首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present simulated images of energetic neutral atoms (ENAs) produced in charge exchange collisions between solar wind protons and neutral atoms in the exosphere of Venus, and make a comparison with earlier results for Mars. The images are found to be dominated by two local maxima. One produced by charge exchange collisions in the solar wind, upstream of the bow shock, and the other close to the dayside ionopause. The simulated ENA fluxes at Venus are lower than those obtained in similar simulations of ENA images at Mars at solar minimum conditions, and close to the fluxes at Mars at solar maximum. Our numerical study shows that the ENA flux decreases with an increasing ionopause altitude. The influence of the Venus nighttime hydrogen bulge on the ENA emission is small.  相似文献   

2.
The neutral particle detector (NPD) on board Mars Express has observed energetic neutral atoms (ENAs) from a broad region on the dayside of the martian upper atmosphere. We show one such example for which the observation was conducted at an altitude of 570 km, just above the induced magnetosphere boundary (IMB). The time of flight spectra of these ENAs show that they had energies of 0.2-2 keV/amu, with an average energy of ∼1.1 keV/amu. Both the spatial distribution and the energy of these ENAs are consistent with the backscattered ENAs, produced by an ENA albedo process. This is the first observation of backscattered ENAs from the martian upper atmosphere. The origin of these ENAs is considered to be the solar wind ENAs that are scattered back by collision processes in the martian upper atmosphere. The particle flux and energy flux of the backscattered ENAs are and , respectively.  相似文献   

3.
Measurements of energetic neutral atoms (ENA) generated in the magnetosheath at Mars are reported. These ENAs are the result of charge exchange collisions between solar wind protons and neutral oxygen and hydrogen in the exosphere of Mars. The peak of the observed ENA flux is . For the case studied here, i.e., the passage of Mars Express through the martian magnetosheath around 20:15 UT on 3 May 2004, the measurements agree with an analytical model of the ENA production at the planet. It is possible to find parameter values in the model such that the observed peak in the ENA count rate during the spacecraft passage through the magnetosheath is reproduced.  相似文献   

4.
The Analyzer of Space Plasma and EneRgetic Atoms (ASPERA-3) on board Mars Express is designed to study the interaction between the solar wind and the atmosphere of Mars and to characterize the plasma and neutral gas environment in near-Mars space. Neutral Particle Detectors (NPD-1 and 2), which form part of the ASPERA-3 instrument suite, are Energetic Neutral Atom (ENA) detectors which use the time-of-flight (ToF) technique to resolve the energy of detected particles. In the present study, we perform a statistical analysis of NPD ToF data collected between 14 March 2004 and 17 June 2004 when Mars Express was located at the dayside of Mars looking toward the planet. After pre-processing and removal of UV contamination, the ToF spectra were fitted with simple analytical functions so as to derive a set of parameters. The behavior of these parameters, as a function of spacecraft position and attitude, is compared with a model, which describes ENA generation by charge exchange between shocked solar wind protons and extended Martian exosphere. The observations and the model agree well, indicating that the recorded signals are charge-exchanged shocked solar wind.  相似文献   

5.
We present measurements with an Energetic Neutral Atom (ENA) imager on board Mars Express when the spacecraft moves into Mars eclipse. Solar wind ions charge exchange with the extended Mars exosphere to produce ENAs that can spread into the eclipse of Mars due to the ions' thermal spread. Our measurements show a lingering signal from the Sun direction for several minutes as the spacecraft moves into the eclipse. However, our ENA imager is also sensitive to UV photons and we compare the measurements to ENA simulations and a simplified model of UV scattering in the exosphere. Simulations and further comparisons with an electron spectrometer sensitive to photoelectrons generated when UV photons interact with the spacecraft suggest that what we are seeing in Mars' eclipse are ENAs from upstream of the bow shock produced in charge exchange with solar wind ions with a non-zero temperature. The measurements are a precursor to a new technique called ENA sounding to measure solar wind and planetary exosphere properties in the future.  相似文献   

6.
The Neutral Particle Detector (NPD), an Energetic Neutral Atom (ENA) sensor of the Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) on board Mars Express, detected intense fluxes of ENAs emitted from the subsolar region of Mars. The typical ENA fluxes are (4-7) × 105 cm−2 sr−1 s−1 in the energy range 0.3-3 keV. These ENAs are likely to be generated in the subsolar region of the martian exosphere. As the satellite moved away from Mars, the ENA flux decreased while the field of view of the NPD pointed toward the subsolar region. These decreases occurred very quickly with a time scale of a few tens of seconds in two thirds of the orbits. Such a behavior can be explained by the spacecraft crossing a spatially constrained ENA jet, i.e., a highly directional ENA emission from a compact region of the subsolar exosphere. This ENA jet is highly possible to be emitted conically from the subsolar region. Such directional ENAs can result from the anisotropic solar wind flow around the subsolar region, but this can not be explained in the frame of MHD models.  相似文献   

