首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We test different possibilities for the origin of short-period comets captured from the Oort Cloud. We use an efficient Monte Carlo simulation method that takes into account non-gravitational forces, Galactic perturbations, observational selection effects, physical evolution and tidal splittings of comets. We confirm previous results and conclude that the Jupiter family comets cannot originate in the spherically distributed Oort Cloud, since there is no physically possible model of how these comets can be captured from the Oort Cloud flux and produce the observed inclination and Tisserand constant distributions. The extended model of the Oort Cloud predicted by the planetesimal theory consisting of a non-randomly distributed inner core and a classical Oort Cloud also cannot explain the observed distributions of Jupiter family comets. The number of comets captured from the outer region of the Solar system are too high compared with the observations if the inclination distribution of Jupiter family comets is matched with the observed distribution. It is very likely that the Halley-type comets are captured mainly from the classical Oort Cloud, since the distributions in inclination and Tisserand value can be fitted to the observed distributions with very high confidence. Also the expected number of comets is in agreement with the observations when physical evolution of the comets is included. However, the solution is not unique, and other more complicated models can also explain the observed properties of Halley-type comets. The existence of Jupiter family comets can be explained only if they are captured from the extended disc of comets with semimajor axes of the comets   a <5000 au  . The original flattened distribution of comets is conserved as the cometary orbits evolve from the outer Solar system era to the observed region.  相似文献   

2.
Meteor showers have been observed for a considerable time, and the cause, meteoroids from a meteoroid stream ablating in the Earth's atmosphere, has also been understood for centuries. The connection between meteoroid streams and comets was also established 150 years ago. Since that time our ability both to understand the physics and to numerically model the situation has steadily increased. We will review the current state of knowledge. However, just as there are differences between the behaviour of long period comets, Halley family comets and Jupiter family comets, so also differences exist between the associated meteoroid streams. Streams associated with Jupiter family comets show much more variety in their behaviour, driven by the gravitational perturbations from Jupiter. The more interesting showers associated with Jupiter family comets will be discussed individually.  相似文献   

3.
W.M. Grundy 《Icarus》2009,199(2):560-563
The extremely red colors of some transneptunian objects and Centaurs are not seen among the Jupiter family comets which supposedly derive from them. Could this mismatch result from sublimation loss of colorless ice? Radiative transfer models show that mixtures of volatile ice and non-volatile organics could be extremely red, but become progressively darker and less red as the ice sublimates away.  相似文献   

4.
The distributions of long-period comets with respect to the minimum distance Δ between their orbits and the orbit of Saturn or Jupiter, constructed by Konopleva using data up to 1972, exhibit a sharp peak at Δ<0.5 au for the Saturnian family, while being fairly monotonic for Jupiter. Hence, in view of the appreciable eccentricity of Saturn's orbit and the rotation of its perihelion longitude with a period of 47 kyr, the conclusion was drawn by Drobyshevski that the objects belonging to this peak are young (10 kyr).
Similar distributions constructed using more recent data show less pronounced differences between one another. Analysis of the distributions for various epochs shows that the initially noted difference is due to observational selection, being inherent to brighter comets. Since on average the cometary activity fades with age, the conclusion that the Saturnian family comets, forming the peak at Δ<0.5 au, are young is all the more substantiated. The question concerning the origin of these comets, which in all likelihood were ejected over a period of a decade from deep inside the Saturnian sphere of influence , is still open. The only self-consistent hypothesis that we see now is that of their appearance as a result of an explosion of the electrolysed ice envelope of Titan. We encourage the development of other explanations.  相似文献   

5.
As any comet nears the Sun, gas sublimes from the nucleus taking dust with it. Jupiter family comets are no exception. The neutral gas becomes ionized, and the interaction of a comet with the solar wind starts with ion pickup. This key process is also important in other solar system contexts wherever neutral particles become ionized and injected into a flowing plasma such as at Mars, Venus, Io, Titan and interstellar neutrals in the solar wind. At comets, ion pickup removes momentum and energy from the solar wind and puts it into cometary particles, which are then thermalised via plasma waves. Here we review what comets have shown us about how this process operates, and briefly look at how this can be applied in other contexts. We review the processes of pitch angle and energy scattering of the pickup ions, and the boundaries and regions in the comet-solar wind interaction. We use in-situ measurements from the four comets visited to date by spacecraft carrying plasma instrumentation: 21P/Giacobini-Zinner, 1P/Halley, 26P/Grigg-Skjellerup and 19P/Borrelly, to illustrate the process in action. While, of these, comet Halley is not a Jupiter class comet, it has told us the most about cometary plasma environments. The other comets, which are from the Jupiter family, give an interesting comparison as they have lower gas production rates and less-developed interactions. We examine the prospects for Rosetta at comet Churyumov-Gerasimenko, another Jupiter family comet where a wide range of gas production rates will be studied.  相似文献   

