首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ELectron Spectrometer (ELS) from the Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) flown on the Mars Express spacecraft has an 8% energy resolution, combined with the capability to oversample the martian electron distribution. This makes possible the resolution and identification of electrons generated as a result of the He 304 Å ionization of CO2 at the martian exobase on the dayside of the planet. Ionospheric photoelectrons were observed during almost every pass into the ionosphere and CO2 photoelectron peaks were identified near the terminator. Atmospherically generated CO2 photoelectrons are also observed at 10,000 km altitude in the martian tail near the inner magnetospheric boundary. Observations over a wide range of spacecraft orbits showed a consistent presence of photoelectrons at locations along the inner magnetospheric boundary and in the ionosphere, from an altitude of 250 to 10,000 km.  相似文献   

2.
We have studied the morphology of magnetic flux tubes near Mars and have found that the magnetic field lines near Mars forms a wing-like flux tube structure downstream of the bow shock. These magnetic flux tubes are concentrated close to the plane, which contains the center of Mars, the interplanetary magnetic field, and the Mars-Sun line. Regions near Mars on dayside were found to be magnetically connected to the region downstream of the bow shock in the sunlight. The study suggests that the photoelectrons that were observed on the nightside far from Mars are associated with magnetic field lines which are, or which were, magnetically connected to the Martian dayside region.  相似文献   

3.
Strong ultraviolet radiation from the Sun ionizes the upper atmosphere of Venus, creating a dense ionosphere on the dayside of the planet. In contrast to Earth, the ionosphere of Venus is not protected against the solar wind by a magnetic field. However, the interaction between charged ionospheric particles and the solar wind dynamic and magnetic pressure creates a pseudo-magnetosphere which deflects the solar wind flow around the planet (Schunk and Nagy, 1980). The combination of changing solar radiation and solar wind intensities leads to a highly variable structure and plasma composition of the ionosphere. The instrumentation of the Venus Express spacecraft allows to measure the magnetic field (MAG experiment) as well as the electron energy spectrum and the ion composition (ASPERA-4 experiment) of the upper ionosphere and ionopause. In contrast to the earlier Pioneer Venus Orbiter (PVO) measurements which were conducted during solar maximum, the solar activity was very low in the period 2006-2009. A comparison with PVO allows for an investigation of ionospheric properties under different solar wind and EUV radiation conditions. Observations of MAG and ASPERA have been analyzed to determine the positions of the photoelectron boundary (PEB) and the “magnetopause” and their dependence on the solar zenith angle (SZA). The PEB was determined using the ELS observations of ionospheric photoelectrons, which can be identified by their specific energy range. It is of particular interest to explore the different magnetic states of the ionosphere, since these influence the local plasma conductivity, currents and probably the escape of electrons and ions. The penetration of magnetic fields into the ionosphere depends on the external conditions as well as on the ionospheric properties. By analyzing a large number of orbits, using a combination of two different methods, we define criteria to distinguish between the so-called magnetized and unmagnetized ionospheric states. Furthermore, we confirm that the average magnetic field inside the ionosphere shows a linear dependence on the magnetic field in the region directly above the PEB.  相似文献   

4.
A gridded spherical electrostatic analyzer aboard Injun 5 has been used to measure fluxes of thermal and hyperthermal electrons at subauroral latitudes in the midnight sector of the northern ionosphere between altitudes of 2500 and 850 km. Due to the offset between the geomagnetic and geographic poles hyperthermal fluxes, consisting of energetic photoelectrons that have escaped from the sunlit southern hemisphere are observed along orbits over the Atlantic Ocean and North America but not over Asia. The ambient electron temperatures (Te) near 2500 km have their highest values at trough latitudes for all longitudes. At altitudes near 1000 km elevated electron temperatures in the trough were not a consistent feature of the data. Equatorward of the trough, in the longitude sector to which conjugate photoelectrons have access, Te ~ 4000 K at 2500 km and ~ 3000 K at 1000 km. For regions with the conjugate point in darkness Te ? 2300 K over the 1000–2500 km altitude range. The effective thermal characteristics of conjugate photoelectrons are studied as functions of altitude and latitude. The observations indicate that (1) at trough latitudes elevated electron temperatures in the topside ionosphere are mostly produced by sources other than conjugate photoelectrons, and (2) at subtrough latitudes, in the Alantic Ocean-North American longitude sector, conjugate photoelectrons contribute significantly to the heating of topside electrons. Much of the conjugate photoelectron energy is deposited at altitudes >2500 km then conducted along magnetic field lines into the ionosphere.  相似文献   

