detection of clouds in such an ultrararefied and supercold atmosphere raises important questions about the martian middle-atmosphere dynamics and microphysics. In particular, the presence of condensates at such high altitudes begs the question of the origin of the condensation nuclei. 相似文献
16.
Luca Maltagliati Dmitry V. Titov Thérèse Encrenaz Francois Forget Horst U. Keller Jean-Pierre Bibring 《Icarus》2008,194(1):53-64
The OMEGA imaging spectrometer onboard the Mars Express spacecraft is particularly well suited to study in detail specific regions of Mars, thanks to its high spatial resolution and its high signal-to-noise ratio. We investigate the behavior of atmospheric water vapor over the four big volcanoes located on the Tharsis plateau (Olympus, Ascraeus, Pavonis and Arsia Mons) using the 2.6 μm band, which is the strongest and most sensitive H2O band in the OMEGA spectral range. Our data sample covers the end of MY26 and the whole MY27, with gaps only in the late northern spring and in northern autumn. The most striking result of our retrievals is the increase of water vapor mixing ratio from the valley to the summit of volcanoes. Corresponding column density is often almost constant, despite a factor of ∼5 decrease in air mass from the bottom to the top. This peculiar water enrichment on the volcanoes is present in 75% of the orbits in our sample. The seasonal distribution of such enrichment hints at a seasonal dependence, with a minimum during the northern summer and a maximum around the northern spring equinox. The enrichment possibly also has a diurnal trend, being the orbits with a high degree of enrichment concentrated in the early morning. However, the season and the solar time of the observations, due to the motion of the spacecraft, are correlated, then the two dependences cannot be clearly disentangled. Several orbits exhibit also spatially localized enrichment structures, usually ring- or crescent-shaped. We retrieve also the height of the saturation level over the volcanoes. The results show a strong minimum around the aphelion season, due to the low temperatures, while it raises quickly before and after this period. The enrichment is possibly generated by the local circulation characteristic of the volcano region, which can transport upslope significant quantities of water vapor. The low altitude of the saturation level during the early summer can then hinder the transport of water during this season. The influence of the coupling between atmosphere and surface, due mainly to the action of the regoliths, can also contribute partially to the observed phenomenon. 相似文献
17.
Mathieu Vincendon Y. Langevin F. Poulet A. Pommerol M. Wolff J.-P. Bibring B. Gondet D. Jouglet 《Icarus》2009,(2):395-405
The time variations of spectral properties of dark martian surface features are investigated using the OMEGA near-IR dataset. The analyzed period covers two Mars years, spanning from early 2004 to early 2008 (includes the 2007 global dust event). Radiative transfer modeling indicates that the apparent albedo variations of low to mid-latitude dark regions are consistent with those produced by the varying optical depth of atmospheric dust as measured simultaneously from the ground by the Mars Exploration Rovers. We observe only a few significant albedo changes that can be attributed to surface phenomena. They are small-scaled and located at the boundaries between bright and dark regions. We then investigate the variations of the mean particle size of aerosols using the evolution of the observed dark region spectra between 1 and 2.5 μm. Overall, we find that the observed changes in the spectral slope are consistent with a mean particle size of aerosols varying with time between 1 and 2 μm. Observations with different solar zenith angles make it possible to characterize the aerosol layer at different altitudes, revealing a decrease of the particle size of aerosols as altitude increases. 相似文献
18.
