首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Large impacts not only create giant basins on terrestrial planets but also heat their interior by shock waves. We investigate the impacts that have created the largest basins existing on the planets: Utopia on Mars, Caloris on Mercury, Aitken on Moon, all formed at ∼4 Ga. We determine the impact-induced temperature increases in the interior of a planet using the “foundering” shock heating model of Watters et al. (Watters, W.A., Zuber, M.T., Hager, B.H. [2009]. J. Geophys. Res. 114, E02001. doi:10.1029/2007JE002964). The post-impact thermal evolution of the planet is investigated using 2D axi-symmetric convection in a spherical shell of temperature-dependent viscosity and thermal conductivity, and pressure-dependent thermal expansion. The impact heating creates a superheated giant plume in the upper mantle which ascends rapidly and develops a strong convection in the mantle of the sub-impact hemisphere. The upwelling of the plume rapidly sweeps up the impact-heated base of the mantle away from the core-mantle boundary and replaces it with the colder surrounding material, thus reducing the effects of the impact-heated base of the mantle on the heat flux out of core. However, direct shock heating of the core stratifies the core, suppresses the pre-existing thermal convection, and cripples a pre-existing thermally-driven core dynamo. It takes about 17, 4, and 5 Myr for the stratified cores of Mars, Mercury, and Moon to exhaust impact heat and resume global convection, possibly regenerating core dynamos.  相似文献   

2.
Abstract— Radiometric age dating of the shergottite meteorites and cratering studies of lava flows in Tharsis and Elysium both demonstrate that volcanic activity has occurred on Mars in the geologically recent past. This implies that adiabatic decompression melting and upwelling convective flow in the mantle remains important on Mars at present. I present a series of numerical simulations of mantle convection and magma generation on Mars. These models test the effects of the total radioactive heating budget and of the partitioning of radioactivity between crust and mantle on the production of magma. In these models, melting is restricted to the heads of hot mantle plumes that rise from the core‐mantle boundary, consistent with the spatially localized distribution of recent volcanism on Mars. For magma production to occur on present‐day Mars, the minimum average radioactive heating rate in the martian mantle is 1.6 times 10?12 W/kg, which corresponds to 39% of the Wanke and Dreibus (1994) radioactivity abundance. If the mantle heating rate is lower than this, the mean mantle temperature is low, and the mantle plumes experience large amounts of cooling as they rise from the base of the mantle to the surface and are, thus, unable to melt. Models with mantle radioactive heating rates of 1.8 to 2.1 times 10 ?12 W/kg can satisfy both the present‐day volcanic resurfacing rate on Mars and the typical melt fraction observed in the shergottites. This corresponds to 43–50% of the Wanke and Dreibus radioactivity remaining in the mantle, which is geochemically reasonable for a 50 km thick crust formed by about 10% partial melting. Plausible changes to either the assumed solidus temperature or to the assumed core‐mantle boundary temperature would require a larger amount of mantle radioactivity to permit present‐day magmatism. These heating rates are slightly higher than inferred for the nakhlite source region and significantly higher than inferred from depleted shergottites such as QUE 94201. The geophysical estimate of mantle radioactivity inferred here is a global average value, while values inferred from the martian meteorites are for particular points in the martian mantle. Evidently, the martian mantle has several isotopically distinct compositions, possibly including a radioactively enriched source that has not yet been sampled by the martian meteorites. The minimum mantle heating rate corresponds to a minimum thermal Rayleigh number of 2 times 106, implying that mantle convection remains moderately vigorous on present‐day Mars. The basic convective pattern on Mars appears to have been stable for most of martian history, which has prevented the mantle flow from destroying the isotopic heterogeneity.  相似文献   

