首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We develop a parametric fit to the results of a detailed magnetohydrodynamic (MHD) study of the response of ion escape rates (O+, and ) to strongly varied solar forcing factors, as a way to efficiently extend the MHD results to different conditions. We then use this to develop a second, evolutionary model of solar forced ion escape. We treat the escape fluxes of ion species at Mars as proportional to the product of power laws of four factors - that of the EUV flux Reuv, the solar wind particle density Rρ, its velocity (squared) Rv2, and the interplanetary magnetic field pressure RB2, where forcing factors are expressed in units of the current epoch-averaged values. Our parametric model is: , where ?(i) is the escape flux of ion i. We base our study on the results of just six provided MHD model runs employing large forcing factor variations, and thus construct a successful, first-order parametric model of the MHD program. We perform a five-dimensional least squares fit of this power law model to the MHD results to derive the flux normalizations and the indices of the solar forcing factors. For O+, we obtain the values, 1.73 × 1024 s−1, 0.782, 0.251, 0.382, and 0.214, for ?0, α, β, γ, and δ, respectively. For , the corresponding values are 1.68 × 1024 s−1, −0.393, 0.798, 0.967, and 0.533. For , they are 8.66 × 1022 s−1, −0.427, 1.083, 1.214, and 0.690. The fit reproduces the MHD results to an average error of about 5%, suggesting that the power laws are broadly representative of the MHD model results. Our analysis of the MHD model shows that by itself an increase in REUV enhances O+ loss, but suppresses the escape of and , whereas increases in solar wind (i.e., in , and RB2, with Reuv constant) favors the escape of heavier ions more than light ions. The ratios of escaping ions detectable at Mars today can be predicted by this parametric fit as a function of the solar forcing factors. We also use the parametric model to compute escape rates over martian history. This second parametric model expresses ion escape functions of one variable (per ion), ?(i) = ?0(i)(t/t0)ξ(i). The ξ(i) are linear combinations of the epoch-averaged ion escape sensitivities, which are seen to increase with ion mass. We integrate the and oxygen ion escape rates over time, and find that in the last 3.85 Gyr, Mars would have lost about mbars of , and of water (from O+ and ) from ion escape.  相似文献   

2.
We have studied the escape and energization of several O+ populations and an population at Mars by using a hybrid model. The quasi-neutral hybrid model, HYB-Mars model, included five oxygen ion populations making it possible to distinguish photoions from oxygen ions originating from charge exchange processes and from the ionosphere.We have identified two high-energy ion components and one low-energy ion component of oxygen. They have different spatial and energy distributions near Mars. The two high-energy oxygen ion components, consisting of a high-energy “beam” and a high-energy “halo”, have different origins. (1) The high-energy (>∼100 eV) “beam” of O+ and ions are originating from the ionosphere. These ions form a highly asymmetric spatial distribution of escaping oxygen ions with respect to the direction of the convective electric field in the solar wind. (2) The high-energy (>∼100 eV) “halo” component contains O+ ions which are formed from the oxygen neutral exosphere by extreme ultraviolet radiation (EUV) and by charge exchange processes. These energetic halo ions can be found all around Mars. (3) The low energy O+ and ions (<∼100 eV) form a relatively symmetric spatial distribution around the Mars-Sun line. They originate from the ionosphere and from charge exchange processes between protons and exospheric oxygen atoms.The existence of the low- and the high-energy oxygen components is in agreement with recent in situ plasma measurements made by the ASPERA-3 instrument on the Mars Express mission. The analysis of the escaping oxygen ions suggests that the global energization of escaping planetary ions in the martian tail is controlled by the convective electric field.  相似文献   