A general circulation model is used to evaluate changes to the circulation and dust transport in the martian atmosphere for a range of past orbital conditions. A dust transport scheme, including parameterized dust lifting, is incorporated within the model to enable passive or radiatively active dust transport. The focus is on changes which relate to surface features, as these may potentially be verified by observations. Obliquity variations have the largest impact, as they affect the latitudinal distribution of solar heating. At low obliquities permanent CO2 ice caps form at both poles, lowering mean surface pressures. At higher obliquities, solar insolation peaks at higher summer latitudes near solstice, producing a stronger, broader meridional circulation and a larger seasonal CO2 ice cap in winter. Near-surface winds associated with the main meridional circulation intensify and extend polewards, with changes in cap edge position also affecting the flow. Hence the model predicts significant changes in surface wind directions as well as magnitudes. Dust lifting by wind stress increases with obliquity as the meridional circulation and associated near-surface winds strengthen. If active dust transport is used, then lifting rates increase further in response to the larger atmospheric dust opacities (hence circulation) produced. Dust lifting by dust devils increases more gradually with obliquity, having a weaker link to the meridional circulation. The primary effect of varying eccentricity is to change the impact of varying the areocentric longitude of perihelion, l, which determines when the solar forcing is strongest. The atmospheric circulation is stronger when l aligns with solstice rather than equinox, and there is also a bias from the martian topography, resulting in the strongest circulations when perihelion is at northern winter solstice. Net dust accumulation depends on both lifting and deposition. Dust which has been well mixed within the atmosphere is deposited preferentially over high topography. For wind stress lifting, the combination produces peak net removal within western boundary currents and southern midlatitude bands, and net accumulation concentrated in Arabia and Tharsis. In active dust transport experiments, dust is also scoured from northern midlatitudes during winter, further confining peak accumulation to equatorial regions. As obliquity increases, polar accumulation rates increase for wind stress lifting and are largest for high eccentricities when perihelion occurs during northern winter. For dust devil lifting, polar accumulation rates increase (though less rapidly) with obliquity above o=25°, but increase with decreasing obliquity below this, thus polar dust accumulation at low obliquities may be increasingly due to dust lifted by dust devils. For all cases discussed, the pole receiving most dust shifts from north to south as obliquity is increased. 相似文献
19.
We present the seasonal and geographical variations of the martian water vapor monitored from the Planetary Fourier Spectrometer Long Wavelength Channel aboard the Mars Express spacecraft. Our dataset covers one martian year (end of Mars Year 26, Mars Year 27), but the seasonal coverage is far from complete. The seasonal and latitudinal behavior of the water vapor is globally consistent with previous datasets, Viking Orbiter Mars Atmospheric Water Detectors (MAWD) and Mars Global Surveyor Thermal Emission Spectrometer (MGS/TES), and with simultaneous results obtained from other Mars Express instruments, OMEGA and SPICAM. However, our absolute water columns are lower and higher by a factor of 1.5 than the values obtained by TES and SPICAM, respectively. In particular, we retrieve a Northern midsummer maximum of 60 pr-μm, lower than the 100-pr-μm observed by TES. The geographical distribution of water exhibits two local maxima at low latitudes, located over Tharsis and Arabia. Global Climate Model (GCM) simulations suggest that these local enhancements are controlled by atmospheric dynamics. During Northern spring, we observe a bulge of water vapor over the seasonal polar cap edge, consistent with the northward transport of water from the retreating seasonal cap to the permanent polar cap. In terms of vertical distribution, we find that the water volume mixing ratio over the large volcanos remains constant with the surface altitude within a factor of two. However, on the whole dataset we find that the water column, normalized to a fixed pressure, is anti-correlated with the surface pressure, indicating a vertical distribution intermediate between control by atmospheric saturation and confinement to a surface layer. This anti-correlation is not reproduced by GCM simulations of the water cycle, which do not include exchange between atmospheric and subsurface water. This situation suggests a possible role for regolith-atmosphere exchange in the martian water cycle. 相似文献
20.
Slope steaks are one of the most intriguing modern phenomena observed on Mars. They have been mostly interpreted as some specific type of granular flow. We propose another mechanism for slope streak formation on Mars. It involves natural seasonal formation of a modest amount of highly concentrated chloride brines within a seasonal thermal skin, and runaway propagation of percolation fronts. Given the current state of knowledge of temperature regimes and the composition and structure of the surface layer in the slope streak regions, this mechanism is consistent with the observational constraints; it requires an assumption that a significant part of the observed chlorine to be in form of calcium and ferric chloride, and a small part of the observed hydrogen to be in form of water ice. This “wet” mechanism has a number of appealing advantages in comparison to the widely accepted “dry” granular flow mechanism. Potential tests for the “wet” mechanism include better modeling of the temperature regime and observations of the seasonality of streak formation. 相似文献