首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 243 毫秒
1.
A.E. Potter  T.H. Morgan 《Icarus》2009,204(2):355-367
Solar radiation acceleration imparts anti-sunward velocities to sodium atoms in the Mercury exosphere. The Earthward-directed vectors of the Sun-accelerated atom velocities can be observed from Earth as small Doppler shifts, either added to, or subtracted from the Earth-Mercury Doppler shifts. We measured these small Doppler shifts using high resolution spectrographs capable of detecting sodium velocity differences as small as 0.1 km/s. We report here four sets of observations performed at different Mercury true anomaly angles. For these measurements, the spectrograph slit was oriented first east-west, and then north-south on the planet so as to get east-west and north-south transects of the velocities. The velocity patterns in east-west transects could be explained in terms of sodium flows outwards from the subsolar point, except for unexpectedly large Earthward velocities observed above the dawn terminator, which we interpreted to be the result of evaporation of sodium as the cold surface is heated by the rising Sun. North-south transects also showed a general pattern consistent with sodium flows outwards from the subsolar point. However, in all cases, the velocities were higher in one hemisphere relative to the other. For two cases, excess sodium emission was observed in the same hemisphere as the velocity excess. We interpreted these results to mean that there existed sources of sodium at high latitudes, which could appear in either hemisphere.  相似文献   

2.
Y.-C. Wang  W.-H. Ip 《Icarus》2011,216(2):387-402
Due to a large solar radiation effect, the sodium exosphere exhibits many interesting effects, including the formation of an extended corona and a tail-like structure. The current suite of observations allows us to study some physical properties of the sodium exosphere, such as the source rates and the interaction with the surface, both experimentally and theoretically. In order to quantify the complex variations in the sodium exosphere in more detail, we use an exospheric model with the Monte-Carlo method to examine the surface interactions of a sodium atom, including the surface thermal accommodation rate and the sticking coefficient. The source rates from different components, such as the photon stimulated desorption (PSD), the meteoroid impact vaporization (MIV), and the solar wind ion sputtering (IS), can be constrained by comparing our exospheric model calculations with the published observational data. The detected terminator to limb (TL) ratio on the disk and the tail production rate can be explained with no sticking effect and small thermal accommodation rates. We also examine the best fit of the MIV source evolution, through comparison with the disk-averaged emission. The resultant discrepancy between the observations and the model fit may reflect the surface variation in the sodium abundance. A comprehensive mapping of the surface geochemical composition of the surface by the MESSENGER and Bepi-Colombo missions should give us more information about the nature of this surface-bound exosphere.  相似文献   

3.
A.E. Potter  R.M. Killen 《Icarus》2007,186(2):571-580
A set of Mercury sodium emission data collected over a range of true anomaly angles during 1997-2003 was used to analyze the effect of solar radiation acceleration on sodium emissions. The variation of emission intensity with changing Doppler velocities throughout the orbit was minimized by normalizing the intensities to a constant true anomaly angle. The normalized intensities should be independent of orbital position if sodium density is constant. Plots of the normalized intensities against solar radiation acceleration showed very considerable scatter. However, the scatter was not random, but the result of a systematic variation, such that the normalized emission at a particular value of radiation acceleration took one or the other of two values, depending on the value of the true anomaly angle. We propose that this was the result of solar radiation acceleration changing the velocity of the sodium atoms, and consequently changing the solar continuum seen by the atoms. There is a positive feedback loop in the “out” leg of the orbit, such that radiation acceleration increases the solar continuum intensity seen by the atoms, and a negative feedback loop in the “in” leg of the orbit, such radiation acceleration decreases the continuum intensity. The observations could be approximately fit by assuming that sodium atoms are exposed to sunlight for an average of 1700 s. The emission values corrected for this effect showed much less scatter, with a general trend of about 30% to lower values from minimum to maximum radiation acceleration. The corrected emissions were used to calculate average column densities, and the result compared with the predictions of Smyth and Marconi [Smyth, W.H., Marconi, M.L., 1995. Astrophys. J. 441, 839-864] for the variation of column density with true anomaly angle. The comparison suggests that sodium atoms interact weakly with the surface. The effect of radiation acceleration on emission intensities should be taken into account if column densities are to be calculated from emission intensities.  相似文献   