3.
Mars     
Mars is the fourth planet out from the sun. It is a terrestrial planet with a density suggesting a composition roughly similar to that of the Earth. Its orbital period is 687 days, its orbital eccentricity is 0.093 and its rotational period is about 24 hours. Mars has two small moons of asteroidal shapes and sizes (about 11 and 6 km mean radius), the bigger of which, Phobos, orbits with decreasing semimajor orbit axis. The decrease of the orbit is caused by the dissipation of tidal energy in the Martian mantle. The other satellite, Deimos, orbits close to the synchronous position where the rotation period of a planet equals the orbital period of its satellite and has hardly evolved with time. Mars has a tenous atmosphere composed mostly of CO with strong winds and with large scale aeolian transport of surface material during dust storms and in sublimation-condensation cycles between the polar caps. The planet has a small magnetic field, probably not generated by dynamo action in the core but possibly due to remnant magnetization of crustal rock acquired earlier from a stronger magnetic field generated by a now dead core dynamo. A dynamo powered by thermal power alone would have ceased a few billions of years ago as the core cooled to an extent that it became stably stratified. Mars' topography and its gravity field are dominated by the Tharsis bulge, a huge dome of volcanic origin. Tharsis was the major center of volcanic activity, a second center is Elysium about 100° in longitude away. The Tharsis bulge is a major contributor to the non-hydrostaticity of the planet's figure. The moment of inertia factor together with the mass and the radius presently is the most useful constraint for geophysical models of the Martian interior. It has recently been determined by Doppler range measurements to the Mars Pathfinder Lander to be (Folkner et al. 1997). In addition, models of the interior structure use the chemistry of the SNC meteorites which are widely believed to have originated on Mars. According to the models, Mars is a differentiated planet with a 100 to 200 km thick basaltic crust, a metallic core with a radius of approximately half the planetary radius, and a silicate mantle. Mantle dynamics is essential in forming the elements of the surface tectonics. Models of mantle convection find that the pressure-induced phase transformations of -olivine to -spinel, -spinel to -spinel, and -spinel to perovskite play major roles in the evolution of mantle flow fields and mantle temperature. It is not very likely that the -spinel to perovskite transition is present in Mars today, but a few 100 km thick layer of perovskite may have been present in the lower mantle immediately above the core-mantle boundary early in the Martian history when mantle temperatures were hotter than today. The phase transitions act to reduce the number of upwellings to a few major plumes which is consistent with the bipolar distribution of volcanic centers of Mars. The phase transitions also cause a partial layering of the lower mantle which keeps the lower mantle and the core from extensive cooling over the past aeons. A relatively hot, fluid core is the most widely accepted explanation for the present lack of a self-generated magnetic field. Growth of an inner core which requires sub-liquidus temperatures in the core would have provided an efficient mechanism to power a dynamo up to the present day. Received 10 May 1997  相似文献   

4.
The origin of the ancient martian crustal dichotomy and the massive magmatic province of Tharsis remains an open problem. Here, we explore numerically a hypothesis for the origin of these two features involving both exogenic and endogenic processes. We propose a giant impact event during the late stage of planetary formation as the source of the southern highland crust. In a second stage, the extraction of excess heat by vigorous mantle convection on the impacted hemisphere leads to massive magmatism, forming a distinct Tharsis-like volcanic region. By coupling short-term and long-term numerical simulations, we are able to investigate both the early formation as well as the 4.5 Gyr evolution of the martian crust. We demonstrate numerically that this exogenic-endogenic hypothesis is in agreement with observational data from Mars.  相似文献   

5.
The past 4 decades of Mars exploration have provided much information about the Mars surface, when its interior structure remains relatively poorly constrained. Today available data are compatible with a large range of model parameters. Seismology is able to provide valuable additional data but the number of seismographs will likely be quite limited, specially in the early-stage of future Mars seismic networks. It is thus of importance to be able to correctly isolate effects induced by the crust structure. Mars topography is characterized by spectacular reliefs like the Tharsis bulge or the Hellas basin and by the so-called “Mars dichotomy”: the north hemisphere is made up of low-altitude plains above a relatively thin crust when the south hemisphere is characterized by a thick crust sustaining high reliefs. The aim of this paper is to study the effects induced on seismograms by the topography of the surface and crust-mantle discontinuities. Synthetic seismograms were computed using the coupled spectral element-modal solution method, which reduces the numerical cost by limiting the use of the spectral element method to the regions where lateral variations, like the presence of a topography, are considered. Due to numerical cost, this study is limited to long period and thus focuses on surface waves, mainly on long period Rayleigh waves. We show that reliefs like the Tharsis bulge or the Hellas basin can induce an apparent velocity anomaly up to 0.5% when only the surface topography is introduced. Apparent anomalies can raise up to 1.0% when the surface topography is fully compensated by a mirror-image topography of the crust-mantle discontinuity. Travel-time of surface wave are systematically increased for seismometers in the north hemisphere of Mars and decreased in the south hemisphere. When comparing effects on seismograms by the Earth and Mars topography, we found them to be larger for the Earth. It is due to the fact that we work with a seismic velocity model of Mars with a mean crust thickness of 110 km when the crust thickness has a mean value of 50 km for the Earth. When changing the Mars model for a thinner crust with a mean thickness of 50 km, effects by the topography on Mars seismograms becomes of the same order when not larger than what is observed on the Earth.  相似文献   