3.
This work presents model calculations of the diurnal airglow emissions from the OH Meinel bands and the O2 IR atmospheric band in the neutral atmosphere of Mars. A time-dependent photochemical model of the lower atmosphere below 80 km has been developed for this purpose. Special emphasis is placed on the nightglow emissions because of their potential to characterize the atomic oxygen profile in the 50-80 km region. Unlike on Earth, the OH Meinel emission rates are very sensitive to the details of the vibrational relaxation pathway. In the sudden death and collisional cascade limits, the maximum OH Meinel column intensities for emissions originating from a fixed upper vibrational level are calculated to be about 300 R, for transitions v=9→v?8, and 15,000 R, for transitions v=1→v=0, respectively. During the daytime the 1.27 μm emission from O2(), primarily formed from ozone photodissociation, is of the order of MegaRayleighs (MR). Due to the long radiative lifetime of O2(), a luminescent remnant of the dayglow extends to the dark side for about two hours. At night, excited molecular oxygen is expected to be produced through the three body reaction O + O + CO2. The column emission of this nighttime component of the airglow is estimated to amount to 25 kR. Both nightglow emissions, from the OH Meinel bands and the O2 IR atmospheric band, overlap in the 50-80 km region. Photodissociation of CO2 in the upper atmosphere and the subsequent transport of the atomic oxygen produced to the emitting layer are revealed as key factors in the nightglow emissions from these systems. The Mars 5 upper constraint for the product [H][O3] is revised on the basis of more recent values for the emission probabilities and collisional deactivation coefficients.  相似文献   

4.
We have used more than 4 years of Mars Express ion data to estimate the escape of heavy ions ( and ) from Mars. To take the limited field of view of the instrument into account, the data has been binned into spatial bins and angular bins to create average distribution functions for different positions in the near Mars space. The net escape flux for the studied low solar activity period, between May 2007 and May 2011, is 2.0 ± 0.2 × 1024 s−1. The escape has been calculated independently for four different quadrants in the YMSO − ZMSO plane, south, dusk, north and dawn. Escape is highest from the northern and dusk quadrants, 0.6 ± 0.1 × 1024 s−1, and smallest from the south and dawn quadrants, 0.4 ± 0.1 × 1024 s−1. The flux ratio of molecular ( and ) to O+ ions is 0.9 ± 0.1, averaged over all quadrants. The flux difference between the north and south quadrants is statistically significant, and is presumed to be due to the presence of significant crustal magnetic fields in the southern hemisphere, reducing the outflow. The difference between the dawn and dusk quadrants is likely due to the magnetic tension associated with the nominal Parker angle spiral, which should lead to higher average magnetic tension on the dusk side. The escape increases during periods of high solar wind flux and during times when co-rotating interaction regions (CIR) affect Mars. In the latter case the increase is a factor 2.4-2.9 as compared to average conditions.  相似文献   

5.
With 2 years of tracking data collection from the MRO spacecraft, there is noticeable improvement in the high frequency portion of the spherical harmonic Mars gravity field. The new JPL Mars gravity fields, MRO110B and MRO110B2, show resolution near degree 90. Additional years of MGS and Mars Odyssey tracking data result in improvement for the seasonal gravity changes which compares well to global circulation models and Odyssey neutron data and Mars rotation and precession (). Once atmospheric dust is accounted for in the spacecraft solar pressure model, solutions for Mars solar tide are consistent between data sets and show slightly larger values (k2 = 0.164 ± 0.009, after correction for atmospheric tide) compared to previous results, further constraining core models. An additional 4 years of Mars range data improves the Mars ephemeris, determines 21 asteroid masses and bounds solar mass loss (dGMSun/dt < 1.6 × 10−13 GMSun year−1).  相似文献   

6.
The Planetary Fourier Spectrometer (PFS) for the Mars Express mission is an infrared spectrometer optimised for atmospheric studies. This instrument has a short wave (SW) channel that covers the spectral range from 1700 to (1.2-) and a long-wave (LW) channel that covers 250- (5.5-). Both channels have a uniform spectral resolution of . The instrument field of view FOV is about 1.6° (FWHM) for the Short Wavelength channel (SW) and 2.8° (FWHM) for the Long Wavelength channel (LW) which corresponds to a spatial resolution of 7 and 12 km when Mars is observed from an height of 250  km. PFS can provide unique data necessary to improve our knowledge not only of the atmosphere properties but also about mineralogical composition of the surface and the surface-atmosphere interaction.The SW channel uses a PbSe detector cooled to 200-220 K while the LW channel is based on a pyroelectric (LiTaO3) detector working at room temperature. The intensity of the interferogram is measured every 150 nm of physical mirrors displacement, corresponding to 600 nm optical path difference, by using a laser diode monochromatic light interferogram (a sine wave), whose zero crossings control the double pendulum motion. PFS works primarily around the pericentre of the orbit, only occasionally observing Mars from large distances. Each measurements take 4 s, with a repetition time of 8.5 s. By working roughly 0.6 h around pericentre, a total of 330 measurements per orbit will be acquired 270 looking at Mars and 60 for calibrations. PFS is able to take measurements at all local times, facilitating the retrieval of surface temperatures and atmospheric vertical temperature profiles on both the day and the night side.  相似文献   