6.
Two asteroids 2001 QQ199 and 2004 AE9 and two comets P/LINEAR-Catalina and P/LINEAR are found to be quasi-satellites of Jupiter at present time. The Tisserand parameters of these four bodies lie between 2.3 and 2.5, which means two asteroids might be Jupiter family comets and will show a cometary’s activity in the near future.  相似文献   

7.
The numbered Jupiter family comets (orbital periods   P < 20 yr  ) have a median orbital inclination of about     . In this paper, we integrate the orbits of these comets into the future, under the influence of both typical non-gravitational forces and planetary perturbation, using a Bulirsch–Stoer integrator. In the case where non-gravitational forces were not acting, the median inclination of those comets that remained on   P < 20 yr  orbits increased at the rate of  (1.92 ± 0.12) × 10−3 deg yr−1  for the first 3600 yr of the integration. During this time the population of the original family decreases, such that the half-life is about 13 200 ± 800 yr. The introduction of non-gravitational forces slows down the rate of increase in inclination to a value of around  (1.23 ± 0.16) × 10−3 deg yr−1  . This rate of increase in inclination was found to be only weakly dependent on the non-gravitational parameters used during the integration. After a few thousand years, the rate of change in inclination decreases, and after 20 000 yr the inclinations of those initial Jupiter family members that still have orbits with   P < 20 yr  become constant at about     , independent of whether non-gravitational forces are acting or not. The presently known Jupiter family of comets is losing members at the rate of one in every 67 yr. To maintain the family in equilibrium, Jupiter has to capture comets at a similar rate, and these captured comets have to be of low inclination to compensate for the pumping up of inclinations by gravitational perturbation.  相似文献   

8.
Both physical and dynamical issues are important in order to judge the origin and evolution of the Jupiter family of short-period comets. The steady-state condition for maintaining this structure at its present size by captures from the classical Oort cloud is reviewed on the basis of recent results concerning the absolute number of Jupiter family comets as a function of perihelion distance as well as the coupled physical and dynamical evolutions that evidently occur. Like in most earlier investigations, a clear shortage is found in the classical Oort cloud source. The shortage seems, however, less extreme than sometimes assumed. Monte Carlo simulations are envisaged as a way to shed further light on the fate of Jupiter family comets.  相似文献   

9.
Long-period (LP) comets, Halley-type (HT) comets, and even some comets of the Jupiter family, probably come from the Oort cloud, a huge reservoir of icy bodies that surrounds the solar system. Therefore, these comets become important probes to learn about the distant Oort cloud population. We review the fundamental dynamical properties of LP comets, and what is our current understanding of the dynamical mechanisms that bring these bodies from the distant Oort cloud region to the inner planetary region. Most new comets have original reciprocal semimajor axes in the range2 × 10-5 < 1/aorig < 5 × 10-5AU-1. Yet, this cannot be taken to represent the actual space distribution of Oort cloud comets, but only the region in the energy space in which external perturbers have the greatest efficiency in bringing comets to the inner planetary region. The flux of Oort cloud comets in the outer planetary region is found to be at least several tens times greater than the flux in the inner planetary region. The sharp decrease closer to the Sun is due to the powerful gravitational fields of Jupiter and Saturn that prevent most Oort cloud comets from reaching the Earth’s neighborhood (they act as a dynamical barrier). A small fraction of ~10-2 Oort cloud comets become Halley type (orbital periods P < 200 yr), and some of them can reach short-period orbits with P < 20 yr. We analyze whether we can distinguish the latter, very ‘old” LP comets, from comets of the Jupier family coming from the Edgeworth-Kuiper belt.  相似文献   

10.
An attempt is made to determine the spatial location of the main source of short-period comet nuclei. Numerical calculations for the orbital evolution of Jupiter family comets, medium-period comets, and Centaurs are used to show that the orbits of small solar system bodies tend to evolve in the direction of increasing semimajor axes. This relates to bodies that can experience encounters with planets and whose orbital evolution is shaped by gravitational perturbations. It is concluded that there is good reason to search for the main source of the nuclei of Jupiter family comets at distances of 6 AU or less from the sun.  相似文献   