4.
A.E. Potter  R.M. Killen 《Icarus》2008,194(1):1-12
Cross-sections of the sodium emission tail of Mercury were measured at various distances down the tail when Mercury was moving away from the Sun (true anomaly angles <180°), and again when Mercury was moving towards the Sun (true anomaly angles >180°). As predicted in early modeling studies, significant differences were expected between these two cases, as the result of Doppler shifts to higher solar intensity in the former case, and to lower solar intensity for the latter case. For observations with Mercury moving away from the Sun, the sodium tail was observed out to about 40,000 kilometers (16 Mercury radii, RM) downstream, expanding, on average, at a rate of 1.9±0.3 km/s. The source rates for sodium generation from Mercury into the tail were found to be in the range 2-5×1023 atoms/s, corresponding to between 1 and 10% of the estimated total sodium production rate on the planet. The limiting value of radiation acceleration required to produce an observable sodium tail was estimated to be 112±24 cm/s2. For observations where Mercury was moving towards the Sun, the emission intensity in the sodium tail decreased very rapidly with distance downstream, disappearing entirely beyond 12,000 (6 RM) kilometers for radiation accelerations of 128.7 and 135.4 cm/s2. For smaller radiation accelerations, the sodium tail was not detectable at all, yielding a limiting value for tail generation of about 122±2 cm/s2. Interpretation of the limiting radiation acceleration values suggests that the process that generates the sodium tail yields atoms with energies greater than 3 eV. Particle sputtering is the most reasonable source process.  相似文献   

5.
F. Leblanc  R.E. Johnson 《Icarus》2003,164(2):261-281
Mercury's neutral sodium exosphere is simulated using a comprehensive 3D Monte Carlo model following sodium atoms ejected from Mercury's surface by thermal desorption, photon stimulated desorption, micro-meteoroid vaporization and solar wind sputtering. The evolution of the sodium surface density with respect to Mercury's rotation and its motion around the Sun is taken into account by considering enrichment processes due to surface trapping of neutrals and ions and depletion of the sodium available for ejection from the surfaces of grains. The change in the sodium exosphere is calculated during one Mercury year taking into account the variations in the solar radiation pressure, the photo-ionization frequency, the solar wind density, the photon and meteoroid flux intensities, and the surface temperature. Line-of-sight column densities at different phase angles, the supply rate of new sodium, average neutral and ion losses over a Mercury year, surface density distribution and the importance of the different processes of ejection are discussed in this paper. The sodium surface density distribution is found to become significantly nonuniform from day to night sides, from low to high latitudes and from morning to afternoon because of rapid depletion of sodium atoms in the surfaces of grains mainly driven by thermal depletion. The shape of the exosphere, as it would be seen from the Earth, changes drastically with respect to Mercury's heliocentric position. High latitude column density maxima are related to maxima in the sodium surface concentration at high latitudes in Mercury's surface and are not necessarily due to solar wind sputtering. The ratio between the sodium column density on the morning side of Mercury's exosphere and the sodium column density on the afternoon side is consistent with the conclusions of Sprague et al. (1997, Icarus 129, 506-527). The model, which has no fitting parameters, shows surprisingly good agreement with recent observations of Potter et al. (2002, Meteor. Planet. Sci. 8, 3357-3374) successfully explaining their velocity and column density profiles vs. heliocentric distance. Comparison with this data allows us to constrain the supply rate of new sodium atoms to the surface. We also discuss the possible origins of the strong high latitude emissions (Potter and Morgan, 1990, Science 248, 835-838; 1997a, Adv. Space Res. 19, 1571-1576; 1997b, Planet. Space Sci. 45, 95-100; Sprague et al., 1998, Icarus 135, 60-68) and the strong variations of the total content of the sodium exosphere on short (Potter et al., 1999, Planet. Space Sci. 47, 1441-1449) and long time scales (Sprague et al., 1997, Icarus 129, 506-527).  相似文献   

