首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
V. Mangano  F. Leblanc  C. Barbieri 《Icarus》2009,201(2):424-431
A long term plan of observations of the sodium exosphere of Mercury began in 2002 by using the high resolution echelle spectrograph SARG and a devoted sodium filter at the 3.5 m Galileo National Telescope (TNG) located in La Palma, Canary Islands. This program is meant to investigate the variations of the sodium exosphere appearance under different conditions of observations, namely Mercury's position along its orbit, phase angle and different solar conditions, as reported by previous observations in August 2002 and August 2003 [Barbieri, C., Verani, S., Cremonese, G., Sprague, A., Mendillo, M., Cosentino, R., Hunten, D., 2004. Planet. Space Sci. 52, 1169-1175; Leblanc, F., Barbieri, C., Cremonese, G., Verani, S., Cosentino, R., Mendillo, M., Sprague, A., Hunten, D., 2006. Icarus 185 (2), 395-402].Here we present the analysis of data taken in June 29th and 30th and in July 1st 2005, when Mercury's true anomaly angle (TAA) was in the range 124-130°. The spectra show particularly intense sodium lines with a distinctive peak in emission localized in the southern hemisphere at mid-latitudes. This seems to be a persistent feature related to consecutive favorable IMF conditions inducing localized enhancements of surface sodium density. The comparison with previous data taken by Potter et al. [Potter, A.E., Killen, R.M., Morgan, T.H., 2002. Meteorit. Planet. Sci. 37 (9), 1165-1172] evidences a surprising consistency of the anti-sunward component, which appears to remain constant regardless of the changing illumination and space weather conditions at Mercury.  相似文献   

2.
3.
4.
5.
F. Leblanc  R.E. Johnson 《Icarus》2003,164(2):261-281
Mercury's neutral sodium exosphere is simulated using a comprehensive 3D Monte Carlo model following sodium atoms ejected from Mercury's surface by thermal desorption, photon stimulated desorption, micro-meteoroid vaporization and solar wind sputtering. The evolution of the sodium surface density with respect to Mercury's rotation and its motion around the Sun is taken into account by considering enrichment processes due to surface trapping of neutrals and ions and depletion of the sodium available for ejection from the surfaces of grains. The change in the sodium exosphere is calculated during one Mercury year taking into account the variations in the solar radiation pressure, the photo-ionization frequency, the solar wind density, the photon and meteoroid flux intensities, and the surface temperature. Line-of-sight column densities at different phase angles, the supply rate of new sodium, average neutral and ion losses over a Mercury year, surface density distribution and the importance of the different processes of ejection are discussed in this paper. The sodium surface density distribution is found to become significantly nonuniform from day to night sides, from low to high latitudes and from morning to afternoon because of rapid depletion of sodium atoms in the surfaces of grains mainly driven by thermal depletion. The shape of the exosphere, as it would be seen from the Earth, changes drastically with respect to Mercury's heliocentric position. High latitude column density maxima are related to maxima in the sodium surface concentration at high latitudes in Mercury's surface and are not necessarily due to solar wind sputtering. The ratio between the sodium column density on the morning side of Mercury's exosphere and the sodium column density on the afternoon side is consistent with the conclusions of Sprague et al. (1997, Icarus 129, 506-527). The model, which has no fitting parameters, shows surprisingly good agreement with recent observations of Potter et al. (2002, Meteor. Planet. Sci. 8, 3357-3374) successfully explaining their velocity and column density profiles vs. heliocentric distance. Comparison with this data allows us to constrain the supply rate of new sodium atoms to the surface. We also discuss the possible origins of the strong high latitude emissions (Potter and Morgan, 1990, Science 248, 835-838; 1997a, Adv. Space Res. 19, 1571-1576; 1997b, Planet. Space Sci. 45, 95-100; Sprague et al., 1998, Icarus 135, 60-68) and the strong variations of the total content of the sodium exosphere on short (Potter et al., 1999, Planet. Space Sci. 47, 1441-1449) and long time scales (Sprague et al., 1997, Icarus 129, 506-527).  相似文献   