7.
NASA’s Phoenix lander identified perchlorate and carbonate salts on Mars. Perchlorates are rare on Earth, and carbonates have largely been ignored on Mars following the discovery by NASA’s Mars Exploration Rovers of acidic precipitated minerals such as jarosite. In light of the Phoenix results, we updated the aqueous thermodynamic model FREZCHEM to include perchlorate chemistry. FREZCHEM models the Na-K-Mg-Ca-Fe(II)-Fe(III)-Al-H-Cl-Br-SO4-NO3-OH-HCO3-CO3-CO2-O2-CH4-Si-H2O system, with 95 solid phases. We added six perchlorate salts: NaClO4·H2O, NaClO4·2H2O, KClO4, Mg(ClO4)2·6H2O, Mg(ClO4)2·8H2O, and Ca(ClO4)2·6H2O. Modeled eutectic temperatures for Na, Mg, and Ca perchlorates ranged from 199 K (−74 °C) to 239 K (−34 °C) in agreement with experimental data.We applied FREZCHEM to the average solution chemistry measured by the Wet Chemistry Laboratory (WCL) experiment at the Phoenix site when soil was added to water. FREZCHEM was used to estimate and alkalinity concentrations that were missing from the WCL data. The amount of is low compared to estimates from elemental abundance made by other studies on Mars. In the charge-balanced solution, the dominant cations were Mg2+ and Na+ and the dominant anions were , and alkalinity. The abundance of calcite measured at the Phoenix site has been used to infer that the soil may have been subject to liquid water in the past, albeit not necessarily locally; so we used FREZCHEM to evaporate (at 280.65 K) and freeze (from 280.65 to 213.15 K) the WCL-measured solution to provide insight into salts that may have been in the soil. Salts that precipitated under both evaporation and freezing were calcite, hydromagnesite, gypsum, KClO4, and Mg(ClO4)2·8H2O. Epsomite (MgSO4·7H2O) and NaClO4·H2O were favored by evaporation at temperatures >0 °C, while meridianite (MgSO4·11H2O), MgCl2·12H2O, and NaClO4·2H2O were favored at subzero temperatures. Incongruent melting of such highly hydrated salts could be responsible for vug formation elsewhere on Mars.All K+ precipitated as insoluble KClO4 during both evaporation and freezing simulations, accounting for 15.8% of the total perchlorates. During evaporation, 35.8% of perchlorates precipitated with Na+ and 48.4% with Mg2+. During freezing, 58.4% precipitated with Na+ and 24.8% with Mg2+. Given its low eutectic temperature, the existence of Mg(ClO4)2 in either case allows for the possibility of liquid brines on Mars today. FREZCHEM also showed that Ca(ClO4)2 would likely not have precipitated at the Phoenix landing site due to the strong competing sinks for Ca as calcite and gypsum. Overall, these results help constrain the salt mineralogy of the soil. Differences between evaporites and cryogenites suggest ways to discriminate between evaporation and freezing during salt formation. Future efforts, such as sample return or in situ X-ray diffraction, may make such a determination possible.  相似文献   

8.
9.
Mars Global Surveyor (MGS) visible (solarband bolometer) and thermal infrared (IR) spectral limb observations from the Thermal Emission Spectrometer (TES) support quantitative profile retrievals for dust opacity and particle sizes during the 2001 global dust event on Mars. The current analysis considers the behavior of dust lifted to altitudes above 30 km during the course of this storm; in terms of dust vertical mixing, particle sizes, and global distribution. TES global maps of visible (solarband) limb brightness at 60 km altitude indicate a global-scale, seasonally evolving (over 190-240° solar longitudes, LS) longitudinal corridor of vertically extended dust loading (which may be associated with a retrograde propagating, wavenumber 1 Rossby wave). Spherical radiative transfer analysis of selected limb profiles for TES visible and thermal IR radiances provide quantitative vertical profiles of dust opacity, indicating regional conditions of altitude-increasing dust mixing ratios. Observed infrared spectral dependences and visible-to-infrared opacity ratios of dust scattering over 30-60 km altitudes indicate particle sizes characteristic of lower altitudes (cross-section weighted effective radius, ), during conditions of significant dust transport to these altitudes. Conditions of reduced dust loading at 30-60 km altitudes present smaller dust particle sizes . These observations suggest rapid meridional transport at 30-80 km altitudes, with substantial longitudinal variation, of dust lifted to these altitudes over southern hemisphere atmospheric regions characterized by extraordinary (m/s) vertical advection velocities. By LS=230° dust loading above 50 km altitudes decreased markedly at southern latitudes, with a high altitude (60-80 km) haze of fine (likely) water ice particles appearing over 10°S-40°N latitudes.  相似文献   