5.
Using more than five years of data from the magnetometer and electron reflectometer (MAG/ER) on Mars Global Surveyor (MGS), we derive the draping direction of the magnetic field above a given latitude band in the northern hemisphere. The draping direction varies on timescales associated with the orbital period of Mars and with the solar rotation period. We find that there is a strongly preferred draping direction when Mars is in one solar wind sector, but the opposite direction is not preferred as strongly for the other solar wind sector. This asymmetry occurs at or below the magnetic pileup boundary (MPB), is observed preferentially on field lines that connect to the collisional ionosphere, and is independent of planetary longitude. The observations could be explained by a hemispherical asymmetry in the access of field lines to the low-altitude ionosphere, or possibly from global modification of the low-altitude solar wind interaction by crustal magnetic fields. We show that the draping direction affects both the penetration of sheath plasma to 400 km altitudes on the martian dayside and the radial component of the magnetic field on the planetary night side.  相似文献   

6.
The sunlit portion of planetary ionospheres is sustained by photoionization. This was first confirmed using measurements and modelling at Earth, but recently the Mars Express, Venus Express and Cassini-Huygens missions have revealed the importance of this process at Mars, Venus and Titan, respectively. The primary neutral atmospheric constituents involved (O and CO2 in the case of Venus and Mars, O and N2 in the case of Earth and N2 in the case of Titan) are ionized at each object by EUV solar photons. This process produces photoelectrons with particular spectral characteristics. The electron spectrometers on Venus Express and Mars Express (part of ASPERA-3 and 4, respectively) were designed with excellent energy resolution (ΔE/E=8%) specifically in order to examine the photoelectron spectrum. In addition, the Cassini CAPS electron spectrometer at Saturn also has adequate resolution (ΔE/E=16.7%) to study this population at Titan. At Earth, photoelectrons are well established by in situ measurements, and are even seen in the magnetosphere at up to 7RE. At Mars, photoelectrons are seen in situ in the ionosphere, but also in the tail at distances out to the Mars Express apoapsis (∼3RM). At both Venus and Titan, photoelectrons are seen in situ in the ionosphere and in the tail (at up to 1.45RV and 6.8RT, respectively). Here, we compare photoelectron measurements at Earth, Venus, Mars and Titan, and in particular show examples of their observation at remote locations from their production point in the dayside ionosphere. This process is found to be common between magnetized and unmagnetized objects. We discuss the role of photoelectrons as tracers of the magnetic connection to the dayside ionosphere, and their possible role in enhancing ion escape.  相似文献   

7.
史建魁 《天文学报》1999,40(1):76-82
对火星磁层中背阳面区来自电离层的O+离子沿磁力线的密度和通量密度分布进行了理论研究.设火星的磁场由内禀磁场和感应磁场相叠加而成,结合不同的内禀磁矩条件进行了计算.结果表明:(1)随着火心距离的增大,火星磁层中O+离子的密度和通量密度沿磁力线都呈现出下降趋势;(2)随着Z坐标的增大,火星磁层中O+离子的密度和通量密度先呈现出下降趋势,后又逐渐上升;(3)火星的内禀磁场越强,O+离子的密度和通量密度沿磁力线下降得越快;(4)在火星磁尾一定距离处,O+离子的密度和通量密度随磁矩的增大而减小.这样,可通过探测火星磁层中离子的密度和通量密度分布来确定火星内禀磁场的强弱  相似文献   

8.
The possible avenues for photoelectron transport were determined during southern hemisphere winter at Mars by using a mapping analysis of the theoretical magnetic field. Magnetic field line tracing was performed by superposing two magnetic field models: (1) magnetic field derived from a three-dimensional (3D) self-consistent quasi-neutral hybrid model which does not contain the Martian crustal magnetic anomalies and (2) a 3D map of the magnetic field associated with the magnetic anomalies based on Mars Global Surveyor magnetic field measurements. It was found that magnetic field lines connected to the nightside of the planet are mainly channeled within the optical shadow of the magnetotail whereas magnetic field lines connected to the dayside of the planet are observed to form the remainder of the magnetosphere. The simulation suggests that the crustal anomalies create “a magnetic shield” by decreasing the region near Mars which is magnetically connected to the Martian magnetosphere. The rotation of Mars causes periodic changes in magnetic connectivity, but not to qualitative changes in the overall magnetic field draping around Mars.  相似文献   