6.
Following the observations of August 2002 [Barbieri, C., Verani, S., Cremonese, G., Sprague, A., Mendillo, M., Cosentino, R., Hunten, D., 2004. Planet. Space Sci. 52, 1169-1175], the high resolution spectrograph of the 3.5-m Galileo National Telescope (TNG) has been used to obtain several spatially resolved spectra of Mercury's Na-D on the evenings of 8, 9 and 10 August 2003. The resolution of the spectrograph was 115,000, the slit dimensions were 0.4×27. With respect to Paper I, the planet was in a fairly similar orbital configuration, being at a geocentric distance of approximately 1 AU, and having a True Anomaly Angle (TAA) from 163°-168° instead of 171°-174°. We present here a significantly larger set of observations and discuss several important features regarding the formation of Mercury's sodium exosphere, in particular the role of photon stimulated and thermal desorptions, as well as of the solar wind sputtering and micro-meteoroid vaporization. Thanks to the very good seeing of these observations, we also report and discuss the origins and variations of equatorial structures in Mercury's early morning sodium exosphere.  相似文献   

7.
F. Leblanc  J.Y. Chaufray 《Icarus》2011,216(2):551-559
Helium is one of the first elements clearly identified in the lunar exosphere (Hoffman, J.H., Hodges, R.R., Johnson, F.S., Evans, D.E. [1973]. Proc. Lunar Sci. Conf. 3, 2865–2875). Apollo 17 measured the He density at the surface during four lunations. It confirmed the expected day to night asymmetry of the He exosphere with a maximum density near the dawn terminator on the nightside. Few years later, the first detection of Mercury’s He exosphere was successfully obtained by Mariner 10 (Broadfoot, A.L., Shemansky, D.E., Kumar, S. [1976]. Geophys. Res. Lett. 3, 577–580). These observations highlighted similar global distribution of the He exosphere at Mercury and at the Moon, but also significant differences that have never been convincingly explained.In this paper, we model the He exosphere at the Moon and Mercury with the same approach. The energy accommodation of the exospheric He particles interacting with the surface can be roughly constrained using Apollo 17 and Mariner 10 measurements. Neither a low energy accommodation, as suggested by Shemansky and Broadfoot (Shemansky, D.E., Broadfoot, A.L. [1977]. Rev. Geophys. 15, 491–499), nor a full energy accommodation, as suggested by Hodges (Hodges Jr., R.R. [1975]. The Moon, 14, 139–157), can fit all the observations. These observations and their modeling suggest a diurnal variation of the energy distribution of the He ejected from the surface that cannot be explained satisfactorily by any of the present theories on the gas–surface interaction in surface-bounded exospheres.  相似文献   

8.
We have developed a simple analytical model to obtain density distributions of neutral particles in an axially symmetrical exosphere. Correction due to the finite lifetime of exosphere neutral particles has been introduced. The model developed will be utilised in the simulations of energetic neutral atom production via charge-exchange reaction in Mercury's magnetosphere. As examples, we have calculated density profiles of helium and oxygen in Mercury's exosphere. We have also calculated the day side distribution of sodium atoms to demonstrate the effect of the finite lifetime.  相似文献   

9.
Mercury has a surface-bounded exosphere (SBE) similar to that of the Moon. One of the atmospheric species, sodium, was found by ground-based observations to be the most prominent component. Mercury's sodium SBE is known to be non-uniform with respect to local time (LT) in low-latitude regions: the sodium column density in the dawn-side region is larger than that in the dusk-side region, and the sodium abundance is the largest in the morning-noon region. To reveal the production processes for the exosphere near Mercury's surface, the LT dependence of the exosphere was investigated through a numerical simulation. Three data sets of sodium column densities observed for the dawn-side hemisphere, observed by Sprague et al. [1997. Distribution and abundance of sodium in Mercury's atmosphere, 1985-1988. Icarus 12, 506-527], were compared with results simulated by a 3D Monte Carlo method, and the source rates and density of sodium of the planetary surface were estimated. In the simulation, the photon-stimulated desorption (PSD) and thermal desorption (TD) processes were assumed as the release mechanisms. The sodium source rates for the three data sets, at respective heliocentric distances of about 0.33, 0.42, and 0.44 AU, were estimated as 1-4×108 Na/cm2/s with weak LT dependence. In contrast, the expected sodium surface density showed clear dependence on LT and the heliocentric distance. The sodium surface density decreases from early morning to noon by a few orders, and, particularly for large heliocentric distances, the surface is in a condition of sodium excess and depletion with respect to the surface sodium density assumed by Killen et al. [2004. Source rates and ion recycling rates for Na and K in Mercury's atmosphere. Icarus 171, 1-19] in the early morning and morning-noon regions, respectively. This study implies that the decrease in sodium surface density from the early morning to noon regions might produce the characteristic LT dependence in the low-latitude dawn-side region.  相似文献   