10.
We investigate the effects of atmospheric gravity waves on the vertical and horizontal structure of the ionosphere of Jupiter. The presented non-linear, two-dimensional model of the jovian ionosphere allows for spatially and temporally varying neutral wind and temperature fields and tracks the time evolution of six ionospheric species, , and . An analytical approach is used to validate the model results for linear, small-amplitude waves and to elucidate the mechanisms that leads to perturbations in the density of the main ion species, H+ and . We demonstrate that the long-lived H+ ions are perturbed directly by wave dynamics whereas short-lived ions such as are perturbed by chemical interactions with other perturbed ion species. The model is then applied using larger gravity wave amplitudes consistent with observations. Atmospheric gravity waves propagating at high altitudes create layers of enhanced electron density similar to the system of layers observed during the J0-ingress radio occultation of the Galileo spacecraft. Our best fit to the J0-ingress observation is achieved using an 82 min period forcing wave with horizontal and vertical wavelengths of 500 km and 60 km respectively, and peaks at 510 km above the 1 bar pressure level. We further investigate the effects of the wave-induced ion flux on the background ionospheric structure and demonstrate that in the presence of a gravity wave the background density profiles of the H+ and ions are significantly modified. We also find that the column density of has variations that can exceed 10% as the wave propagates.  相似文献   

11.
Molecular oxygen produced by the decomposition of icy surfaces is ubiquitous in Saturn's magnetosphere. A model is described for the toroidal O2 atmosphere indicated by the detection of and O+ over the main rings. The O2 ring atmosphere is produced primarily by UV photon-induced decomposition of ice on the sunlit side of the ring. Because O2 has a long lifetime and interacts frequently with the ring particles, equivalent columns of O2 exist above and below the ring plane with the scale height determined by the local ring temperature. Energetic particles also decompose ice, but estimates of their contribution over the main rings appear to be very low. In steady state, the O2 column density over the rings also depends on the relative efficiency of hydrogen to oxygen loss from the ring/atmosphere system with oxygen being recycled on the grain surfaces. Unlike the neutral density, the ion densities can differ on the sunlit and shaded sides due to differences in the ionization rate, the quenching of ions by the interaction with the ring particles, and the northward shift of the magnetic equator relative to the ring plane. Although O+ is produced with a significant excess energy, is not. Therefore, should mirror well below those altitudes at which ions were detected. However, scattering by ion-molecule collisions results in much larger mirror altitudes, in ion temperatures that go through a minimum over the B-ring, and in the redistribution of both molecular hydrogen and oxygen throughout the magnetosphere. The proposed model is used to describe the measured oxygen ion densities in Saturn's toroidal ring atmosphere and its hydrogen content. The oxygen ion densities over the B-ring appear to require either significant levels of UV light scattering or ion transmission through the ring plane.  相似文献   

12.
13.
14.
We have performed a numerical simulation to analyze the energy spectra of escaping planetary O+ and O2+ ions at Mars. The simulated time-energy spectrograms were generated along orbit no. 555 (June 27, 2004) of Mars Express when its Ion Mass Analyzer (IMA)/ASPERA-3 ion instrument detected escaping planetary ions. The simulated time-energy spectrograms are in general agreement with the hypothesis that planetary O+ and O2+ ions far from Mars are accelerated by the convective electric field. The HYB-Mars hybrid model simulation also shows that O+ ions originating from the ionized hot oxygen corona result in a high-energy (E>1 keV) O+ ion population that exists very close to Mars. In addition, the simulation also results in a low-energy (E<0.1 keV) planetary ion population near the pericenter. In the analyzed orbit, IMA did not observe a clear high-energy planetary ion or a clear low-energy planetary ion population near Mars. One possible source for this discrepancy may be the Martian magnetic crustal anomalies because MEX passed over a strong crustal field region near the pericenter, but the hybrid model does not include the magnetic crustal anomalies.  相似文献   