6.
F. Leblanc  J.Y. Chaufray 《Icarus》2011,216(2):551-559
Helium is one of the first elements clearly identified in the lunar exosphere (Hoffman, J.H., Hodges, R.R., Johnson, F.S., Evans, D.E. [1973]. Proc. Lunar Sci. Conf. 3, 2865–2875). Apollo 17 measured the He density at the surface during four lunations. It confirmed the expected day to night asymmetry of the He exosphere with a maximum density near the dawn terminator on the nightside. Few years later, the first detection of Mercury’s He exosphere was successfully obtained by Mariner 10 (Broadfoot, A.L., Shemansky, D.E., Kumar, S. [1976]. Geophys. Res. Lett. 3, 577–580). These observations highlighted similar global distribution of the He exosphere at Mercury and at the Moon, but also significant differences that have never been convincingly explained.In this paper, we model the He exosphere at the Moon and Mercury with the same approach. The energy accommodation of the exospheric He particles interacting with the surface can be roughly constrained using Apollo 17 and Mariner 10 measurements. Neither a low energy accommodation, as suggested by Shemansky and Broadfoot (Shemansky, D.E., Broadfoot, A.L. [1977]. Rev. Geophys. 15, 491–499), nor a full energy accommodation, as suggested by Hodges (Hodges Jr., R.R. [1975]. The Moon, 14, 139–157), can fit all the observations. These observations and their modeling suggest a diurnal variation of the energy distribution of the He ejected from the surface that cannot be explained satisfactorily by any of the present theories on the gas–surface interaction in surface-bounded exospheres.  相似文献   

7.
In this study we compare the sodium exosphere observations made by Schleicher et al. [Schleicher, H., and 4 colleagues, 2004. Astron. Astrophys. 425, 1119-1124] with the result of a detailed numerical simulation. The observations, made during the transit of Mercury across the solar disk on 7 May 2003, show a maximum of sodium emission near the polar regions, with north prevalence, and the presence of a dawn-dusk asymmetry. We interpret this distribution as the resulting effect of two combined processes: the solar wind proton precipitation causing chemical alteration of the surface, freeing the sodium atoms from their bounds in the crystalline structure on the surface, and the subsequent photon-stimulated and thermal desorption of the sodium atoms. While we find that the velocity distribution of photon desorbed sodium can explain the observed exosphere population, thermal desorption seems to play a minor role only causing a smearing at the locations where Na atoms are released on the dayside. The observed and simulated distributions agree very well with this hypothesis and indicate that the combination of the proposed processes is able to explain the observed features.  相似文献   

8.
We present results from coronagraphic imaging of Mercury’s sodium tail over a 7° field of view. Several sets of observations made at the McDonald Observatory since May 2007 show a tail of neutral sodium atoms stretching more than 1000 Mercury radii (Rm) in length, or a full degree of sky. However, no tail was observed extending beyond 120 Rm during the January 2008 MESSENGER fly-by period, or during a similar orbital phase of Mercury in July 2008. Large changes in Mercury’s heliocentric radial velocity cause Doppler shifts about the Fraunhofer absorption features; the resultant change in solar flux and radiation pressure is the primary cause of the observed variation in tail brightness. Smaller fluctuations in brightness may exist due to changing source rates at the surface, but we have no explicit evidence for such changes in this data set. The effects of radiation pressure on Mercury’s escaping atmosphere are investigated using seven observations spanning different orbital phases. Total escape rates of atmospheric sodium are estimated to be between 5 and 13 × 1023 atoms/s and show a correlation to radiation pressure. Candidate sources of Mercury’s sodium exosphere include desorption by UV sunlight, thermal desorption, solar wind channeled along Mercury’s magnetic field lines, and micro-meteor impacts. Wide-angle observations of the full extent of Mercury’s sodium tail offer opportunities to enhance our understanding of the time histories of these source rates.  相似文献   

9.
N. Yan  F. Leblanc 《Icarus》2006,181(2):348-362
We have developed a 1D thermal model of Mercury's regolith, in order to simulate the heat diffusion in the upper subsurface (first 10 m). We assume in our model that the thermophysical properties of the Hermean regolith are similar to those of the lunar regolith. We apply our thermal model to the Caloris basin which slopes induce distortions of the surface temperature compared to results obtained for a perfect spherical planet. This thermal model is then coupled with a 3D Monte Carlo model of Mercury's sodium exosphere [Leblanc, F., Johnson, R.E., 2003. Icarus 164, 261-281; Leblanc, F., Delcourt, D., Johnson, R.E., 2003b. J. Geophys. Res. 108 (E12), doi:10.1029/2003JE002151/.5136], in order to describe the signatures of Caloris basin on Mercury's sodium exosphere in term of temporal and spatial variabilities. In particular, we find a motion of the maxima of sodium density in the exosphere towards the Northern hemisphere similar to the one observed by Potter et al. [Potter, A.E., Morgan, T.H., Killen, R.M., 1999. Planet. Space Sci., 47, 1441-1449] but did not reproduce the observed change of the emission brightness. The main conclusion of this study is that the Caloris basin-exosphere relations might be observable from the Earth which we hope will motivate new observations of Mercury's exosphere.  相似文献   