7.
A model of planetary neutral and ion-exospheres in the solar wind is formulated for weak or lunar like solar-wind interaction with a planet. The neutral exosphere model allows for density and temperature variations and for rotation at the exobase. The ion-exosphere is produced by ionization of the neutral exosphere in the solar wind and its density distribution is obtained by solving the continuity equation in the drift approximation. Applying to Mercury a surface temperature distribution inferred from infra-red data and a vanishing bound neutral flux at the base, He and He+ density distributions are found. When the He atmosphere of Mercury is due entirely to the surface bombardment by solar wind He++, the resulting He+ density is found to vary from 1.5 × 10−1 to 10−3 cm−3 over the range 1.5–5 planetocentric radii on the dayside. These densities are found to be detectable by typical solar-wind plasma instruments. The possible effects of cyclotron-resonant scattering by interplanetary magnetic field fluctuations are examined and shown to be negligible. An electromagnetic plasma instability, triggered by the birth of ions in the exosphere, is shown to be important for the thermalization of the energy mode transverse to the interplanetary magnetic field, allowing more ions to be detected by solar-wind ion probes.  相似文献   

8.
The analyser of space plasma and energetic atoms (ASPERA-3) neutral particle imager (NPI) on board Mars Express (MEX) is devoted to energetic neutral atom (ENA) detection within the Martian environment. These ENAs originate from the interaction between the energetic ions flowing inside the Martian environment and the exospheric neutral gas, thus providing crucial information about the dynamics of this interaction. NPI records the instantaneous angular distribution of the energy-integrated ENA signal. In order to identify recurrent ENA signals in the Martian environment, we have performed a statistical analysis of the NPI data. Count rates have been averaged using different methods in order to be able to discriminate signals coming from the planet, from a selected direction, or from specific planetographic regions at the planetary surface. Possible recurrent ENA signals (about 5×106 (cm2 sr s)?1) are found coming from the terminator direction and above the atmosphere toward nightside when the spacecraft was inside the planetary shadow, mainly close to the shadow edge. Some significant signal was found from the anti-Mars directions in 2005. No statistically significant signal related to pick-up ions from the atmosphere or related to magnetic anomalies above the sensor intrinsic error (estimated as 3×106 (cm2 sr s)?1) was observed. Our analysis shows that particular attention should be given to the use of NPI data when performing statistical studies; in fact, the sensor has some intrinsic limitations due to inadequate UV suppression, difficulties in sector inter-calibrations, and variations in the sector response versus time.  相似文献   

9.
Details are presented of an improved technique to use atmospheric absorption of magnetically reflecting solar wind electrons to constrain neutral mass densities in the nightside martian upper thermosphere. The helical motion of electrons on converging magnetic field lines, through an extended neutral atmosphere, is modeled to enable prediction of loss cone pitch angle distributions measured by the Magnetometer/Electron Reflectometer (MAG/ER) experiment on Mars Global Surveyor at 400 km altitude. Over the small fraction of Mars' southern hemisphere (∼2.5%) where the permanent crustal magnetic fields are both open to the solar wind and sufficiently strong as to dominate the variable induced martian magnetotail field, spherical harmonic expansions of the crustal fields are used to prescribe the magnetic field along the electron's path, allowing least-squares fitting of measured loss cones, in order to solve for parameters describing the vertical neutral atmospheric mass density profile from 160 to 230 km. Results are presented of mass densities in the southern hemisphere at 2 a.m. LST at the mean altitude of greatest sensitivity, 180 km, continuously over four martian years. Seasonal variability in densities is largely explained by orbital and latitudinal changes in dayside insolation that impacts the nightside through the resulting thermospheric circulation. However, the physical processes behind repeatable rapid, late autumnal cooling at mid-latitudes and near-aphelion warming at equatorial latitudes is not fully clear. Southern winter polar warming is generally weak or nonexistent over several Mars years, in basic agreement with MGS and MRO accelerometer observations. The puzzling response of mid-latitude densities from 160° to 200° E to the 2001 global dust storm suggests unanticipated localized nightside upper thermospheric lateral and vertical circulation patterns may accompany such storms. The downturn of the 11-year cycle of solar EUV flux is likely responsible for lower aphelion densities in 2004 and 2006 (Mars years 27 and 28).  相似文献   