10.
The spatial distribution of N+ in Saturn's magnetosphere obtained from Cassini Plasma Spectrometer (CAPS) data can be used to determine the spatial distribution and relative importance of the nitrogen sources for Saturn's magnetosphere. We first summarize CAPS data from 15 orbits showing the spatial and energy distribution of the nitrogen component of the plasma. This analysis re-enforces our earlier discovery [Smith, H.T., Shappirio, M., Sittler, E.C., Reisenfeld, D., Johnson, R.E., Baragiola, R.A., Crary, F.J., McComas, D.J., Young, D.T., 2005. Geophys. Res. Lett. 32 (14). L14S03] that Enceladus is likely the dominant nitrogen source for Saturn's inner magnetosphere. We also find a sharp enhancement in the nitrogen ion to water ion ratio near the orbit of Enceladus which, we show, is consistent with the presence of a narrow Enceladus torus as described in [Johnson, R.E., Liu, M., Sittler Jr., E.C., 2005. Geophys. Res. Lett. 32. L24201]. The CAPS data and the model described below indicate that N+ ions are a significant fraction of the plasma in this narrow torus. We then simulated the combined Enceladus and Titan nitrogen sources using the CAPS data as a constraint. This simulation is an extension of the model we employed earlier to describe the neutral tori produced by the loss of nitrogen from Titan [Smith, H.T., Johnson, R.E., Shematovich, V.I., 2004. Geophys. Res. Lett. 31 (16). L16804]. We show that Enceladus is the principal nitrogen source in the inner magnetosphere but Titan might account for a fraction of the observed nitrogen ions at the largest distances discussed. We also show that the CAPS data is consistent with Enceladus being a molecular nitrogen source with a nitrogen to water ratio roughly consistent with INMS [Waite, J.H., and 13 colleagues, 2006. Science 311 (5766), 1419-1422], but out-gassing of other nitrogen-containing species, such as ammonia, cannot be ruled out.  相似文献   

11.
Two new missions to Mercury are planned in the next few years (according to the NASA Messenger project in 2004 and the ESA BepiColomboproject in 2009). Many aspects of the study of Mercury concerning the origin of the planet, its interior structure, the formation and composition of the regolith, the surface cratering processes, the magnetosphere, the very tenuous atmosphere (exosphere) of Mercury, the orbital and rotational dynamics, and the thermal history of the planet's surface and interior are intensely developing at present. The presence of rocks on Mercury's surface, such as anorthosites (consisting mainly of calcium plagioclase) and feldspars, was reliably established in the course of such investigations. There are obvious signatures of old lava outflows and the heterogeneous composition of the crust depleted in FeO (less than 3%) and enriched with feldspar, with the possible presence of low-iron pyroxenes and alkali basalts. The sole spectral feature in the near infrared, observed at some longitudes, is a possible pyroxene absorption band at 0.95 m, which can be used to investigate the abundance and distribution of FeO in the regolith. Mercury represents a geologically intriguing planetary object. Its exosphere contains Na and K, the origin of which is undoubtedly related to the nature of Mercury's surface. The physical properties of Mercury's regolith, its structure, the grain sizes, the refractive index, and even the characteristic sizes of block material, lend themselves, in principle, to investigation by remote sensing methods. It is possible that deposits of buried water ice and/or elemental sulfur are present in the polar regions of the planet. The results of the study of the structure, physical properties, and composition of Mercury's regolith can be used to single out fundamental features in the origin of Mercury's surface. Thermal infrared spectra are also indicative of the presence of feldspars, pyroxenes, and igneous nepheline-bearing alkali syenites. The wavelengths of the thermal emissivity maxima indicate intermediate or slightly mafic rocks with a pronounced heterogeneous composition. The iron absorption bands give evidence for the presence of FeO in the Hermean crust and mantle. To some extent, the physical properties of the crustal layers may be associated with the odd magnetic field of the planet. The resulting Hermean magnetic field may be produced, at least partly, by randomly oriented paleomagnetic fields of individual large magnetized blocks of the planet's crust.  相似文献   