9.
We have analysed ion escape at Mars by comparing ASPERA-3/Mars Express ion measurements and a 3-D quasi-neutral hybrid model. As Mars Express does not have a magnetometer onboard, the analysed IMA data are from an orbit when the IMF clock angle was possible to determine from the magnetic field measurements of Mars Global Surveyor. We found that fast escaping planetary ions were observed at the place which, according to the 3-D model, is anticipated to contain accelerated heavy ions originating from the martian ionosphere. The direction of the interplanetary magnetic field was found to affect noticeably which regions can be magnetically connected to Mars Express and to the overall 3-D Mars-solar wind interaction.  相似文献   

10.
We report the detection of electrons due to photo-ionization of atomic oxygen and carbon dioxide in the Venus atmosphere by solar helium 30.4 nm photons. The detection was by the Analyzer of Space Plasma and Energetic Atoms (ASPERA-4) Electron Spectrometer (ELS) on the Venus Express (VEx) European Space Agency (ESA) mission. Characteristic peaks in energy for such photoelectrons have been predicted by Venus atmosphere/ionosphere models. The ELS energy resolution (ΔE/E∼7%) means that these are the first detailed measurements of such electrons. Considerations of ion production and transport in the atmosphere of Venus suggest that the observed photoelectron peaks are due primarily to ionization of atomic oxygen.  相似文献   

11.
Many previous researchers have shown that convection in the magnetosphere is reflected in the ionosphere by an eastward electrojet in the evening sector and a westward electrojet in the post-midnight sector. In this paper we shall demonstrate the existence of eastward electrojet flow in the dawn sector in the latitude regime normally occupied by the westward convection electrojet. It will be shown that the convection westward electrojet near dawn may co-exist with the eastward electrojet while lying poleward of it. It is suggested that this eastward electrojet consists of Pedersen current flow driven by an eastward electric field and it is shown that the field lines which penetrate the eastward electrojet are populated by energetic electrons normally associated with the plasma sheet as well as high energy electrons normally associated with the trapped particle population. The high conductivity channel is generated by processes associated with the precipitation of high energy (E > 20 keV) electrons drifting eastwards from midnight in the trapping region. It is further shown that antiparallel current sheets may flow on the magnetic lines of force penetrating the electrojet, and that this flow is closed in the ionosphere by Hall currents flowing equatorward in the high conductivity channel.  相似文献   

12.
F. Duru  D.A. Gurnett  R. Frahm 《Icarus》2010,206(1):74-82
The Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) on the Mars Express (MEX) spacecraft is capable of measuring ionospheric electron density by the use of two main methods: remote radar sounding and from the excitation of local plasma oscillations. The frequency of the locally excited electron plasma oscillations is used to measure the local electron density. However, plasma oscillations are not observed when the plasma flow velocity is higher than about 160 km/s, which occurs mainly in the solar wind and magnetosheath. As a consequence, in many passes, there is a sudden disappearance of the plasma oscillations as the spacecraft enters into the magnetosheath. This fact allows us to identify a flow velocity boundary on the dayside, between the ionosphere of Mars and the shocked solar wind. This paper summarizes the results of the measurement of 552 orbits mostly over a period from August 4, 2005 to August 17, 2007. The boundary points found using MARSIS have been verified by measurements from the Analyzer of Space Plasma and Energetic Atoms (ASPERA-3) Electron Spectrometer (ELS) instrument on Mars Express. The average position of the flow velocity boundary is compared to flow velocity simulations computed using hybrid model and other boundaries. The boundary altitude is slightly lower than the magnetic pile-up boundary determined using Phobos 2 and Mars Global Surveyor (MGS) crossings, but it is in good agreement with the induced magnetospheric boundary determined by ASPERA-3. Investigation of the effect of the crustal magnetic field revealed that the flow velocity boundary is raised at the locations with strong crustal magnetic fields.  相似文献   