10.
Using more than five years of data from the magnetometer and electron reflectometer (MAG/ER) on Mars Global Surveyor (MGS), we derive the draping direction of the magnetic field above a given latitude band in the northern hemisphere. The draping direction varies on timescales associated with the orbital period of Mars and with the solar rotation period. We find that there is a strongly preferred draping direction when Mars is in one solar wind sector, but the opposite direction is not preferred as strongly for the other solar wind sector. This asymmetry occurs at or below the magnetic pileup boundary (MPB), is observed preferentially on field lines that connect to the collisional ionosphere, and is independent of planetary longitude. The observations could be explained by a hemispherical asymmetry in the access of field lines to the low-altitude ionosphere, or possibly from global modification of the low-altitude solar wind interaction by crustal magnetic fields. We show that the draping direction affects both the penetration of sheath plasma to 400 km altitudes on the martian dayside and the radial component of the magnetic field on the planetary night side.  相似文献   

11.
Data from the magnetometer MAG aboard the Venus Express S/C are investigated for the occurrence of cyclotron wave phenomena upstream of the Venus bow shock. For an unmagnetized planet such as Venus and Mars the neutral exosphere extends into the on-flowing solar wind and pick-up processes can play an important role in the removal of particles from the atmosphere. At Mars upstream proton cyclotron waves were observed but at Venus they were not yet detected. From the MAG data of the first 4 months in orbit we report the occurrence of proton cyclotron waves well upstream from the planet, both outside and inside of the planetary foreshock region; pick-up protons generate specific cyclotron waves already far from the bow shock. This provides direct evidence that the solar wind is removing hydrogen from the Venus exosphere. Determining the role the solar wind plays in the escape of particles from the total planetary atmosphere is an important step towards understanding the evolution of the environmental conditions on Venus. The continual observations of the Venus Express mission will allow mapping the volume of escape more accurately, and determine better the present rate of hydrogen loss.  相似文献   

12.
《Planetary and Space Science》2006,54(13-14):1482-1495
Venus has no internal magnetic dynamo and thus its ionosphere and hot oxygen exosphere dominate the interaction with the solar wind. The solar wind at 0.72 AU has a dynamic pressure that ranges from 4.5 nPa (at solar max) to 6.6 nPa (at solar min), and its flow past the planet produces a shock of typical magnetosonic Mach number 5 at the subsolar point. At solar maximum the pressure in the ionospheric plasma is sufficient to hold off the solar wind at an altitude of 400 km above the surface at the subsolar point, and 1000 km above the terminators. The deflection of the solar wind occurs through the formation of a magnetic barrier on the inner edge of the magnetosheath, or shocked solar wind. Under typical solar wind conditions the time scale for diffusion of the magnetic field into the ionosphere is so long that the ionosphere remains field free and the barrier deflects almost all the incoming solar wind. Any neutral atoms of the hot oxygen exosphere that reach the altitude of the magnetosheath are accelerated by the electric field of the flowing magnetized plasma and swept along cycloidal paths in the antisolar direction. This pickup process, while important for the loss of the Venus atmosphere, plays a minor role in the deceleration and deflection of the solar wind. Like at magnetized planets, the Venus shock and magnetosheath generate hot electrons and ions that flow back along magnetic field lines into the solar wind to form a foreshock. A magnetic tail is created by the magnetic flux that is slowed in the interaction and becomes mass-loaded with thermal ions.The structure of the ionosphere is very much dependent on solar activity and the dynamic pressure of the solar wind. At solar maximum under typical solar wind conditions, the ionosphere is unmagnetized except for the presence of thin magnetic flux ropes. The ionospheric plasma flows freely to the nightside forming a well-developed night ionosphere. When the solar wind pressure dominates over the ionospheric pressure the ionosphere becomes completely magnetized, the flow to the nightside diminishes, and the night ionosphere weakens. Even at solar maximum the night ionosphere has a very irregular density structure. The electromagnetic environment of Venus has not been well surveyed. At ELF and VLF frequencies there is noise generated in the foreshock and shock. At low altitude in the night ionosphere noise, presumably generated by lightning, can be detected. This paper reviews the plasma environment at Venus and the physics of the solar wind interaction on the threshold of a new series of Venus exploration missions.  相似文献   