6.
In order to find an explanation for the origin of the martian crustal dichotomy, a number of recent papers have examined the effect of layered viscosity on the evolution of a degree-1 mantle convection, e.g. Roberts and Zhong [Roberts, J.H., Zhong, S., 2006. J. Geophys. Res. 111. E06013] and Yoshida and Kageyama [Yoshida, M., Kageyama, A., 2006. J. Geophys. Res. 111, doi:10.1029/2005JB003905. B03412]. It was found that a mid-mantle viscosity jump, combined with highly temperature- and depth-dependent rheology, are effective in developing a degree-1 convection within a short timescale. Such a layered viscosity profile could be justified by martian mineralogy. However, the effect of a degree-1 convective planform on the crustal thickness distribution has not yet been demonstrated. It is not obvious whether a thinner crust, due to sublithospheric erosion and crustal thinning, or a thicker crust, due to enhanced crustal production, would form above the hemisphere of mantle upwelling. Also, the general shape of the dichotomy, which is not strictly hemispherical, has not yet been fully investigated. Here we propose a model of the crustal patterns produced by numerical simulations of martian mantle convection, using the finite-volume multigrid code StagYY [Tackley, P.J., 2008. Phys. Earth Planet. Int. 107, 7-18, doi:10.1016/j.pepi.2008.08.005] A self-consistent treatment of melting, crustal formation and chemical differentiation has been added to models of three-dimensional thermal convection. This allows us to obtain global maps of the crustal thickness distribution as it evolves with time. The obtained results demonstrate that it is indeed possible to form a crustal dichotomy as a consequence of near degree-1 mantle convection early in Mars' history. We find that some of the observed patterns show intriguing first order similarities to the elliptical shape of the martian dichotomy. In all models, the region of thick crust is located over the region of mantle upwelling, which itself is a ridge-like structure spread over roughly one half of the planet, a planform we describe as “one-ridge convection.”  相似文献   

7.
A. Rivoldini  T. Van Hoolst 《Icarus》2011,213(2):451-472
Knowledge of the interior structure of Mars is of fundamental importance to the understanding of its past and present state as well as its future evolution. The most prominent interior structure properties are the state of the core, solid or liquid, its radius, and its composition in terms of light elements, the thickness of the mantle, its composition, the presence of a lower mantle, and the density of the crust. In the absence of seismic sounding only geodesy data allow reliably constraining the deep interior of Mars. Those data are the mass, moment of inertia, and tides. They are related to Mars’ composition, to its internal mass distribution, and to its deformational response to principally the tidal forcing of the Sun. Here we use the most recent estimates of the moment of inertia and tidal Love number k2 in order to infer knowledge about the interior structure of the Mars.We have built precise models of the interior structure of Mars that are parameterized by the crust density and thickness, the volume fractions of upper mantle mineral phases, the bulk mantle iron concentration, and the size and the sulfur concentration of the core. From the bulk mantle iron concentration and from the volume fractions of the upper mantle mineral phases, the depth dependent mineralogy is deduced by using experimentally determined phase diagrams. The thermoelastic properties at each depth inside the mantle are calculated by using equations of state. Since it is difficult to determine the temperature inside the mantle of Mars we here use two end-member temperature profiles that have been deduced from studies dedicated to the thermal evolution of Mars. We calculate the pressure and temperature dependent thermoelastic properties of the core constituents by using equations state and recent data about reference thermoelastic properties of liquid iron, liquid iron-sulfur, and solid iron. To determine the size of a possible inner core we use recent data on the melting temperature of iron-sulfur.Within our model assumptions the geodesy data imply that Mars has no solid inner core and that the liquid core contains a large fraction of sulfur. The absence of a solid inner is in agreement with the absence of a global magnetic field. We estimate the radius of the core to be 1794 ± 65 km and its core sulfur concentration to be 16 ± 2 wt%. We also show that it is possible for Mars to have a thin layer of perovskite at the bottom of the mantle if it has a hot mantle temperature. Moreover a chondritic Fe/Si ratio is shown to be consistent with the geodesy data, although significantly different value are also possible. Our results demonstrate that geodesy data alone, even if a mantle temperature is assumed, can almost not constrain the mineralogy of the mantle and the crust. In order to obtain stronger constraints on the mantle mineralogy bulk properties, like a fixed Fe/Si ratio, have to be assumed.  相似文献   