11.
Nurmi  P.  Valtonen  M. J.  Zheng  J. Q.  Mikkola  S.  Rickman  H. 《Earth, Moon, and Planets》1997,77(3):239-244
We have developed an efficient Monte Carlo method by which we can evaluate the evolution of comets. There are many poorly known evolutional parameters, and we have investigated the influence of these parameters on the final populations and the inclination distributions of short-period comets. We compare the observed and calculated inclination distributions of different comet populations and obtain a good fit for the inclinations of the Jupiter family comets by assuming a mantle blow-off and a sudden brightening of the comet when its perihelion distance is lowered in a major jump. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Jupiter‐family comets (JFCs) may often, closely and/or slowly approach Jupiter. A list of their close approaches within 0.21 AU from Jupiter between 1970 and 2030 is presented to determine the typical changes in some of their orbital elements and their relation to any triggered activity. A few JFCs from the list were temporary satellites of Jupiter. There are also several JFCs which originally had asteroidal provisional designations due to their low activity at discovery. But Jupiter is also approached by asteroids. The presented list of their approaches within 0.60 AU from Jupiter between 1960 and 2040, together with their orbital changes can be compared with the list of comets. Some of the orbital changes are large enough to cause an extremely low or short‐lived activity. Usually, quick and dedicated observations by large‐aperture telescopes are missing to confirm or refute it. Currently, the most important cometary candidate among Jupiter approaching asteroids is 2004 FY140. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Oort cloud comets occasionally obtain orbits which take them through the planetary region. The perturbations by the planets are likely to change the orbit of the comet. We model this process by using a Monte Carlo method and cross sections for orbital changes, i.e. changes in energy, inclination and perihelion distance, in a single planet-comet encounter. The influence of all major planets is considered. We study the distributions of orbital parameters of observable comets, i.e. those which have perihelion distance smaller than a given value. We find that enough comets are captured from the Oort cloud in order to explain the present populations of short period comets. The median value of cos i for the Jupiter family is 0.985 while it is 0.27 for the Halley types. The results may explain the orbital features of short period comets, assuming that the active lifetime of a comet is not much greater than 400 orbital revolutions.  相似文献   

14.
The capture of comets with parabolic orbits by Jupiter is investigated. The influence of the gravitational force of the Sun on the cometary orbit during the passage of Jupiter's sphere of influence is taken into account. A comparison of the present results with previous calculations demonstrate the importance of the solar perturbations.It is also shown that captures of comets with parabolic orbits and repeated close passages to Jupiter cannot explain all of the observed cometary orbits found in the family of Jupiter.  相似文献   

15.
Oort cloud comets occasionally obtain orbits which take them through the planetary region. The perturbations by the planets are likely to change the orbit of the comet. We model this process by using a Monte Carlo method and cross sections for orbital changes, i.e. changes in energy, inclination and perihelion distance, in a single planet-comet encounter. The influence of all major planets is considered. We study the distributions of orbital parameters of observable comets, i.e. those which have perihelion distance smaller than a given value. We find that enough comets are captured from the Oort cloud in order to explain the present populations of short period comets. The median value of cos i for the Jupiter family is 0.985 while it is 0.27 for the Halley types. The results may explain the orbital features of short period comets, assuming that the active lifetime of a comet is not much greater than 400 orbital revolutions.  相似文献   

16.
Time variation in impact probability is studied by assuming that the periodic flux of the Oort Cloud comets within 15 au arises from the motion of the Sun with respect to the Galactic mid-plane. The periodic flux clearly shows up in the impact rate of the captured Oort Cloud cometary population, with a phase shift caused by the orbital evolution. Depending on the assumed flux of comets and the size distribution of comets, the impact rate of the Oort Cloud comets of 1 km in diameter or greater is from 5 to 700 impacts Myr−1 on the Earth and from 0.5 to 70 impacts per 1000 yr on Jupiter. The relative fractions of impacts are 0.09, 0.11, 0.26 and 0.54 for long-period comets, Halley type comets, Jupiter family comets and near-Earth objects, respectively. For Jupiter, the corresponding fractions in the first three categories are 0.18, 0.31 and 0.51. If we consider physical fading of comet activity that is compatible with the observations, then the impact rates of active comets are two orders of magnitude smaller than the total impact rates by all kinds of comets and cometary asteroids of size 1 km or greater.  相似文献   