13.
We present and compare energetic neutral atom (ENA) images that are calculated from plasma parameters given by three different simulation models of the interaction between the solar wind and Mars. The images are calculated by combining a model for the ion flow with a model of the neutral atmosphere using the cross-sections for the charge exchange collisions. The three ion models are: an empirical model that is based on Phobos 2 measurements; a three-dimensional hybrid simulation; and a three-dimensional MHD simulation. For the empirical and MHD models the images are obtained by integration of the ENA emission along lines of sight to a virtual ENA instrument. In the case of the hybrid model images are obtained by summing the contributions from all ions, whose positions, velocities, and weights are saved in files at regular intervals.Differences between the models can be detected in the images, for example the hybrid model produces ENA emissions from a larger region than the MHD model does. An asymmetry in the oxygen ion density develops in the hybrid model and can be seen in the oxygen ENA images. The images are influenced by finite gyro radius effects, which are included in the hybrid model but not in the other two. The total production rates of hydrogen ENAs are , , and for the empirical, hybrid and MHD models respectively.This study shows the importance of considering both the type of simulation model used and the proper inclusion of relevant physical phenomena and boundary conditions, when modelling the interaction between planets and the solar wind. Although the different models agree fairly well in terms of macroscopic plasma parameters they produce ENA images that differ substantially.  相似文献   

14.
Observations made by the ASPERA-3 experiment onboard the Mars Express spacecraft found within the martian magnetosphere beams of planetary ions. In the energy (E/q)-time spectrograms these beams are often displayed as dispersive-like, ascending or descending (whether the spacecraft moves away or approach the planet) structures. A linear dependence between energy gained by the beam ions and the altitude from the planet suggests their acceleration in the electric field. The values of the electric field evaluated from ion energization occur close to the typical values of the interplanetary motional electric field. This suggests an effective penetration of the solar wind electric field deep into the martian magnetosphere or generation of large fields within the magnetosphere. Two different classes of events are found. At the nominal solar wind conditions, a ‘penetration’ occurs near the terminator. At the extreme solar wind conditions, the boundary of the induced magnetosphere moves to a more dense upper atmosphere that leads to a strong scavenging of planetary ions from the dayside regions.  相似文献   

15.
16.
The total photoelectron and secondary electron fluxes are calculated at different times and altitudes along the trajectory of Mars Global Surveyor passing through the nightside and dayside martian ionosphere. These results are compared with the electron reflectometer experiment on board Mars Global Surveyor. The calculated electron spectra are in good agreement with this measurement. However, the combined fluxes of proton and hydrogen atom as calculated by E. Kallio and P. Janhunen (2001, J. Geophys. Res.106, 5617-5634) were found to be 1-2 orders of magnitude smaller than the measured spectra. We have also calculated ionization rates and ion and electron densities due to solar EUV, X-ray, and electron-proton-hydrogen atom impacting with atmospheric gases of Mars at solar zenith angles of 75°, 105°, and 127°. In the vicinity of the dayside ionization peak, it is found that the ion production rate caused by the precipitation of proton-hydrogen atom is larger than the X-ray impact ionization rate while at all altitudes, the photoionization rate is always greater than either of the two. Moreover, X-rays contribute greatly to the photoelectron impact ionization rate as compared to the photoion production rate. The calculated electron densities are compared with radio occultation measurements made by Mars Global Surveyor, Viking 1, and Mars 5 spacecraft at these solar zenith angles. The dayside ionosphere produced by proton-hydrogen atom is smaller by an order of magnitude than that produced by solar EUV radiation. X-rays play a significant role in the dayside ionosphere of Mars at the altitude range 100-120 km. Solar wind electrons and protons provide a substantial source for the nightside ionosphere. These calculations are carried out for a solar minimum period using solar wind electron flux, photon flux, neutral densities, and temperatures under nearly the same areophysical conditions as the measurements.  相似文献   

17.
Brandt  P. C: Son  Mitchell  D.G.  Roelof  E.C.  Burch  J.L. 《Solar physics》2001,204(1-2):377-386
Global images of the Earth's inner magnetosphere and its response to the coronal mass ejection (CME) on the 15 July 2000 were obtained by the IMAGE spacecraft. The images were taken in energetic neutral atoms (ENA) by the High-Energy Neutral Atom (HENA) imager. ENAs are produced by charge exchange between the hot ion population of the magnetosphere and the cold neutral hydrogen geocorona. The ENA images show how plasma is injected into the nightside magnetosphere as the interplanetary magnetic field (IMF) turns strongly southward. As the IMF B z increases and the storm intensity decreases, the ENA images show that the ring current becomes closed and symmetric as IMF B z reaches positive values.  相似文献   