8.
Based on meteorite evidence, the present‐day Martian mantle has a combined abundance of up to a few hundred ppm of H2O, Cl, and F, which lowers the solidus and enhances the magma production rate. Adiabatic decompression melting in upwelling mantle plumes is the best explanation for young (last 200 Myr) volcanism on Mars. We explore water undersaturated mantle plume volcanism using a finite element mantle convection model coupled to a model of hydrous peridotite melting. Relative to a dry mantle, the reduction in solidus temperature due to water increases the magma production rate by a factor of 1.3–1.7 at 50 ppm water and by a factor of 1.9–3.2 at 200 ppm water. Mantle water also decreases the viscosity and increases the vigor of convection, which indirectly increases the magma production rate by thinning the thermal boundary layer and increasing the flow velocity. At conditions relevant to Mars, these indirect effects can cause an order of magnitude increase in the magma production rate. Using geologic and geophysical observations of the Late Amazonian magma production rate and geochemical observations of melt fractions in shergottite meteorites, present‐day Mars is constrained to have a core–mantle boundary temperature of ~1750 to 1800 °C and a volume‐averaged thermal Rayleigh number of 2 × 106 to 107, indicating that moderately vigorous mantle convection has persisted to the present day. Melting occurs at depths of 2.5–6 GPa and is controlled by the Rayleigh number at the low pressure end and by the mantle water concentration at high pressure.  相似文献   

9.
C.C. Reese  V.S. Solomatov 《Icarus》2010,207(1):82-359
During late-stage planet formation, giant impacts produce localized mantle melt regions within which impactor iron droplets settle to the bottom near a permeability horizon. After accumulation, iron heated by the impact migrates downward to the core through colder, mostly solid mantle. The degree of thermal equilibration and partitioning of viscous heating between impactor iron and silicates depends on the mechanism of iron transport to the core. Simple estimates suggest that, following a giant impact, the temperature difference between iron delivered to the core and the mantle outside the impact heated region can be ∼103 K. Hot impactor iron mergers with the core where it may be efficiently mixed or remain stratified due to thermal buoyancy. In either case, collisional energy carried to the core by impactor iron helps establish conditions favorable for early core cooling and dynamo generation. In this study, we consider the end-member scenario in which impactor iron forms a layer at the top of the core. Energy transfer from the impactor iron layer to the mantle is sufficient to power a dynamo for up to ∼30 Myr even in the limit of a very viscous mantle and heat flux limited by conduction. Using two-dimensional finite element calculations of mantle convection, we show that large-scale mantle flow driven by the buoyancy of the impact thermal anomaly focuses plumes in the impact region and increases both dynamo strength and duration. Melting within the mantle thermal boundary layer likely leads to formation of a single superplume in the location of the impact anomaly driven upwelling. We suggest that formation of magnetized southern highland crust may be related to spreading and differentiation of an impact melt region during the impact-induced dynamo episode.  相似文献   