12.
H Lammer  P Wurz  R Killen  S Massetti  A Milillo 《Icarus》2003,166(2):238-247
Mercury's close orbit around the Sun, its weak intrinsic magnetic field and the absence of an atmosphere (Psurface<1×10−8 Pa) results in a strong direct exposure of the surface to energetic ions, electrons and UV radiation. Thermal processes and particle-surface-collisions dominate the surface interaction processes leading to surface chemistry and physics, including the formation of an exosphere (N?1014 cm−2) in which gravity is the dominant force affecting the trajectories of exospheric atoms. NASA's Mariner 10 spacecraft observed the existence of H, He, and O in Mercury's exosphere. In addition, the volatile components Na, K, and Ca have been observed by ground based instrumentation in the exosphere. We study the efficiency of several particle surface release processes by calculating stopping cross-sections, sputter yields and exospheric source rates. Our study indicates surface sputter yields for Na between values of about 0.27 and 0.35 in an energy range from 500 eV up to 2 keV if Na+ ions are the sputter agents, and about 0.037 and 0.082 at an energy range between 500 eV up to 2 keV when H+ are the sputter agents and a surface binding energy of about 2 eV to 2.65 eV. The sputter yields for Ca are about 0.032 to 0.06 and for K atoms between 0.054 to 0.1 in the same energy range. We found a sputter yield for O atoms between 0.025 and 0.04 for a particle energy range between 500 eV up to 2 keV protons. By taking the average solar wind proton surface flux at the open magnetic field line area of about 4×108 cm−2 s−1 calculated by Massetti et al. (2003, Icarus, in press) the resulting average sputtering flux for O is about 0.8-1.0×107 cm−2 s−1 and for Na approximately 1.3-1.6×105 cm−2 s−1 depending on the assumed Na binding energies, regolith content, sputtering agents and solar activity. By using lunar regolith values for K we obtain a sputtering flux of about 1.0-1.4×104 cm−2 s−1. By taking an average open magnetic field line area of about 2.8×1016 cm2 modelled by Massetti et al. (2003, Icarus, in press) we derive an average surface sputter rate for Na of about 4.2×1021 s−1 and for O of about 2.5×1023 s−1. The particle sputter rate for K atoms is about 3.0×1020 s−1 assuming lunar regolith composition for K. The sputter rates depend on the particle content in the regolith and the open magnetic field line area on Mercury's surface. Further, the surface layer could be depleted in alkali. A UV model has been developed to yield the surface UV irradiance at any time and latitude over a Mercury year. Seasonal and diurnal variations are calculated, and Photon Stimulated Desorption (PSD) fluxes along Mercury's orbit are evaluated. A solar UV hotspot is created towards perihelion, with significant average PSD particle release rates and Na fluxes of about 3.0×106 cm−2 s−1. The average source rates for Na particles released by PSD are about 1×1024 s−1. By using the laboratory obtained data of Madey et al. (1998, J. Geophys. Res. 103, 5873-5887) for the calculation of the PSD flux of K atoms we get fluxes in the order of about 104 cm−2 s−1 along Mercury's orbit. However, these values may be to high since they are based on idealized smooth surface conditions in the laboratory and do not include the roughness and porosity of Mercury's regolith. Further, the lack of an ionosphere and Mercury's small, temporally and spatially highly variable magnetosphere can result in a large and rapid increase of exospheric particles, especially Na in Mercury's exosphere. Our study suggests that the average total source rates for the exosphere from solar particle and radiation induced surface processes during quiet solar conditions may be of the same order as particles produced by micrometeoroid vaporization. We also discuss the capability of in situ measurements of Mercury's highly variable particle environment by the proposed NPA-SERENA instrument package on board ESA's BepiColombo Mercury Planetary Orbiter (MPO).  相似文献   