18.
《Planetary and Space Science》1999,47(10-11):1355-1369
Energetic Neutral Atoms (ENAs) are formed when singly charged magnetospheric ions undergo charge exchange collisions with exospheric neutral atoms. The energy of the incident ions is almost entirely transferred to the charge exchange produced ENAs, which then propagate along nearly rectilinear ballistic trajectories. Thus the ENAs can be used like photons in order to form an image of the energetic ion distribution. The Cassini spacecraft is equipped with the Ion and Neutral Camera (INCA), a magnetospheric imaging ENA camera which is part of MIMI (Magnetospheric Imaging Instrument) [Mitchell, D.G., Cheng, A.F., Krimigis, S.M., Keath, E.P., Jaskulek, S.E., Mauk, B.H., McEntire, R.W., Roelof, E.C., Williams, D.J., Hsieh, K.C., Drake, V.A., 1993. INCA: the ion neutral camera for energetic neutral imaging of the Saturnian magnetosphere. Opt. Eng. 32, 3096; Krimigis, S.M., Mitchell, D.G., Hamilton, D.C. et al., 1998. Magnetospheric Imaging Instrument (MIMI) on the Cassini Mission to Saturn/Titan, Space Sci. Rev., submitted]. In this paper we study the production of energetic neutral atoms resulting from the interaction of Titan’s inner exosphere with Saturn’s magnetosphere. We then simulate the ENA images of this interaction, that we anticipate to get from INCA, by using a 3-D model of the ENA production. This first necessitated the development of a model for the altitude density profile and composition of the Titan exosphere [Amsif, A., Dandouras, J., Roelof, E.C., 1997. Modeling the production and the imaging of energetic neutral atoms from Titan’s exosphere. J. Geophys. Res. 102, 22,169]. We thus used the Chamberlain model [Chamberlain, J.W., 1963. Planetary corona and atmospheric evaporation. Planet. Space Sci. 11, 901] and included the five major species: H, H2, N, N2 and CH4. The density and composition profiles obtained were then used to calculate the ENA production, considering a proton spectrum measured by Voyager in the Saturnian magnetosphere as the parent ion population. In order to generate simulated ENA images of the interaction of Titan’s exosphere with Saturn’s magnetosphere, we developed a model based on 3-D trajectory tracing techniques for the parent ions. Since the parent ions (E>10 keV) have gyroradii comparable with the Titan diameter, the screening effect of Titan on the parent ion population was also taken into account. This effect results in highly anisotropic ion distributions, which produce ‘shadows’ in the ENA fluxes, in certain directions. These shadows depend on the ENA energy and on the relative geometry of Titan, the magnetic field and the Cassini spacecraft position. The INCA images will thus enable us to remotely sense the ion fluxes and spectra. They are also expected to give information about the magnetic field in the vicinity of Titan and thus to Titan’s interaction with the magnetosphere of Saturn.  相似文献   

19.
A rich set of new measurements has greatly expanded our understanding of the Moon–plasma interaction over the last sixteen years, and helped demonstrate the fundamentally kinetic nature of many aspects thereof. Photon and charged particle impacts act to charge the lunar surface, forming thin Debye-scale plasma sheaths above both sunlit and shadowed hemispheres. These impacts also produce photoelectrons and secondary electrons from the surface, as well as ions from the surface and exosphere, all of which in turn feed back into the plasma environment. The solar wind interacts with sub-ion-inertial-scale crustal magnetic fields to form what may be the smallest magnetospheres in the solar system. Proton gyro-motion, solar wind pickup of protons scattered from the dayside surface, and plasma expansion into vacuum each affect the dynamics and structure of different portions of the lunar plasma wake. The Moon provides us with a basic plasma physics laboratory for the study of fundamental processes, some of which we cannot easily observe elsewhere. At the same time, the Moon provides us with a test bed for the study of processes that also operate at many other solar system bodies. We have learned much about the Moon–plasma interaction, with implications for other space and planetary environments. However, many fundamental problems remain unsolved, including the details of the coupling between various parts of the plasma environment, as well as between plasma and the surface, neutral exosphere, and dust. In this paper, we describe our current understanding of the lunar plasma environment, including illustrative new results from Lunar Prospector and Kaguya, and outstanding unsolved problems.  相似文献   

20.
The ASPERA-4 instrument on board the Venus Express spacecraft offers for the first time the possibility to directly measure the emission of energetic neutral atoms (ENAs) in the vicinity of Venus. When the spacecraft is inside the Venus shadow a distinct signal of hydrogen ENAs usually is detected. It is observed as a narrow tailward stream, coming from the dayside exosphere around the Sun direction. The intensity of the signal reaches several , which is consistent with present theories of the plasma and neutral particle distributions around Venus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号