10.
We imaged Mercury in sodium D1 and D2 emission for 6 days during the period 13–20 November 1997 using a 10×10-arc s aperture image slicer coupled to a high-resolution spectrograph. We corrected the sodium images for smearing by the terrestrial atmosphere by computing the actual seeing function from surface reflection images, and used this function to correct the sodium images. During the period of observation, large daily changes took place in both the total amount of sodium and its distribution over the planet. Total sodium increased by a factor of about 3 during this period. The sodium emission was brightest at longitudes near the subsolar longitude in the range 130–150°, with excess sodium at northern latitudes on some days, and excess sodium at southern latitudes on other days. There are no obviously outstanding geologic features at this longitude. The rapid changes observed during this period suggest a connection with solar activity, since the planet itself is apparently geologically inactive. The F10.7 cm solar flux during this period varied only slightly, with an increase of about 15%, probably insufficient to account for the observed changes. However, there were a number of coronal mass ejection (CME) events, some of which were directed towards the general area of Mercury. We suggest that the changes in the visible neutral sodium atmosphere might be a result of the effect of CMEs on Mercury.  相似文献   

11.
High-resolution spectroscopy of Mercury has been obtained with two different instruments in 2006: the EMMI instrument at the 3.6-m NTT telescope of ESO La Silla Chile and the ESPADON spectrograph at the 3.6-m CFHT telescope on top of Mauna Kea (Hawaii). The disk of the planet has been scanned for spatial variation of the exospheric species. The large spectral range and high resolution allow simultaneous measurements of the integrated column density of Na and K.We measure Na/K ratio between 80 and 400 with values between 60 and 90 when the telescope was pointed towards the subsolar region of Mercury’s disk and much larger value when we looked to other part of the exosphere. Moreover, we observed that the Na and K exospheres display very different spatial distributions. Even if these two species are probably ejected with very similar mechanisms from the surface, their differences in mass and sensitivity to solar pressure acceleration imply very different behavior in Mercury’s exosphere.  相似文献   

12.
During the few days centered about new Moon, the lunar surface is optically hidden from Earth-based observers. However, the Moon still offers an observable: an extended sodium tail. The lunar sodium tail is the escaping “hot” component of a coma-like exosphere of sodium generated by photon-stimulated desorption, solar wind sputtering and meteoroid impact. Neutral sodium atoms escaping lunar gravity experience solar radiation pressure that drives them into the anti-solar direction forming a comet-like tail. During new Moon time, the geometry of the Sun, Moon and Earth is such that the anti-sunward sodium flux is perturbed by the terrestrial gravitational field resulting in its focusing into a dense core that extends beyond the Earth. An all-sky camera situated at the El Leoncito Observatory (CASLEO) in Argentina has been successfully imaging this tail through a sodium filter at each lunation since April 2006. This paper reports on the results of the brightness of the lunar sodium tail spanning 31 lunations between April 2006 and September 2008. Brightness variability trends are compared with both sporadic and shower meteor activity, solar wind proton energy flux and solar near ultra violet (NUV) patterns for possible correlations. Results suggest minimal variability in the brightness of the observed lunar sodium tail, generally uncorrelated with any single source, yet consistent with a multi-year period of minimal solar activity and non-intense meteoric fluxes.  相似文献   

