首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Patrick Michel  Martin Jutzi 《Icarus》2011,211(1):535-545
The Veritas family is located in the outer main belt and is named after its apparent largest constituent, Asteroid (490) Veritas. The family age has been estimated by two independent studies to be quite young, around 8 Myr. Therefore, current properties of the family may retain signatures of the catastrophic disruption event that formed the family. In this paper, we report on our investigation of the formation of the Veritas family via numerical simulations of catastrophic disruption of a 140-km-diameter parent body, which was considered to be made of either porous or non-porous material, and a projectile impacting at 3 or 5 km/s with an impact angle of 0° or 45°. Not one of these simulations was able to produce satisfactorily the estimated size distribution of real family members. Based on previous studies devoted to either the dynamics or the spectral properties of the Veritas family, which already treated (490) Veritas as a special object that may be disconnected from the family, we simulated the formation of a family consisting of all members except that asteroid. For that case, the parent body was smaller (112 km in diameter), and we found a remarkable match between the simulation outcome, using a porous parent body, and the real family. Both the size distribution and the velocity dispersion of the real reduced family are very well reproduced. On the other hand, the disruption of a non-porous parent body does not reproduce the observed properties very well. This is consistent with the spectral C-type of family members, which suggests that the parent body was porous and shows the importance of modeling the effect of this porosity in the fragmentation process, even if the largest members are produced by gravitational reaccumulation during the subsequent gravitational phase. As a result of our investigations, we conclude that it is very likely that the Asteroid (490) Veritas and probably several other small members do not belong to the family as originally defined, and that the definition of this family should be revised. Further investigations will be performed to better constrain the definitions and properties of other asteroid families of different types, using the appropriate model of fragmentation. The identification of very young families in turn will continue to serve as a tool to check the validity of numerical models.  相似文献   

2.
The Agnia asteroid family, a cluster of asteroids located near semimajor axis a=2.79 AU, has experienced significant dynamical evolution over its lifetime. The family, which was likely created by the breakup of a diameter D∼50 km parent body, is almost entirely contained within the high-order secular resonance z1. This means that unlike other families, Agnia's full extent in proper eccentricity and inclination is a byproduct of the large-amplitude resonant oscillations produced by this resonance. Using numerical integration methods, we found that the spread in orbital angles observed among Agnia family members would have taken at least 40 Myr to create; this sets a lower limit on the family's age. To determine the upper bound on Agnia's age, we used a Monte Carlo model to track how the small members in the family evolve in semimajor axis by Yarkovsky thermal forces. Our results indicate the family is no more than 140 Myr old, with a best-fit age of 100+30−20 Myr. Using two independent methods, we also determined that the D∼5 km fragments were ejected from the family-forming event at a velocity near 15 m/s. This velocity is consistent with results from numerical hydrocode simulations of asteroid impacts and observations of other similarly sized asteroid families. Finally, we found that 57% of known Agnia fragments were initially prograde rotators. The reason for this limited asymmetry is unknown, though we suspect it is a fluke produced by the stochastic nature of asteroid disruption events.  相似文献   

3.
V. Carruba  J.A. Burns  W. Bottke 《Icarus》2003,162(2):308-327
Asteroid families are groupings of minor planets identified by clustering in their proper orbital elements; these objects have spectral signatures consistent with an origin in the break-up of a common parent body. From the current values of proper semimajor axes a of family members one might hope to estimate the ejection velocities with which the fragments left the putative break-up event (assuming that the pieces were ejected isotropically). However, the ejection velocities so inferred are consistently higher than N-body and hydro-code simulations, as well as laboratory experiments, suggest. To explain this discrepancy between today’s orbital distribution of asteroid family members and their supposed launch velocities, we study whether asteroid family members might have been ejected from the collision at low speeds and then slowly drifted to their current positions, via one or more dynamical processes. Studies show that the proper a of asteroid family members can be altered by two mechanisms: (i) close encounters with massive asteroids, and (ii) the Yarkovsky non-gravitational effect. Because the Yarkovsky effect for kilometer-sized bodies decreases with asteroid diameter D, it is unlikely to have appreciably moved large asteroids (say those with D > 15 km) over the typical family age (1-2 Gyr).For this reason, we numerically studied the mobility of family members produced by close encounters with main-belt, non-family asteroids that were thought massive enough to significantly change their orbits over long timescales. Our goal was to learn the degree to which perturbations might modify the proper a values of all family members, including those too large to be influenced by the Yarkovsky effect. Our initial simulations demonstrated immediately that very few asteroids were massive enough to significantly alter relative orbits among family members. Thus, to maximize gravitational perturbations in our 500-Myr integrations, we investigated the effect of close encounters on two families, Gefion and Adeona, that have high encounter probabilities with 1 Ceres, by far the largest asteroid in the main belt. Our results show that members of these families spreads in a of less than 5% since their formation. Thus gravitational interactions cannot account for the large inferred escape velocities.The effect of close encounters with massive asteroids is, however, not entirely negligible. For about 10% of the simulated bodies, close encounters increased the “inferred” ejection velocities from sub-100 m/s to values greater than 100 m/s, beyond what hydro-code and N-body simulations suggest are the maximum possible initial ejection velocity for members of Adeona and Gefion with D > 15 km. Thus this mechanism of mobility may be responsible for the unusually high inferred ejection speeds of a few of the largest members of these two families.To understand the orbital evolution of the entire family, including smaller members, we also performed simulations to account for the drift of smaller asteroids caused by the Yarkovsky effect. Our two sets of simulations suggest that the two families we investigated are relatively young compared to larger families like Koronis and Themis, which have estimated ages of about 2 Byr. The Adeona and Gefion families seems to be no more than 600 and 850 Myr old, respectively.  相似文献   