10.
The thermal history of Mars during accretion and differentiation is important for understanding some fundamental aspects of its evolution such as crust formation, mantle geochemistry, chronology, volatile loss and interior degassing, and atmospheric development. In light of data from new Martian meteorites and exploration rovers, we have made a new estimate of Martian mantle siderophile element depletions. New high pressure and temperature metal–silicate experimental partitioning data and expressions are also available. Using these new constraints, we consider the conditions under which the Martian mantle may have equilibrated with metallic liquid. The resulting conditions that best satisfy six siderophile elements—Ni, Co, W, Mo, P, and Ga—and are consistent with the solidus and liquidus of the Martian mantle phase diagram are a pressure of 14 ± 3 GPa and temperature of 2100 ± 200 K. The Martian mantle depletions of Cr and V are also consistent with metal–silicate equilibration in this pressure and temperature range if deep mantle silicate phases are also taken into account. The results are not consistent with either metal–silicate equilibrium at the surface or at the current‐day Martian core–mantle boundary. Recent measurements and modeling have concluded that deep (~17 GPa or 1350 km) mantle melting is required to explain isotopic data for Martian meteorites and the nature of differentiation into core, mantle, and crust. This is in general agreement with our estimates of the conditions of Martian core formation based on siderophile elements that result in an intermediate depth magma ocean scenario for metal–silicate equilibrium.  相似文献   

11.
Abstract— The age, structure, composition, and petrogenesis of the martian lithosphere have been constrained by spacecraft imagery and remote sensing. How well do martian meteorites conform to expectations derived from this geologic context? Both data sets indicate a thick, extensive igneous crust formed very early in the planet's history. The composition of the ancient crust is predominantly basaltic, possibly andesitic in part, with sediments derived from volcanic rocks. Later plume eruptions produced igneous centers like Tharsis, the composition of which cannot be determined because of spectral obscuration by dust. Martian meteorites (except Allan Hills 84001) are inferred to have come from volcanic flows in Tharsis or Elysium, and thus are not petrologically representative of most of the martian surface. Remote‐sensing measurements cannot verify the fractional crystallization and assimilation that have been documented in meteorites, but subsurface magmatic processes are consistent with orbital imagery indicating thick crust and large, complex magma chambers beneath Tharsis volcanoes. Meteorite ejection ages are difficult to reconcile with plausible impact histories for Mars, and oversampling of young terrains suggests either that only coherent igneous rocks can survive the ejection process or that older surfaces cannot transmit the required shock waves. The mean density and moment of inertia calculated from spacecraft data are roughly consistent with the proportions and compositions of mantle and core estimated from martian meteorites. Thermal models predicting the absence of crustal recycling, and the chronology of the planetary magnetic field agree with conclusions from radiogenic isotopes and paleomagnetism in martian meteorites. However, lack of vigorous mantle convection, as inferred from meteorite geochemistry, seems inconsistent with their derivation from the Tharsis or Elysium plumes. Geological and meteoritic data provide conflicting information on the planet's volatile inventory and degassing history, but are apparently being reconciled in favor of a periodically wet Mars. Spacecraft measurements suggesting that rocks have been chemically weathered and have interacted with recycled saline groundwater are confirmed by weathering products and stable isotope fractionations in martian meteorites.  相似文献   

12.
Abstract— Phase equilibrium experiments have been performed on a synthetic analog of the Gusev plains basalt composition from the Spirit landing site on Mars. Near‐liquidus phase relations were determined over the pressure range of 0.1 to 1.5 GPa and at temperatures from 1125 to 1390 °C in a piston cylinder apparatus and 1 atm gas mixing furnace. The composition is multiply saturated with olivine, orthopyroxene, and spinel near its liquidus at 1320 °C and 1.0 GPa, or 85 km depth on Mars, placing an upper limit constraint on the thickness of the Martian lithosphere at the time of eruption. Our experimental work suggests that the Gusev basalts are anhydrous batch melts of a primitive Martian mantle similar to the composition estimated by Dreibus and Wänke (1984). The temperature of multiple saturation indicates the persistence of high mantle potential temperatures on Mars, similar to those on the modern Earth, until at least the very latest Noachian (3.7 Ga). These high mantle temperatures would be responsible for persistent basaltic volcanism throughout the southern highlands during the first billion years of Mars's history. The source for Gusev basalts differs strongly from the source for shergottite meteorites, reinforcing the idea of the absence of global mantle convection and mixing on Mars. The existence of a relatively primitive mantle reservoir requires that at least part of the mantle underwent little modification during early planetary differentiation.  相似文献   