13.
14.
Recent results of charge exchange emission from solar system objects observed with the Japanese Suzaku satellite are reviewed. Suzaku is of great importance to investigate diffuse X‐ray emission like the charge exchange from planetary exospheres and comets. The Suzaku studies of Earth's exosphere, Martian exosphere, Jupiter's aurorae, and comets are overviewed (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Mid-infrared limb spectra in the range 600-1400 cm−1 taken with the Composite InfraRed Spectrometer (CIRS) on-board the Cassini spacecraft were used to determine vertical profiles of HCN, HC3N, C2H2, and temperature in Titan's atmosphere. Both high (0.5 cm−1) and low (13.5 cm−1) spectral resolution data were used. The 0.5 cm−1 data gave profiles at four latitudes and the 13.5 cm−1 data gave almost complete latitudinal coverage of the atmosphere. Both datasets were found to be consistent with each other. High temperatures in the upper stratosphere and mesosphere were observed at Titan's northern winter pole and were attributed to adiabatic heating in the subsiding branch of a meridional circulation cell. On the other hand, the lower stratosphere was much colder in the north than at the equator, which can be explained by the lack of solar radiation and increased IR emission from volatile enriched air. HC3N had a vertical profile consistent with previous ground based observations at southern and equatorial latitudes, but was massively enriched near the north pole. This can also be explained in terms of subsidence at the winter pole. A boundary observed at 60° N between enriched and un-enriched air is consistent with a confining polar vortex at 60° N and HC3N's short lifetime. In the far north, layers were observed in the HC3N profile that were reminiscent of haze layers observed by Cassini's imaging cameras. HCN was also enriched over the north pole, which gives further evidence for subsidence. However, the atmospheric cross section obtained from 13.5 cm−1 data indicated a HCN enriched layer at 200-250 km, extending into the southern hemisphere. This could be interpreted as advection of polar enriched air towards the south by a meridional circulation cell. This is observed for HCN but not for HC3N due to HCN's longer photochemical lifetime. C2H2 appears to have a uniform abundance with altitude and is not significantly enriched in the north. This is consistent with observations from previous CIRS analysis that show increased abundances of nitriles and hydrocarbons but not C2H2 towards the north pole.  相似文献   

16.
The Composite Infrared Radiometer-Spectrometer (CIRS) instrument, on the NASA Cassini Saturn orbiter, has been acquiring thermal emission spectra from the atmosphere of Titan since orbit insertion in 2004. Observation sequences for measuring stratospheric temperatures have been obtained using both a nadir mapping mode and a limb viewing mode. The limb observations give better vertical resolution, and give information from higher altitudes, while the nadir observations provide more complete longitude coverage. Because the scale height of Titan's atmosphere is large enough so that emission from a grazing ray is influenced by horizontal temperature variations in the atmosphere, we have developed a two-dimensional temperature retrieval algorithm for reducing the limb spectra, which solves simultaneously for meridional and vertical temperature variations. The analyzed nadir mapping data have sampled nearly all longitudes at latitudes from about 90° S to 60° N, providing temperatures between pressure levels of about 5 to 0.2 mbar. The limb data covers latitudes between about 75° S and 85° N, and yields temperatures between about 1 and 0.005 mbar, at a small number of longitudes. The retrieved temperatures are consistent with early results from nadir observations [Flasar, F.M., and 44 colleagues, 2005. Science 308, 975-978] between 0.5 and 5 mbar where both results are valid, with the warmest temperatures at the equator, and much stronger meridional temperature gradients in the northern (winter) hemisphere than in the southern. At higher altitudes not probed by nadir viewing, the limb data reveal that the stratopause is nearly 20 K warmer in the northern polar regions than at the equator and southern hemisphere, and that the altitude of the stratopause shifts from ≈0.1 mbar (300 km) near the equator to 0.01 mbar (400 km) poleward of about 40° N. When the gradient wind equation is used to construct a zonal mean wind, the reversal in sign of the temperature leads to capping of the winter westerly flow. The core of the resulting jet is about 190 m s−1 in magnitude, spans between 30° N and 60° N, and peaks near 0.1 mbar. Estimates of the radiative heating associated with the radiative disequilibrium lead to a meridional overturning timescale of about three Earth years.  相似文献   

17.
Analysis of the green line corona for the interval 1947–1970 suggests the existence of largescale organization of the emission. The green line emission at high northern latitudes (≈ 40°–60°) is correlated with the emission at high southern latitudes 6, 15 and 24 days later, while the low latitude green corona seems to be correlated on both sides of the equator with no time lag. These coronal features are recurrent with a 27-day period at all latitudes between ± 60 °, and we associate these large-scale structures with the solar magnetic sector structure. The high correlation between northern and southern high-latitude emission at 15 days time lag is explained as a signature of a two-sector structure, while four sectors are associated with the 6 and 24 day peaks.  相似文献   