4.
Being the products of energetic collisional events, asteroid families provide a fundamental body of evidence to test the predictions of theoretical and numerical models of catastrophic disruption phenomena. The goal is to obtain, from current physical and dynamical data, reliable inferences on the original disruption events that produced the observed families. The main problem in doing this is recognizing, and quantitatively assessing, the importance of evolutionary phenomena that have progressively changed the observable properties of families, due to physical processes unrelated to the original disruption events. Since the early 1990s, there has been a significant evolution in our interpretation of family properties. New ideas have been conceived, primarily as a consequence of the development of refined models of catastrophic disruption processes, and of the discovery of evolutionary processes that had not been accounted for in previous studies. The latter include primarily the Yarkovsky and Yarkovsky-O’Keefe-Radzvieski-Paddack (YORP) effects—radiation phenomena that can secularly change the semi-major axis and the rotation state. We present a brief review of the current state of the art in our understanding of asteroid families, point out some open problems, and discuss a few likely directions for future developments.  相似文献   

5.
Insights into collisional physics may be obtained by studying the asteroid belt, where large-scale collisions produced groups of asteroid fragments with similar orbits and spectra known as the asteroid families. Here we describe our initial study of the Karin cluster, a small asteroid family that formed 5.8±0.2 Myr ago in the outer main belt. The Karin cluster is an ideal ‘natural laboratory’ for testing the codes used to simulate large-scale collisions because the observed fragments produced by the 5.8-Ma collision suffered apparently only limited dynamical and collisional erosion. To date, we have performed more than 100 hydrocode simulations of impacts with non-rotating monolithic parent bodies. We found good fits to the size-frequency distribution of the observed fragments in the Karin cluster and to the ejection speeds inferred from their orbits. These results suggest that the Karin cluster was formed by a disruption of an ≈33-km-diameter asteroid, which represents a much larger parent body mass than previously estimated. The mass ratio between the parent body and the largest surviving fragment, (832) Karin, is ≈0.15-0.2, corresponding to a highly catastrophic event. Most of the parent body material was ejected as fragments ranging in size from yet-to-be-discovered sub-km members of the Karin cluster to dust grains. The impactor was ≈5.8 km across. We found that the ejections speeds of smaller fragments produced by the collision were larger than those of the larger fragments. The mean ejection speeds of >3-km-diameter fragments were . The model and observed ejection velocity fields have different morphologies perhaps pointing to a problem with our modeling and/or assumptions. We estimate that ∼5% of the large asteroid fragments created by the collision should have satellites detectable by direct imaging (separations larger than 0.1 arcsec). We also predict a large number of ejecta binary systems with tight orbits. These binaries, located in the outer main belt, could potentially be detected by lightcurve observations. Hydrocode modeling provides important constraints on the interior structure of asteroids. Our current work suggests that the parent asteroid of the Karin cluster may have been an unfractured (or perhaps only lightly fractured) monolithic object. Simulations of impacts into fractured/rubble pile targets were so far unable to produce the observed large gap between the first and second largest fragment in the Karin cluster, and the steep slope at small sizes (≈6.3 differential index). On the other hand, the parent asteroid of the Karin cluster was produced by an earlier disruptive collision that created the much larger, Koronis family some 2-3 Gyr ago. Standard interpretation of hydrocode modeling then suggests that the parent asteroid of the Karin cluster should have been formed as a rubble pile from Koronis family debris. We discuss several solutions to this apparent paradox.  相似文献   