13.
《Planetary and Space Science》1999,47(10-11):1355-1369
Energetic Neutral Atoms (ENAs) are formed when singly charged magnetospheric ions undergo charge exchange collisions with exospheric neutral atoms. The energy of the incident ions is almost entirely transferred to the charge exchange produced ENAs, which then propagate along nearly rectilinear ballistic trajectories. Thus the ENAs can be used like photons in order to form an image of the energetic ion distribution. The Cassini spacecraft is equipped with the Ion and Neutral Camera (INCA), a magnetospheric imaging ENA camera which is part of MIMI (Magnetospheric Imaging Instrument) [Mitchell, D.G., Cheng, A.F., Krimigis, S.M., Keath, E.P., Jaskulek, S.E., Mauk, B.H., McEntire, R.W., Roelof, E.C., Williams, D.J., Hsieh, K.C., Drake, V.A., 1993. INCA: the ion neutral camera for energetic neutral imaging of the Saturnian magnetosphere. Opt. Eng. 32, 3096; Krimigis, S.M., Mitchell, D.G., Hamilton, D.C. et al., 1998. Magnetospheric Imaging Instrument (MIMI) on the Cassini Mission to Saturn/Titan, Space Sci. Rev., submitted]. In this paper we study the production of energetic neutral atoms resulting from the interaction of Titan’s inner exosphere with Saturn’s magnetosphere. We then simulate the ENA images of this interaction, that we anticipate to get from INCA, by using a 3-D model of the ENA production. This first necessitated the development of a model for the altitude density profile and composition of the Titan exosphere [Amsif, A., Dandouras, J., Roelof, E.C., 1997. Modeling the production and the imaging of energetic neutral atoms from Titan’s exosphere. J. Geophys. Res. 102, 22,169]. We thus used the Chamberlain model [Chamberlain, J.W., 1963. Planetary corona and atmospheric evaporation. Planet. Space Sci. 11, 901] and included the five major species: H, H2, N, N2 and CH4. The density and composition profiles obtained were then used to calculate the ENA production, considering a proton spectrum measured by Voyager in the Saturnian magnetosphere as the parent ion population. In order to generate simulated ENA images of the interaction of Titan’s exosphere with Saturn’s magnetosphere, we developed a model based on 3-D trajectory tracing techniques for the parent ions. Since the parent ions (E>10 keV) have gyroradii comparable with the Titan diameter, the screening effect of Titan on the parent ion population was also taken into account. This effect results in highly anisotropic ion distributions, which produce ‘shadows’ in the ENA fluxes, in certain directions. These shadows depend on the ENA energy and on the relative geometry of Titan, the magnetic field and the Cassini spacecraft position. The INCA images will thus enable us to remotely sense the ion fluxes and spectra. They are also expected to give information about the magnetic field in the vicinity of Titan and thus to Titan’s interaction with the magnetosphere of Saturn.  相似文献   

14.
In this study we compare the sodium exosphere observations made by Schleicher et al. [Schleicher, H., and 4 colleagues, 2004. Astron. Astrophys. 425, 1119-1124] with the result of a detailed numerical simulation. The observations, made during the transit of Mercury across the solar disk on 7 May 2003, show a maximum of sodium emission near the polar regions, with north prevalence, and the presence of a dawn-dusk asymmetry. We interpret this distribution as the resulting effect of two combined processes: the solar wind proton precipitation causing chemical alteration of the surface, freeing the sodium atoms from their bounds in the crystalline structure on the surface, and the subsequent photon-stimulated and thermal desorption of the sodium atoms. While we find that the velocity distribution of photon desorbed sodium can explain the observed exosphere population, thermal desorption seems to play a minor role only causing a smearing at the locations where Na atoms are released on the dayside. The observed and simulated distributions agree very well with this hypothesis and indicate that the combination of the proposed processes is able to explain the observed features.  相似文献   

15.
Carlos E. Chavez 《Icarus》2009,203(1):233-237
In this article we explore the aspect of the F ring with respect to the anti-alignment configuration between the ring and Prometheus. We focus our attention on the shape of the F ring’s azimuthal channels which were first reported by Porco et al. (Porco, C.C., Baker, E., Barbara, J., Beurle, K., Brahic, A., Burns, J.A., Charnoz, S., Cooper, N., Dawson, D.D., Del Genio, A.D., Denk, T., Dones, L., Dyudina, U., Evans, M.W., Giese, B., Grazier, K., Helfenstein, P., Ingersoll, A.P., Jacobson, R.A., Johnson, T.V., McEwen, A., Murray, C.D., Neukum, G., Owen, W.M., Perry, J., Roatsch, T., Spitale, J., Squyres, S., Thomas, P., Tiscareno, M., Turtle, E., Vasavada, A.R., Veverka, J., Wagner, R., West, R. [2005] Science, 307, 1226-1236) and numerically explored by Murray et al. (Murray, C.D., Chavez, C., Beurle, K., Cooper, N., Evans, M.W., Burns, J.A., Porco, C.C. [2005] Nature 437, 1326-1329) who found excellent agreement between Cassini’s ISS reprojected images and their numerical model via a direct comparison. We find that for anti-alignment the channels are wider and go deeper inside the ring material. From our numerical model we find a new feature, an island in the middle of the channel. This island is made up of the particles that have been perturbed the most by Prometheus and only appears when this satellite is close to apoapsis. In addition, plots of the anti-alignment configuration for different orbital stages of Prometheus are obtained and discussed here.  相似文献   