13.
Abigail A. Fraeman 《Icarus》2010,210(1):43-57
We present a parameterized convection model of Mars by incorporating a new heat-flow scaling law for stagnant-lid convection, to better understand how the evolution of Mars may be affected by mantle melting. Melting in the mantle during convection leads to the formation of a compositionally buoyant lithosphere, which may also be intrinsically more viscous by dehydration. The consequences of these melting effects on the evolution of terrestrial planets have not been explored before. The temporal evolution of crust and lithospheric mantle is modeled in a self-consistent manner considering mantle melting, convective instability, and the rewetting of dehydrated lithosphere from below by hydrogen diffusion. Though the effect of compositional buoyancy turns out to be minimal, the introduction of viscosity contrast between wet and dry mantle can considerably slow mantle cooling and sometimes lead to non-monotonic core cooling. Furthermore, with or without dehydration stiffening, our model predicts that the martian mantle must have been degassed more extensively (>80%) than previously suggested (<10%); the loss of such a large amount of water from the mantle to surface has significant implications about the role of water in the early surface and climate evolution of Mars.  相似文献   

14.
A. Morschhauser  D. Breuer 《Icarus》2011,212(2):541-400
We have reinvestigated the coupled thermal and crustal evolution of Mars taking new laboratory data concerning the flow behavior of iron-rich olivine into account. The low mantle viscosities associated with the relatively higher iron content of the martian mantle as well as the observed high concentrations of heat producing elements in a crust with a reduced thermal conductivity were found to promote phases of crustal recycling in many models. As crustal recycling is incompatible with an early separation of geochemical reservoirs, models were required to show no episodes of crustal recycling. Furthermore, admissible models were required to reproduce the martian crust formation history, to allow for the formation of partial melt under present day mantle conditions and to reproduce the measured concentrations of potassium and thorium on the martian surface. Taking dehydration stiffening of the mantle viscosity by the extraction of water from the mantle into account, we found that admissible models have low initial upper mantle temperatures around 1650 K, preferably a primordial crustal thickness of 30 km, and an initially wet mantle rheology. The crust formation process on Mars would then be driven by the extraction of a primordial crust after core formation, cooling the mantle to temperatures close to the peridotite solidus. According to this scenario, the second stage of global crust formation took place over a more extended period of time, waning at around 3500 Myr b.p., and was driven by heat produced by the decay of radioactive elements. Present-day volcanism would then be driven by mantle plumes originating at the core-mantle boundary under regions of locally thickened, thermally insulating crust. Water extraction from the mantle was found to be relatively efficient and close to 40% of the total inventory was lost from the mantle in most models. Assuming an initial mantle water content of 100 ppm and that 10% of the extracted water is supplied to the surface, this amount is equivalent to a 14 m thick global surface layer, suggesting that volcanic outgassing of H2O could have significantly influenced the early martian climate and increased the planet’s habitability.  相似文献   

15.
Thermal evolutions of the terrestrial planets   总被引:1,自引:0,他引:1  
The thermal evolution of the Moon, Mercury, Mars, Venus and hypothetical minor planets is calculated theoretically, taking into account conduction, solid-state convection, and differentiation. An assortment of geological, geochemical, and geophysical data is used to constrain both the present day temperatures and thermal histories of the planets' interiors. Such data imply that the planets were heated during or shortly after formation and that all the terrestrial planets started their differentiations early in their history. Initial temperatures and core formation play the most important roles in the early differentiation. The size of the planet is the primary factor in determining its present day thermal state. A planetary body with radius less than 1000 km is unlikely to reach melting given heat source concentrations similar to terrestrial values and in the absence of intensive early heating such as short half-life radioactive heating and inductive heating.Studies of individual planets are constrained by varying amounts of data. Most data exist for the Earth and Moon. The Moon is a differentiated body with a crust, a thick solid mantle and an interior region which may be partially molten. It is presently cooling rapidly and is relatively inactive tectonically.Mercury most likely has a large core. Thermal calculations indicate it may have a 500 km thick solid lithosphere, and the core may be partially molten if it contains some heat sources. If this is not the case, the planet's interior temperatures are everywhere below the melting curve for iron. The thermal evolution is dominated by core separation and the high conductivity of iron which makes up the bulk of Mercury.Mars, intermediate in size among the terrestrial planets, is assumed to have differentiated an Fe–FeS core. Differentiation and formation of an early crust is evident from Mariner and Viking observations. Theoretical models suggest that melting and differentiation of the mantle silicates has occurred at least up until 1 billion years ago. Present day temperature profiles indicate a relatively thick (250 km) lithosphere with a possible asthenosphere below. The core is molten.Venus is characterized as a planet similar to the Earth in many respects. Core formation probably occurred during the first billion years after the formation. Present day temperatures indicate a partially molten upper mantle overlain by a 100 km thick lithosphere and a molten Fe–Ni core. If temperature models are good indicators, we can expect that today, Venus has tectonic processes similar to the Earth's.Paper dedicated to Professor Hannes Alfvén on the occasion of his 70th birthday, 30 May 1978.  相似文献   