6.
We review the results of an extensive campaign to determine the physical, geological, and dynamical properties of asteroid (101955) Bennu. This investigation provides information on the orbit, shape, mass, rotation state, radar response, photometric, spectroscopic, thermal, regolith, and environmental properties of Bennu. We combine these data with cosmochemical and dynamical models to develop a hypothetical timeline for Bennu's formation and evolution. We infer that Bennu is an ancient object that has witnessed over 4.5 Gyr of solar system history. Its chemistry and mineralogy were established within the first 10 Myr of the solar system. It likely originated as a discrete asteroid in the inner Main Belt approximately 0.7–2 Gyr ago as a fragment from the catastrophic disruption of a large (approximately 100‐km), carbonaceous asteroid. It was delivered to near‐Earth space via a combination of Yarkovsky‐induced drift and interaction with giant‐planet resonances. During its journey, YORP processes and planetary close encounters modified Bennu's spin state, potentially reshaping and resurfacing the asteroid. We also review work on Bennu's future dynamical evolution and constrain its ultimate fate. It is one of the most Potentially Hazardous Asteroids with an approximately 1‐in‐2700 chance of impacting the Earth in the late 22nd century. It will most likely end its dynamical life by falling into the Sun. The highest probability for a planetary impact is with Venus, followed by the Earth. There is a chance that Bennu will be ejected from the inner solar system after a close encounter with Jupiter. OSIRIS‐REx will return samples from the surface of this intriguing asteroid in September 2023.  相似文献   

7.
Based on archival Hubble Space Telescope ACS/WFC images, we have performed stellar photometry for the young tidal dwarf galaxy Ho IX. We have determined that star formation in Ho IX began 110 Myr ago and ended 20 Myr ago. We have identified 20 young star clusters in the galaxy with ages from 25 to 100 Myr. For the main star-forming region of Ho IX along one direction, we have determined the change in the number density of stars with three ages: 30, 50, and 90 Myr. A relation has been found between the ages of stars and the spatial sizes of the subsystem formed by them. This relation can be explained by expansion of the stellar subsystems. Under this assumption, the expansion velocity is 9.8 km s?1 as the age changes from 50 to 90 Myr. Edge-on low-mass late-type galaxies have similar relations between the ages and sizes of their stellar subsystems.  相似文献   

8.
Abstract— The hypothesis of a lunar cataclysmic cratering episode between 3.8 and 3.9 Gyr ago lacks proof. Its strongest form proposes no cratering before about 4.0 Gyr, followed by catastrophic formation of most lunar craters and basins in >200 Myr. The premise that “zero impact melts implies zero impacts” is disproved by data from asteroids, on which early collisions clearly occurred, but from which early impact melts are scarce. Plausible cataclysm models imply that any cataclysm should have affected the whole inner solar system, but among available lunar and asteroid impact melt and impact age resetting data, a narrow, strong 3.8–3.9 Gyr spike in ages is seen only in the region sampled by Apollo/Luna. Reported lunar meteorite data do not show the spike. Asteroid data show a broader, milder peak, spreading from about 4.2 to 3.5 Gyr. These data suggest either that the spike in Apollo impact melt ages is associated with unique lunar front side events, or that the lunar meteorites data represent different kinds of events than the Apollo/Luna data. Here, we develop an alternate “megaregolith evolution” hypothesis to explain these data. In this hypothesis, early impact melts are absent not because there were no impacts, but because the high rate of early impacts led to their pulverization. The model estimates survival halflives of most lunar impact melts prior to 4.1 Gyr at >100 Myr. After a certain time, Tcritical ?4.0 Gyr, impact melts began to survive to the present. The age distribution differences among impact melts and plutonic rocks are controlled by, and hold clues to, the history of regolith evolution and the relative depths of sequestration of impact melts versus plutonic rocks, both among lunar and asteroidal samples. Both the “zero cratering, then cataclysm” hypothesis and the “megaregolith evolution” hypothesis require further testing, especially with lunar meteorite impact melt studies.  相似文献   