18.
P. Hedelt  Y. Ito  L. Esposito 《Icarus》2010,210(1):424-435
Based on measurements performed by the Hydrogen Deuterium Absorption Cell (HDAC) aboard the Cassini orbiter, Titan’s atomic hydrogen exosphere is investigated. Data obtained during the T9 encounter are used to infer the distribution of atomic hydrogen throughout Titan’s exosphere, as well as the exospheric temperature.The measurements performed during the flyby are modeled by performing Monte Carlo radiative transfer calculations of solar Lyman-α radiation, which is resonantly scattered on atomic hydrogen in Titan’s exosphere. Two different atomic hydrogen distribution models are applied to determine the best fitting density profile. One model is a static model that uses the Chamberlain formalism to calculate the distribution of atomic hydrogen throughout the exosphere, whereas the second model is a Particle model, which can also be applied to non-Maxwellian velocity distributions.The density distributions provided by both models are able to fit the measurements although both models differ at the exobase: best fitting exobase atomic hydrogen densities of nH = (1.5 ± 0.5) × 104 cm−3 and nH = (7 ± 1) × 104 cm−3 were found using the density distribution provided by both models, respectively. This is based on the fact that during the encounter, HDAC was sensitive to altitudes above about 3000 km, hence well above the exobase at about 1500 km. Above 3000 km, both models produce densities which are comparable, when taking into account the measurement uncertainty.The inferred exobase density using the Chamberlain profile is a factor of about 2.6 lower than the density obtained from Voyager 1 measurements and much lower than the values inferred from current photochemical models. However, when taking into account the higher solar activity during the Voyager flyby, this is consistent with the Voyager measurements. When using the density profile provided by the particle model, the best fitting exobase density is in perfect agreement with the densities inferred by current photochemical models.Furthermore, a best fitting exospheric temperature of atomic hydrogen in the range of TH = (150-175) ± 25 K was obtained when assuming an isothermal exosphere for the calculations. The required exospheric temperature depends on the density distribution chosen. This result is within the temperature range determined by different instruments aboard Cassini. The inferred temperature is close to the critical temperature for atomic hydrogen, above which it can escape hydrodynamically after it diffused through the heavier background gas.  相似文献   

19.
The occultation of bright star HIP9369 by the northern polar region of Jupiter was observed from four locations in North and South America, providing four data sets for ingress and egress. The inversion of the eight occultation lightcurves provides temperature profiles at different latitudes ranging from 55°N to 73.2°N. We estimate the errors on the profiles due to the uncertainties of the inversion method and compare the value of the temperature at the deepest level probed (∼ 50 μbar) with previous observations. The shape of the temperature gradient profile is found similar to previous investigations of planetary atmospheres with propagating and breaking gravity waves. We analyze the small scale structures in both lightcurves and temperature profiles using the continuous wavelet transform. The calculated power spectra of localized fluctuations in the temperature profiles show slopes close to −3 for all eight profiles. We also isolate and reconstruct the three-dimensional geometry of a single wave mode with vertical and horizontal wavelengths of respectively 3 and 70 km. The identified wave is consistent with the gravity wave regime, with a horizontal phase speed nearly parallel to the planetary meridian. Nevertheless, the dissipation of the corresponding wave in Jupiter’s stratosphere should preclude its detection at the observed levels and an acoustic wave cannot be ruled out.  相似文献   

20.
We report on PFS-MEX (Planetary Fourier Spectrometer on board Mars Express) limb observations of the non-Local Thermodynamic Equilibrium emission by CO and CO2 isotopic molecules. The CO emission is observed peaking at altitudes lower than the CO2 emission peak. Two orbits have been considered, which explore latitudes from 75 to 15° N, located in local time at 11:30 and 06:40, and with Ls=138° and 168°, respectively. In general in the season considered (northern summer) the emission intensity increases going to lower latitudes. The peak emission height is also decreasing with decreasing latitude. The CO2 isotopic molecules are emitting radiance out of proportion with respect to the normal isotopic abundance, which surely indicates a strong contribution from a large number of much weaker CO2 bands, a result that will demand careful theoretical modeling. By comparison with Hitran data base we can identify, among the emitting bands, the second hot band for the 626 and 636 molecule, while for the 628 and 627 emission from the third hot bands are very possible. Other minor bands or lines are also observed in emission for the first time in Mars. In one of the two orbits considered, the orbit 1234 of MEX, we also observe at altitudes 80-85 km scattered radiation, with indication of CO2 ice aerosols as scattering centers. At the same altitude the Pathfinder descending measurements show a temperature that allows CO2 condensation. Pathfinder measurements were at 03:00 local time, while our observations are for orbit 1234 showing CO2 ice signature at 11:30 local time. These non-LTE limb emissions, with their unprecedented spectral resolution in this portion of the near infrared and their sensitivity and geographical coverage, will represent in our opinion an excellent data set for testing current theoretical models of the martian upper atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号