13.
The problem of the spatial structure of coupled azimuthally small-scale Alfvén and slow magnetosonic (SMS) waves is solved in an axisymmetric magnetotail model with a current sheet. It is shown that the linear transformation of these waves occurs in the current sheet on magnetic field lines stretched into the magnetotail. From the ionosphere to the current sheet these modes are linearly independent. Due to the high ionospheric conductivity the structure of coupled modes along magnetic field lines represents standing waves with very different typical scales in different parts of the field line. In most of the field line their structure is determined by the large-scale Alfvén wave structure. Near the ionosphere and in the current sheet, small-scale SMS wave field starts to dominate. In these regions coupled modes becomes small-scale. Such modes are neutrally stable on the field lines that do not cross the current sheet, but switch to the ballooning instability regime on field lines crossing the current sheet. An external source is required to generate these modes and this paper considers external currents in the ionosphere as a possible driver. In the direction across magnetic shells the coupled modes are waves running away from the magnetic shell on which they were generated.  相似文献   

14.
《Planetary and Space Science》2007,55(14):2164-2172
Both the MARSIS ionospheric sounder and the charged particle instrument package ASPERA-3 are experiments on board the Mars Express spacecraft. Joint observations have shown that events of intense ionospheric electron density enhancements occur in the lower ionosphere of magnetic cusp regions, and that these enhancements are not associated with precipitation of charged particles above a few hundred electron volts (<300 eV). To account for the enhancement by particle precipitation, electron fluxes are required with mean energy between 1 and 10 keV. No ionizing radiation, neither energetic particles nor X-rays, could be identified, which could produce the observed density enhancement only in the spatially limited cusp regions. Actually, no increase in ionizing radiation, localized or not, was observed during these events. It is argued that the process causing the increase in density is controlled mainly by convection of ionosphere plasma driven by the interaction between the solar wind and crustal magnetic field lines leading to excitation of two-stream plasma waves in the cusp ionosphere. The result is to heat the plasma, reduce the electron–ion recombination coefficient and thereby increase the equilibrium electron density.  相似文献   

15.
One of the problems in reconstructing the real ionosphere from an ionogram is the occurrence of a ‘valley,’ where electron density decreases with altitude and make a non-monotonic profile. For the case of the Earth ionosphere, the ordinary and extraordinary ray data, accompanied with an empirical model, based on the observations, are necessary to obtain a mathematical solution for a ‘valley,’ such as the region between the E and F layers. MARSIS/MEX is a topside sounder designed to observe the ionosphere of Mars. Some ‘valley’ structures were found in the ionograms measured by MARSIS. The echoes of the extraordinary ray are not available owing to the absence of the strong magnetic field on Mars. Therefore, it is difficult to have a mathematical solution for the valleys in the Martian ionosphere. In this paper, a least square method with a simple model is presented to solve the ‘valley’ problem in the topside ionosphere of Mars. The electron density profiles with ‘valleys’ observed by the Radio Occultation experiment onboard MGS are used to rebuild the virtual depths at MARSIS frequencies. The reconstructed electron density profile by the least square method with a simple model from the rebuilt virtual depth curve is compared with the original electron density profile. It is proved that this method can reproduce small valleys in the profile of the Martian ionosphere well.  相似文献   

16.
The exchange of ions between the ionosphere of a planet with negligible intrinsic magnetic field, and the solar wind is examined. It is suggested that a balance exists between the outflow of ionospheric ions at the plasmapause and ions from the solar wind in a restricted region close to the subsolar point. This results in a current system towards the subsolar point on the surface of the ionopause and a toroidal magnetic field. Simple calculations are made of the current and field configuration that might result from the system for conditions similar to those encountered on the Viking 1 and 2 transits of the Mars ionosphere.  相似文献   

17.
Recent U.S.S.R. studies of the magnetic field and solar wind flow in the vicinity of Mars and Venus confirm earlier U.S.A. reports of a bow shock wave developed as the solar wind interacts with these planets. Mars 2 and 3 magnetometer experiments report the existence of an intrinsic planetary magnetic field, sufficiently strong to form a magnetopause, deflecting the solar wind around the planet and its ionosphere. This is in contrast to the case for Venus, where it is assumed to be the ionosphere and processes therein which are responsible for the solar wind deflection. An empirical relationship appears to exist between planetary dipole magnetic moments and their angular momentum for Moon, Mars, Venus, Earth and Jupiter. Implications for the magnetic fields of Mercury and Saturn are discussed.Paper presented at the Lunar Science Institute Conference on Geophysical and Geochemical Exploration of the Moon and Planets, January 10–12, 1973  相似文献   