9.
The first results of the observational program devoted to simultaneous investigation of asteroid polarimetric and photometric opposition phenomena are presented. UBVRI polarimetric and V-band photometric observations of the S-type Asteroid 20 Massalia and the E-type Asteroids 214 Aschera and 620 Drakonia were carried out in 1996-1999 down to phase angles of 0.08°, 0.7°, and 1.2°, correspondingly. The S-type Asteroid 20 Massalia is characterized by the pronounced brightness opposition surge with an amplitude larger than that observed for the E-type asteroids. A sharp peak of negative polarization at small phase angles was not observed for this asteroid. The value of polarization degree at phase angle α<1° is less than 0.5% for both S and E types. The negative polarization branches of S and especially E-asteroids have an asymmetrical shape. The phase angle at which the polarization minimum occurs is close to the angle at which non-linear increase begins in the asteroid magnitude phase curves. A relation of the observed effects to the mechanism of coherent backscattering is discussed.  相似文献   

10.
The Karin cluster is one of the youngest known families of main-belt asteroids, dating back to a collisional event only 5.8±0.2 Myr ago. Using the Spitzer Space Telescope we have photometrically sampled the thermal continua (3.5-22 μm) of 17 Karin cluster asteroids of different sizes, down to the smallest members discovered so far, in order to make the first direct measurements of their sizes and albedos and study the physical properties of their surfaces. Our targets are also amongst the smallest main-belt asteroids observed to date in the mid-infrared. The derived diameters range from 17.3 km for 832 Karin to 1.5 km for 75176, with typical uncertainties of 10%. The mean albedo is pv=0.215±0.015, compared to 0.20±0.07 for 832 Karin itself (for H=11.2±0.3), consistent with the view that the Karin asteroids are closely related physically as well as dynamically. The albedo distribution (0.12?pv?0.32) is consistent with the range associated with S-type asteroids but the variation from one object to another appears to be significant. Contrary to the case for near-Earth asteroids, our data show no evidence of an albedo dependence on size. However, the mean albedo is lower than expected for young, fresh “S-type” surfaces, suggesting that space weathering can darken main-belt asteroid surfaces on very short timescales. Our data are also suggestive of a connection between surface roughness and albedo, which may reflect rejuvenation of weathered surfaces by impact gardening. While the available data allow only estimates of lower limits for thermal inertia, we find no evidence for the relatively high values of thermal inertia reported for some similarly sized near-Earth asteroids. Our results constitute the first observational confirmation of the legitimacy of assumptions made in recent modeling of the formation of the Karin cluster via a single catastrophic collision 5.8±0.2 Myr ago.  相似文献   

11.
We predict that when Asteroid 2004 MN4 passes 5.6±1.4 Earth radii from Earth's center on April 13, 2029, terrestrial torques during the flyby will alter its spin state in a dramatic manner that will be observable using groundbased telescopes. Although the asteroid will most likely not undergo catastrophic disruption, it may be subject to localized failure across its surface and interior, providing a unique opportunity to measure otherwise inaccessible mechanical properties of an asteroid.  相似文献   

12.
Abstract— Radiochronometry of L chondritic meteorites yields a rough age estimate for a major collision in the asteroid belt about 500 Myr ago. Fossil meteorites from Sweden indicate a highly increased influx of extraterrestrial matter in the Middle Ordovician ~480 Myr ago. An association with the L‐chondrite parent body event was suggested, but a definite link is precluded by the lack of more precise radiometric ages. Suggested ages range between 450 ± 30 Myr and 520 ± 60 Myr, and can neither convincingly prove a single breakup event, nor constrain the delivery times of meteorites from the asteroid belt to Earth. Here we report the discovery of multiple 40Ar‐39Ar isochrons in shocked L chondrites, particularly the regolith breccia Ghubara, that allow the separation of radiogenic argon from multiple excess argon components. This approach, applied to several L chondrites, yields an improved age value that indicates a single asteroid breakup event at 470 ± 6 Myr, fully consistent with a refined age estimate of the Middle Ordovician meteorite shower at 467.3 ± 1.6 Myr (according to A Geologic Time Scale 2004). Our results link these fossil meteorites directly to the L‐chondrite asteroid destruction, rapidly transferred from the asteroid belt. The increased terrestrial meteorite influx most likely involved larger projectiles that contributed to an increase in the terrestrial cratering rate, which implies severe environmental stress.  相似文献   