16.
Icy grains and satellites orbiting in Saturn's magnetosphere are immersed in a plasma that sputters their surfaces. This limits the lifetime of the E-ring grains and ejects neutrals that orbit Saturn until they are ionized and populate its magnetosphere. Here we re-evaluate the sputtering rate of ice in Saturn's inner magnetosphere using the recent Cassini data on the plasma ion density, temperature and composition [Sittler Jr., E.C., et al., 2007a. Ion and neutral sources and sinks within Saturn's inner magnetosphere: Cassini results. Planet. Space Sci. 56, 3-18.] and a recent summary of the relevant sputtering data for ice [Famá, M., Shi, J., Baragiola, R.A., 2008. Sputtering of ice by low-energy ions. Surf. Sci. 602, 156-161.]. Although the energetic (>10 keV) ion component at Saturn is much smaller than was assumed to be the case after Voyager [Jurac, S., Johnson, R.E., Richardson, J.D., Paranicas, C., 2001a. Satellite sputtering in Saturn's magnetosphere. Planet. Space Sci. 49, 319-326; Jurac, S., Johnson, R.E., Richardson, J.D., 2001b. Saturn's E ring and production of the neutral torus. Icarus 149, 384-396.], we show that the sputtering rates are sensitive to the temperature of the thermal plasma and are still robust, so that sputtering likely determines the lifetime of the grains in Saturn's tenuous E-ring.  相似文献   

17.
The supply rates of Na and K to the atmosphere of Mercury by processes acting on the extreme surface—thermal vaporization, photon-stimulated desorption (PSD), and ion-sputtering—are limited by the rates at which atoms can be supplied to the extreme surface by diffusion from inside the regolith grains. Supply rates to the atmosphere are further regulated by ion retention and by gardening rates that supply new grains to the surface. We consider the limits on supply of sodium and potassium atoms to the atmosphere, and rates of photoion recycling to the surface. Thermal vaporization rates are severely limited by the ability of atoms to diffuse to the surface of the grain. Therefore, the diffusion-limited thermal vaporization rates on Mercury's surface are comparable to or less than the PSD rates. Ion sputtering is primarily due to highly ionized heavy ions, even though they represent a small fraction of the solar wind. We have shown that up to 60% of the Na photoions are deposited on the surface of Mercury. Ion recycling to the surface can have a long-term effect on the regolith abundance if an average recycling pattern persists such that more ions return to a particular area than are launched there. It is unknown whether the formation of latitude bands of >100% ion retention persist on average despite a rapidly changing magnetosphere. The total exospheric column of sodium observed at Mercury between 1997 to 2003 varied by a factor of 2-3 from perihelion to aphelion.  相似文献   

18.
Striking geological features on Mercury's surface have been linked to tectonic disruption associated with the Caloris impact and have the potential to provide information on the interior structure of Mercury. The unusual disrupted terrain located directly at the antipode of the 1500-km-diameter Caloris basin could have plausibly formed as a consequence of focused seismic waves generated by the massive impact event. In this paper, we revisit the antipodal seismic focusing effects of the Caloris impact by developing physically consistent structure models for Mercury and parameterized seismic source models for the Caloris impact. If the focused seismic body waves caused the disrupted terrain, then the amplitudes of the waves and the areal extent of surface disruptions could be used for estimating the seismic energy imparted by the impact.In this study, we show that effects of direct body waves are small relative to those of focused guided waves. Two types of guided waves are produced by the Caloris impact. One is the conventional Rayleigh wave generated by the impact. The second is the mantle guided waves trapped between the core and the free surface. Mantle guided waves, not recognized in previous studies, may have played an important role in the creation of the disrupted terrain. We find that the early core state has only moderate effects on the antipodal response to the Caloris impact. The fact that the zone of predicted disruption for both fluid and solid core cases is smaller than the observed region of chaotic terrain suggests either that the antipodal response to the Caloris impact was modulated by the shallow structure of Mercury, or that the energy imparted by the impact was larger than those used in this study.  相似文献   