18.
First results from wideband (electron phase energies of 5–51 eV), high-resolution (0.1 eV) spectral measurements of photoelectron–enhanced plasma lines made with the 430 MHz radar at Arecibo Observatory are presented. In the F region, photoelectrons produced by solar EUV line emissions (He II and Mg IX) give rise to plasma line spectral peaks/valleys. These and other structures occur within an enhancement zone extending from electron phase energies of 14–27 eV in both the bottomside and topside ionosphere. However, photoelectron–thermal electron Coulomb energy losses can lead to a broadened spectral structure with no resolved peaks in the topside ionosphere. The plasma line energy spectra obtained in the enhancement zone exhibit a unique relation in that phase energy is dependent on pitch angle; this relation does not exist in any other part of the energy spectrum. Moreover, large fluctuations in the difference frequency between the upshifted and downshifted plasma lines are evident in the 14–27 eV energy interval. At high phase energies near 51 eV the absolute intensities of photoelectron-excited Langmuir waves are much larger than those predicted by existing theory. The new measurements call for a revision/improvement of plasma line theory in several key areas.  相似文献   

19.
The NEtlander Ionosphere and Geodesy Experiment (NEIGE) of the Netlander mission to Mars will measure Doppler shifts affecting the radio links between ground stations and an orbiter. The experiment has two complementary scientific objectives which are the monitoring of the structure and dynamics of the ionosphere of Mars and the precise determination of Mars orientation parameters. The horizontal variation of the Total Electron Content (TEC) of the ionosphere will be derived from the so-called “geometric-free” combination of the Doppler shifts which affect radio links at two frequencies (in the UHF and S bands) between the Netlander microstations on the Mars surface and the data-relay orbiter. We describe a new method for retrieving the horizontal profile of the absolute value of the TEC. Simulations have allowed to evaluate the precision in the determination of the TEC using this method. We show that the daytime TEC can be retrieved with a precision of for a nominal accuracy of on the orbital pseudo-velocity, which represents a relative precision of a few percent. A preliminary analysis of the sensitivity of the TEC to the physical parameters which control the ionosphere has been performed. For this purpose, we have used a new one-dimensional ionospheric model based on the solution of coupled kinetic, fluid and MHD equations. This model describes the suprathermal electron component, the thermal plasma component as well as the induced horizontal magnetic field. The code which provides the vertical electron density profile has been used to study the variation of the TEC with the solar zenith angle and with the induced magnetic field at the top of the ionosphere. In particular, we show that NEIGE will allow to diagnose the penetration into the daytime ionosphere of an induced magnetic field.  相似文献   

20.
Using a dipole plus tail magnetic field model, H+, He++ and O 16 +6 ions are followed numerically, backward in time, from an output plane perpendicular to the axis of the geomagnetic tail, to their point of entrace to the magnetosphere as solar wind particles in the magnetosheath. An adiabatic or guiding center approximation is used in regions where the particles do not interact directly with the current sheet. A Maxwellian distribution with bulk flow is assumed for solar wind particles in the magnetosheath. Bulk velocity, density, and temperature along the magnetopause are taken from the fluid calculations of Spreiter. Using Liouville's theorem, and varying initial conditions at the output plane, the distribution function is found as a function of energy and pitch angle at the output plane. These results are then mapped to the auroral ionosphere using guiding center theory. Results show that the total precipitation rate is sufficient only for particles which enter the magnetosphere near the edges of the current sheet. Small pitch angles are favored at the output plane, but mappings to the auroral ionosphere indicate isotropic pitch angle distributions are favored with some peaking of the fluxes parallel or at other angles to the field lines. Perpendicular auroral pitch angle anisotropies are at times produced by the current sheet acceleration mechanism. Therefore, caution must be used in interpreting all such observations as ‘loss cone-trapping’ distributions. Energy spectra appear to be quite narrow for small cross-tail electric fields, and a little broader as the electric field increases. Comparisons of these results with experimental observations are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号