16.
A theoretical thermal evolution model of Mars is constructed, utilizing as constraints the available geophysical and geological data, including those provided by the Viking missions. The calculation includes conduction and subsolidus mantle convection. Calculated models indicate that Martian evolution can be roughly characterized by four different stages. (1) Core formation and crust differentiation: this stage starts from the planet formation to about 1 by thereafter. During this period, Martian core is separated and the initial crust is differentiated. (2) Heating, expansion, and mantle differentiation: this stage begins after the core separation and extends to about 3 by. First, mantle temperatures rise and reach partial melting. Between 2 and 3 by, extensive melting, differentiation, and outgassing occur. Planetary radius increases and extensional features observed at the surface are most likely generated at this stage. (3) Mature phase: after 3 by, the planet reaches maturity. Between 3 and 4 by slow and sustained evolution continues. Lithosphere thickens and partial melt zone deepens. (4) Cooling period: this stage represents the last phase of Martian history. The planet is cooling slowly. The partial melting zone shrinks and volcanic activity tapers off. At present, Martian lithosphere is about 200 km thick and the mantle is convecting slowly. The models suggest that the core is molten, and the calculated surface heat flux is 35 erg cm?2 sec?1.  相似文献   

17.
New radar images obtained from the Arecibo Observatory (resolution 1.5–4.0 km) for portions of the southern hemisphere of Venus show that: the upland of Phoebe Regio contains the southern extension of Devana Chasma, a rift zone extending 4200 km south from Theia Mons and interpreted as a zone of extension; Alpha Regio, the only large region of tessera within the imaged area, is similar to tessera mapped elsewhere on the planet and covers a smaller percentage of the surface than that observed in the northern high latitudes; the upland made of Ushas, Innini and Hathor Montes consists of three distinct volcanic constructs; Themis Regio is mapped as an ovoid chain of radar-bright arcuate single and double ring structures, edifices and bright lineaments. This area is interpreted as a region of mantle upwelling and on the basis of apparent split and separated features, a zone of localized faulting and extension. Linear zones of deformation in Lavinia Planitia are characterized by lineament belts that are often locally elevated, are similar to ridge belts mapped in the northern high latitudes and are interpreted to be characterized mainly by compression; radar-bright lava complexes within Lavinia Planitia are unique to this part of the planet and are interpreted to represent areas of eruption of high volumes of extremely fluid lava; the upland of Lada Terra is bound to the north by a linear deformation zone interpreted as extensional, is characterized by large ovoids and coronae, is interpreted to be associated with an area of mantle upwelling, and is in contrast to the northern high latitude highland of Ishtar Terra. Regions of plains in the southern hemisphere cover about 78%; of the mapped area and are interpreted to be volcanic in origin. Located within the area imaged (10–78 S) are 52 craters interpreted to be of impact origin ranging from 8 to 157 km in diameter. On the basis of an overall crater density of 0.94 craters/106 km2, it is determined that the age of this part of the Venus surface is similar to the 0.3 to 1.0 billion year age calculated for the equatorial region and northern high latitudes. The geologic characteristics of the portion of the Venus southern hemisphere imaged by Arecibo are generally similar to those mapped elsewhere on the planet. This part of the planet is characterized by widespread volcanic plains, large volcanic edifices, and zones of linear belt deformation. The southern hemisphere of Venus differs from northern high latitudes in that tessera makes up only a small percentage of the surface area and the ovoid chain in Themis Regio is unique to this part of the planet. On the basis of the analysis presented here, the southern hemisphere of Venus is interpreted to be characterized by regions of mantle upwelling on a variety of scales (ovoids, region made up of Ushas, Innini and Hathor Montes), upwelling and extension (Themis Regio) and localized compression (lineament belts in Lavinia Planitia).  相似文献   