19.
David P. Page 《Icarus》2007,189(1):83-117
Outside polar latitudes, features corresponding to surface thaw have yet to be identified on Mars. The youthful gully landforms observed at mid-high latitude [Malin, M., Edgett, K., 2000. Science 288, 2330-2335] are the nearest candidate, but the source (and nature) of the gully carving agent remains controversial [e.g., Musselwhite, D.S., Swindle, T.D., Lunine, J.I., 2001. Geophys. Res. Lett. 28, 1283-1285; Mellon, M.T., Phillips, R.J., 2001. J. Geophys. Res. 106, 1-15; Knauth, L.P., Burt, D.M., 2002. Icarus 158, 267-271; Costard, F., Forget, F., Mangold, N., Peulvast, J.P., 2002. Science 295, 110-113; Christensen, P.R., 2003. Nature 422, 45-48; Treiman, A.H., 2003. J. Geophys. Res. 108]. At higher obliquity than the present epoch, near-surface ground ice should be present globally [Mellon, M.T., Jakosky, B.M., 1995. J. Geophys. Res. 100 (E6), 11781-11799], populated by condensation of atmospheric water vapour in the top few metres of the regolith, or emplaced as dusty ice sheets reaching down towards the equator. The latitudinal restriction of these gullies to regions poleward of ±30° appears to argue against a thaw component to their formation—since ground ice is present and stable at all latitudes at high obliquity, the current (low) obliquity regime should result in ground ice thaw at low latitudes, where insolation and daytime temperatures are currently greatest, and this is not observed. A previously undescribed meltwater sequence in the Cerberus plains, at 20° N/187° E, shows that comparable, but much more continuous, and mappable melting and surface runoff have occurred in the geologically recent past at near-equatorial latitudes on Mars. Polygonal ground in the Cerberus plains is seen by the Mars Global Surveyor Mars Orbiter Camera (MOC) to suffer sequential, regional-scale volatile-loss consistent with thaw of near-surface ground ice under periglacial conditions. This degradation is continuously sampled by a single MOC strip, showing an icy landscape undergoing thaw modification and collapse, and may form the first evidence of equatorial wet-based glaciation during late Amazonian time, with indications of melting within the last million years. The dissolution and re-formation of polygonal ground links this landform to freeze-thaw processes, providing the conclusion to a question that has been the subject of debate for three decades—whether Mars' polygonal grounds require ice to form—and a consistent explanation for the fate of the water that carved the great outflow channels, much of which may still reside as ground ice in the regolith. This thaw occurs in the Cerberus Formation; deposits that are considered to be magmatic in origin, and the type formation for late-stage, “plains-style” volcanism on Mars [Keszthelyi, L., McEwen, A.S., Thordarson T., 2000. J. Geophys. Res. 105, 15027-15049]. By superposing large numbers of small impact craters, polygonal ground in the Cerberus plains sustains previous suggestions of a non-magmatic origin for this and other landforms in the region [Page, D.P., Murray, J.B., 2006. Icarus 183, 46-54]. Together, these periglacial landforms document evidence of climate change much younger than is currently recognised by crater counts, with important implications for age constraints on young surfaces and absolute age determinations by this method. It is tentatively suggested that this melting may be occurring today, with a striking correspondence between permafrost thaw in the Cerberus plains, the high atmospheric methane flux currently observed over this region [Mumma, M.J., Novak, R.E., DiSanti, M.A., Bonev, B.P., Dello Russo, N., 2004. Bull. Am. Astron. Soc. 36, 1127; Krasnopolsky, V.A., Maillard, J.P., Owen, T.C., 2004. Icarus 172, 537-547; Formisano, V., Atreya, S., Encrenaz, T., Ignatiev, N., Giuranna, M., 2004. Science 306, 1758-1761], and the only latitude zone on Mars—equatorward of 30° N—where melting of ground ice is thought possible in the current climate [Haberle, R.M., McKay, C.P., Schaeffer, J., Cabrol, N.A., Grin, E.A., Zent, A.P., Quinn, R., 2001. J. Geophys. Res. 106 (E10), 23317-23326; Lobitz, B., Wood, B.L., Averner, M.M., McKay, C.P., 2001. Proc. Natl. Acad. Sci. 98, 2132-2137]. Low-latitude polygonal ground as transient, and hydrologically active over wide areas transforms our understanding of the recent climatic evolution of Mars, supporting models of atmospheric water-ice migration [Mischna, M., Richardson, M.I., Wilson, R.J., McCleese, D.J., 2003. J. Geophys. Res. 108 (E6). 5062], complex, volatile stratigraphies [Clifford, S.M., Parker, T.J., 2001. Icarus 154, 40-79], and hypothesised, geologically recent ‘ice ages’ [Head, J.W., Mustard, J.F., Kreslavsky, M.A., Milliken, R.E., Marchant, D.R., 2003. Nature 426, 797-802]. The temporal coincidence of glacial epochs on the Earth and Mars during the Quaternary and latest Amazonian would suggest a coupled system linking both [Sagan, C., Young, A.T., 1973. Nature 243, 459].  相似文献   