13.
Asteroid families are the remnants of catastrophic collisions, and their fundamental physical properties provide us the information of their parent bodies and thereafter dynamical evolutions. Especially, the orbit and spin characteristics can reveal the influences of the Yarkovsky effect and the Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) effect on the evolution of the asteroid family, respectively. Based on the Asteroid Lightcurve Database (LCDB), the spin rate distribution of the Flora asteroid family is studied, and a tendency that the spin rates of the small Flora family members concentrate primarily in the range of 3–5 d?1 is found. The analysis on the spin states of the Flora family asteroids tells that most of these asteroid family members are in the prograde spinning state. However, for the Flora family members with an orbital semi-major axis smaller than 2.2 au, the ratio between the number of prograde spinning members and that of retrograde ones is close to that of the near-Earth asteroids, namely 1 : 3. Furthermore, for those prograde spinning Flora family asteroids with an orbital semi-major axis larger than 2.2 au, a portion of them exhibit the aggregation in the distribution of orbital semi-major axis against the absolute magnitude, and in which nine members show the features similar to the Slivan state.  相似文献   

14.
小行星族作为灾变碰撞的残留物,其基础物理性质提供了其母体以及后续演化信息.其中轨道以及自转特性分别反映了Yarkovsky效应以及Yarkovsky-O’Keefe-Radzievskii-Paddack效应(YORP效应)对于小行星族演化的影响.基于小行星光变数据库(Asteroid Lightcurve Database),通过对Flora小行星族自转速率分布进行研究,发现随着直径减小,族成员自转速率倾向于主要集中在3–5 d-1的范围内.同时,可以注意到Flora小行星族整体表现出更倾向于顺行自转状态的现象,但对于轨道半长轴小于2.2au的成员来说,其顺行自转与逆行自转状态成员数目比接近于近地小行星中顺逆行自转状态源1:3的比例;此外,对于轨道半长轴大于2.2 au且具有顺行自转状态的部分族成员,在轨道半长轴-绝对星等分布中表现出聚集现象,并在聚集区域中有9颗成员展现出类似Slivan状态特征.  相似文献   

15.
K. Tsiganis  Z. Kne?evi? 《Icarus》2007,186(2):484-497
The family of (490) Veritas is a young, dynamically heterogeneous asteroid family, located in the outer main belt. As such, it represents a valuable example for studying the effects of chaotic diffusion on the shape of asteroid families. The Veritas family can be decomposed into several groups, in terms of the principal mechanisms that govern the local dynamics, which are analyzed here. A relatively large spread in proper eccentricity is observed, for the members of two chaotic groups. We show that different types of chaos govern the motion of bodies within each group, depending on the extent of overlap among the components of the corresponding resonant multiplets. In particular, one group appears to be strongly diffusive, while the other is not. Studying the evolution of the diffusive group and applying statistical methods, we estimate the age of the family to be τ=(8.7±1.7) Myr. This value is statistically compatible with that of 8.3 Myr previously derived by Nesvorný et al. [Nesvorný, D., Bottke, W.F., Levison, H.F., Dones, L., 2003. Astrophys. J. 591, 486-497], who analyzed the secular evolution of family members on regular orbits. Our methodology, applied here in the case of the Veritas family, can be used to reconstruct the orbital history of other, dynamically complex, asteroid families and derive approximate age estimates for young asteroid families, located in diffusive regions of the main belt. Possible refinements of the method are also discussed.  相似文献   

16.
Edward F. Tedesco 《Icarus》1979,40(3):375-382
Evidence is presented indicating that the Flora family is of common origin. The distribution of proper elements and physical properties of Flora-family asteroids are compared with those of families believed to have formed from the catastrophic disruption of parent bodies. Differences in these orbital and physical properties suggest that the creation of the Flora family was more complex. Available evidence concerning the Flora family, together with recent models for the collisional evolution of the asteroids, suggests that this family may have originated from a binary or multiple asteroid. A mechanism in which the Flora family may have been produced by the disruption of a former major satellite of 8 Flora is presented and compared with other possible modes of formation.  相似文献   

17.
Based on the epicyclic approximation, we have simulated the motion of the young open star clusters IC 4665 and Collinder 359. The separation between the cluster centers is shown to have been minimal 7 Myr ago, 36 pc. We have established a close evolutionary connection between IC 4665 and the Scorpius-Centaurus association — the separation between the centers of these structures was ≈200 pc 15 Myr ago. In addition, the center of IC 4665 at this time was near two well-known regions of coronal gas: the Local Bubble and the North Polar Spur. The star HIP 86768 is shown to be one of the candidates for a binary (in the past) with the pulsar PSR B1929+10. At the model radial velocity of the pulsar V r = 2 ± 50 km s?1, a close encounter of this pair occurs in the vicinity of IC 4665 at a time of ?1.1 Myr. At the same time, using currently available data for the pulsar B1929+10 at its model radial velocity V r = 200 ± 50 km s?1, we show that the hypothesis of Hoogerwerf et al. (2001) about the breakup of the ζ Oph-B1929+10 binary in the vicinity of Upper Scorpius (US) about 0.9 Myr ago is more plausible.  相似文献   