18.
Wudalianchi volcanic field, located in northeast China, consists of 14 Quaternary volcanoes with each volcano as a steep-sided scoria cone surrounded by gently sloping lava flows. Each cone is topped with a bowl-shaped or funnel-shaped crater. The volcanic cones are constructed by the accumulation of tephra and other ejecta. In this paper, their geologic features have been investigated and compared with some Martian volcanic features at Ascraeus Mons volcanoes observed on images obtained from High-Resolution Imaging Science Experiments (HiRISE), Mars Orbiter Camera (MOC), Context Imager (CTX) and Thermal Emission Imaging System (THEMIS). The results show that both Wudalianchi and Ascraeus Mons volcanoes are basaltic, share similar eruptive and geomorphologic features and eruptive styles, and have experienced multiple eruptive phases, in spite of the significant differences in their dimension and size. Both also show a variety of eruptive styles, such as fissure and central venting, tube-fed and channel-fed lava flows, and probably pyroclastic deposits. Three volcanic events are recognized at Ascraeus Mons, including an early phase of shield construction, a middle eruptive phase forming a low lava shield, and the last stage with aprons mantling both NE and SW flanks. We suggest that magma generation at both Wudalianchi and Ascraeus Mons might have been facilitated by an upwelling mantle plume or upwelling of asthenospheric mantle, and a deep-seated fault zone might have controlled magma emplacement and subsequent eruptions in Ascraeus Mons as observed in the Wudalianchi field, where the volcanoes are constructed along the northeast-striking faults. Fumarolic cones produced by water/magma interaction at the Wudalianchi volcanic field may also serve as an analogue for the pseudocraters identified at Isidis and Cerberus Planitia on Mars, suggesting existence of frozen water in the ground on Mars during Martian volcanic eruptions.  相似文献   

19.
The well-known dichotomy in topography, surface age, and crustal structure between the northern lowlands and the southern uplands of Mars has been explained by both endogenic and exogenic processes. According to the used model this asymmetry might be a result of a certain mechanism of core fommation influencing the following planetary evolution. Therefore it has been assumed that the present internal structure of Mars is characterized by different velocity-depth distributions of the mantle for the northern and southern hemisphere, respectively. For both regions significant differences in travel times of seismic waves were calculated. These results may be important for the future seismic exploration of Mars.  相似文献   

20.
Lithospheric strength can be used to estimate the heat flow at the time when a given region was deformed, allowing us to constrain the thermal evolution of a planetary body. In this sense, the high (>300 km) effective elastic thickness of the lithosphere deduced from the very limited deflection caused by the north polar cap of Mars indicates a low surface heat flow for this region at the present time, a finding difficult to reconcile with thermal history models. This has started a debate on the current heat flow of Mars and the implications for the thermal evolution of the planet. Here we perform refined estimates of paleo-heat flow for 22 martian regions of different periods and geological context, derived from the effective elastic thickness of the lithosphere or from faulting depth beneath large thrust faults, by considering regional radioactive element abundances and realistic thermal conductivities for the crust and mantle lithosphere. For the calculations based on the effective elastic thickness of the lithosphere we also consider the respective contributions of crust and mantle lithosphere to the total lithospheric strength. The obtained surface heat flows are in general lower than the equivalent radioactive heat production of Mars at the corresponding times, suggesting a limited contribution from secular cooling to the heat flow during the majority of the history of Mars. This is contrary to the predictions from the majority of thermal history models, but is consistent with evidence suggesting a currently fluid core, limited secular contraction for Mars, and recent extensive volcanism. Moreover, the interior of Mars could even have been heating up during part of the thermal history of the planet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号