20.
Some recent MER Rover Opportunity results on ancient sedimentary rocks from Mars describe sandstones originated from the chemical weathering of olivine basalts by acidic waters [Squyres, S.W., Knoll, A.H., 2005. Earth Planet. Sci. Lett. 240, 1-10]. The absence of protective components in early Mars atmosphere forced any possible primordial life forms to deal with high doses of UV radiation. A similar situation occurred on the primitive Earth during the development of early life in the Archean [Berkner, L.V., Marshall, L.C., 1965. J. Atmos. Sci. 22 (3), 225-261; Kasting, J.F., 1993. Science 259, 920-926]. It is known that some cellular and/or external components can shield organisms from damaging UV radiation or quench its toxic effects [Olson, J.M., Pierson, B.K., 1986. Photosynth. Res. 9, 251-259; García-Pichel, F., 1998. Origins Life Evol. B 28, 321-347; Cockell, C., Rettberg, P., Horneck, G., Scherer, K., Stokes, M.D., 2003. Polar Biol. 26, 62-69]. The effectiveness of iron minerals for UV protection has also been reported [Phoenix, V.R., Konhauser, K.O., Adams, D.G., Bottrell, S.H., 2001. Geology 29 (9), 823-826], but nothing is known about the effect of iron in solution. Here we demonstrate the protective effect of soluble ferric iron against UV radiation on acidophilic photosynthetic microorganisms. These results offer an interesting alternative means of protection for life on the surface of early Mars and Earth, especially in light of the geochemical conditions in which the sedimentary minerals, jarosite and goethite, recently reported by the MER missions, were formed [Squyres, S.W., Arvidson, R.E., Bell III, J.F., Brückner, J., Cabrol, N.A., Calvin, W., Carr, M.H., Christensen, P.R., Clark, B.C., Crumpler, L., Des Marais, D.J., d'Uston, C., Economou, T., Farmer, J., Farrand, W., Folkner, W., Golombek, M., Gorevan, S., Grant, J.A., Greeley, R., Grotzinger, J., Haskin, L., Herkenhoff, K.E., Hviid, S., Johnson, J., Klingelhöfer, G., Knoll, A.H., Landis, G., Lemmon, M., Li, R., Madsen, M.B., Malin, M.C., McLennan, S.M., McSween, H.Y., Ming, D.W., Moersch, J., Morris, R.V., Parker, T., Rice Jr., J.W., Richter, L., Rieder, R., Sims, M., Smith, M., Smith, P., Soderblom, L.A., Sullivan, R., Wänke, H., Wdowiak, T., Wolff, M., Yen, A., 2004. Science 306, 1698-1703; Klingelhöfer, G., Morris, R.V., Bernhardt, B., Schröder, C., Rodionov, D.S., de Souza Jr., P.A., Yen, A., Gellert, R., Evlanov, E.N., Zubkov, B., Foh, J., Bonnes, U., Kankeleit, E., Gütlich, P., Ming, D.W., Renz, F., Wdowiak, T., Squyres, S.W., Arvidson, R.E., 2004. Science 306, 1740-1745].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号