18.
During its close Earth approach in 2001, the E-class near-Earth Asteroid (33342) 1998 WT24 was the focus of extensive radar, optical, and thermal infrared observations. We present a physical model of this object, estimated from Arecibo and Goldstone radar images that cover multiple rotations and span over 100° of sky motion. The asteroid has an equivalent diameter of 415±40 m and a diffuse radar scattering law that is identical in both senses of circular polarization, implying a surface that is extremely rough on centimeter-to-decimeter scales. The shape is dominated by three large basins, which may be impact craters or a relic of past dynamical disruption of the object. Analysis of YORP perturbations on WT24's spin state predicts that the asteroid's spin rate is decreasing at a rate of . Simply extrapolating this rate suggests that the asteroid will despin over the next 150 kyr and was spinning at its surface disruption rate 75 kyr ago, but the rotational evolution of WT24 depends on the surface's thermal properties and probably is more complex than a simple spin-down.  相似文献   

19.
Crater counts at lunar landing sites with measured ages establish a steep decline in cratering rate during the period ∼3.8 to ∼3.1 Gyr ago. Most models of the time dependence suggest a roughly constant impact rate (within factor ∼2) after about 3 Gyr ago, but are based on sparse data. Recent dating of impact melts from lunar meteorites, and Apollo glass spherules, clarifies impact rates from ∼3.2 to ∼2 Gyr ago or less. Taken together, these data suggest a decline with roughly 700 Myr half-life around 3 Gyr ago, and a slower decline after that, dropping by a factor ∼3 from about ∼2.3 Gyr ago until the present. Planetary cratering involved several phases with different time behaviors: (1) rapid sweep-up of most primordial planetesimals into planets in the first hundred Myr, (2) possible later effects of giant planet migration with enhanced cratering, (3) longer term sweep-up of leftover planetesimals, and finally (4) the present long-term “leakage” of asteroids from reservoirs such as the main asteroid belt and Kuiper belt. In addition, at any given point on the Moon, a pattern of “spikes” (sharp maxima of relatively narrow time width) will appear in the production rate of smaller craters (?500 m?), not only from secondary debris from large primary lunar impacts at various distances from the point in question, but also from asteroid breakups dotted through Solar System history. The pattern of spikes varies according to type of sample being measured (i.e., glass spherules vs impact melts). For example, several data sets show an impact rate spike ∼470 Myr ago associated with the asteroid belt collision that produced the L chondrites (see Section 3.6 below). Such spikes should be less prominent in the production record of craters of D? few km. These phenomena affect estimates of planetary surfaces ages from crater counts, as discussed in a companion paper [Quantin, C., Mangold, N., Hartmann, W.K., Allemand, P., 2007. Icarus 186, 1-10]. Fewer impact melts and glass spherules are found at ∼3.8 Gyr than at ∼3.5 Gyr ago, even though the impact rate itself is known to have been higher at 3.8 Gyr ago than 3.5 Gyr. This disproves the assertion by Ryder [Ryder, G., 1990. EOS 71, 313, 322-323] and Cohen et al. [Cohen, B.A., Swindle, T.D., Kring, D.A., 2000. Science 290, 1754-1756] that ancient impact melts are a direct proxy for ancient impact (cf. Section 3.3). This result raises questions about how to interpret cratering history before 3.8 Gyr ago.  相似文献   

20.
The Japanese spacecraft Hayabusa is planed to reach the Asteroid Itokawa in September 2005, and to bring back some samples of its surface to Earth in 2007. We have studied the future possible evolution of this asteroid by integrating numerically over 100 Myr a set of 39 initially indistinguishable orbits (clones), obtained either by small variations of the nominal initial conditions, or by using different computers (introducing different round-off errors). The results indicate that an Earth impact of this 500-m-size asteroid is likely within a million years, which is only a factor of four larger than the average impact frequency of asteroids of this size. The mission Hayabusa may thus sample a good candidate for being among the next 500-m-size Earth impactors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号