17.
Abstract– The solid 2–10 μm samples of comet Wild 2 provide a limited but direct view of the solar nebula solids that accreted to form Jupiter family comets. The samples collected by the Stardust mission are dominated by high‐temperature materials that are closely analogous to meteoritic components. These materials include chondrule and CAI‐like fragments. Five presolar grains have been discovered, but it is clear that isotopically anomalous presolar grains are only a minor fraction of the comet. Although uncertain, the presolar grain content is perhaps higher than found in chondrites and most interplanetary dust particles. It appears that the majority of the analyzed Wild 2 solids were produced in high‐temperature “rock forming” environments, and they were then transported past the orbit of Neptune, where they accreted along with ice and organic components to form comet Wild 2. We hypothesize that Wild 2 rocky components are a sample of a ubiquitously distributed flow of nebular solids that was accreted by all bodies including planets and meteorite parent bodies. A primary difference between asteroids and the rocky content of comets is that comets are dominated by this widely distributed component. Asteroids contain this component, but are dominated by locally made materials that give chondrite groups their distinctive properties. Because of the large radial mixing in this scenario, it seems likely that most comets contain a similar mix of rocky materials. If this hypothesis is correct, then properties such as oxygen isotopes and minor element abundances in olivine, should have a wider dispersion than in any chondrite group, and this may be a characteristic property of primitive outer solar system bodies made from widely transported components.  相似文献   

18.
The possibility of impacts and their results in relation to the cometary outbursts between comets and other small bodies in the solar system has been investigated. Taking into consideration certain physical features of cometary nuclei and impacting bodies, the probability of impacts of small bodies moving in the main asteroid belt with hypothetical comets which represent three types: Jupiter family comets, Halley family comets and long period comets has been computed. The probability of impacts between comets and meteoroids at large heliocentric distances has also been estimated. Potential consequences of these events in relation to outbursts of the cometary brightness have been discussed. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
This paper studies the dynamical evolution of 97 Jupiter-family comets over an 800-year time period. More than two hundred encounters with Jupiter are investigated, with the observed comets moving during a certain period of time in an elliptic jovicentric orbit. In most cases this is an ordinary temporary satellite capture of a comet in Everhart??s sense, not associated with a transition of the small body into Jupiter??s family of satellites. The phenomenon occurs outside the Hill sphere with comets with a high Tisserand constant relative to Jupiter; the comets?? orbits have a small inclination to the ecliptic plane. An analysis of 236 encounters has allowed the determination within the planar pair two-body problem of a region of orbits in the plane (a, e) whose semimajor axes and eccentricities contribute to the phenomenon under study. Comets with orbits belonging to this region experience a temporary satellite capture during some of their encounters; the jovicentric distance function has several minima; and the encounters are characterized by reversions of the line of apsides and some others features of their combination that are intrinsic to comets in this region. Therefore, this region is called a region of comets with specific features in their encounters with Jupiter. Twenty encounters (out of 236), whereby the comet enters an elliptic jovicentric orbit in the Hill sphere, are identified and investigated. The size and shape of the elliptic heliocentric orbits enabling this transition are determined. It is found that in 11 encounters the motion of small bodies in the Hill sphere has features the most important of which is multiple minima of the jovicentric distance function. The study of these 20 encounters has allowed the introduction of the concept of temporary gravitational capture of a small body into the Hill sphere. An analysis of variations in the Tisserand constant in these (20) encounters of the observable comets shows that their motion is unstable in Hill??s sense.  相似文献   

20.
Several families of the planar general three-body problem for fixed values of the three masses are found, in a rotating frame of reference, where the mass of two of the bodies is small compared to the mass of the third body. These families were obtained by the continuation of a degenerate family of periodic orbits of three bodies where two of the bodies have zero masses and describe circular orbits around a third body with finite mass, in the same direction.The above families represent planetary systems with the body with the large mass representing the Sun and the two small bodies representing two planets or comets. One section of a family is shown to represent the Jupiter family of comets and also a model for the Sun-Jupiter-Saturn system is found.The stability analysis revealed that stability exists for small masses and small eccentricities of the two planets. Planetary systems with relatively large masses and eccentricities are proved to be unstable. In particular, the Jupiter family of comets, for small masses of the two small bodies, and the Sun-Jupiter-Saturn system are proved to be stable. Also, it was shown that resonances are not necessarily associated with instabilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号