15.
16.
With the collection of six years of MGS tracking data and three years of Mars Odyssey tracking data, there has been a continual improvement in the JPL Mars gravity field determination. This includes the measurement of the seasonal changes in the gravity coefficients (e.g., , , , , , ) caused by the mass exchange between the polar ice caps and atmosphere. This paper describes the latest gravity field MGS95J to degree and order 95. The improvement comes from additional tracking data and the adoption of a more complete Mars orientation model with nutation, instead of the IAU 2000 model. Free wobble of the Mars' spin axis, i.e. polar motion, has been constrained to be less than 10 mas by looking at the temporal history of and . A strong annual signature is observed in , and this is a mixture of polar motion and ice mass redistribution. The Love number solution with a subset of Odyssey tracking data is consistent with the previous liquid outer core determination from MGS tracking data [Yoder et al., 2003. Science 300, 299-303], giving a combined solution of k2=0.152±0.009 using MGS and Odyssey tracking data. The solutions for the masses of the Mars' moons show consistency between MGS, Odyssey, and Viking data sets; Phobos GM=(7.16±0.005)×10−4 km3/s2 and Deimos GM=(0.98±0.07)×10−4 km3/s2. Average MGS orbit errors, determined from differences in the overlaps of orbit solutions, have been reduced to 10-cm in the radial direction and 1.5 m along the spacecraft velocity and normal to the orbit plane. Hence, the ranging to the MGS and Odyssey spacecraft has resulted in position measurements of the Mars system center-of-mass relative to the Earth to an accuracy of one meter, greatly reducing the Mars ephemeris errors by several orders of magnitude, and providing mass estimates for Asteroids 1 Ceres, 2 Pallas, 3 Juno, 4 Vesta, and 324 Bamberga.  相似文献   

17.
In 1999, observations of the Venus nightglow with the Keck I telescope showed that the 5577 Å oxygen green line was a significant feature, comparable in intensity to the terrestrial green line. Subsequent measurements have been carried out at the Apache Point Observatory (APO) and again at Keck I, confirming the presence of the line with substantially varying intensity. The Herzberg II emission intensity, from the O2(c-X) transition, was found to have an intensity near 3 kR in one APO run, comparable to the value found on all previous measurements. Thus, of the three oxygen features seen at Venus—the green line, the Herzberg II emission system, and the 1.27-μ 0-0 band of the IR atmospheric system—the first is quite variable, the second is relatively constant, while the third also shows large variations. The reaction between O2(, v=0) and CO is considered as a possible mechanism to explain green line production and its variability, as well as the variability of the 1.27-μ emission and the stability of the CO2 atmosphere. This reaction may catalyze CO2 recombination some five orders of magnitude faster than the slow three-body O + CO reaction.  相似文献   

18.
19.
High-resolution spectra of Venus and Mars at the NO fundamental band at 5.3 μm with resolving power ν/δν=76,000 were acquired using the TEXES spectrograph at NASA IRTF on Mauna Kea, Hawaii. The observed spectrum of Venus covered three NO lines of the P-branch. One of the lines is strongly contaminated, and the other two lines reveal NO in the lower atmosphere at a detection level of 9 sigma. A simple photochemical model for NO and N at 50-112 km was coupled with a radiative transfer code to simulate the observed equivalent widths of the NO and some CO2 lines. The derived NO mixing ratio is 5.5±1.5 ppb below 60 km and its flux is . Predissociation of NO at the (0-0) 191 nm and (1-0) 183 nm bands of the δ-system and the reaction with N are the only important loss processes for NO in the lower atmosphere of Venus. The photochemical impact of the measured NO abundance is significant and should be taken into account in photochemical modeling of the Venus atmosphere. Lightning is the only known source of NO in the lower atmosphere of Venus, and the detection of NO is a convincing and independent proof of lightning on Venus. The required flux of NO is corrected for the production of NO and N by the cosmic ray ionization and corresponds to the lightning energy deposition of . For a flash energy on Venus similar to that on the Earth (∼109 J), the global flashing rate is ∼90 s−1 and ∼6 km−2 y−1 which is in reasonable agreement with the existing optical observations. The observed spectrum of Mars covered three NO lines of the R-branch. Two of these lines are contaminated by CO2 lines, and the line at 1900.076 cm−1 is clean and shows some excess over the continuum. Some photochemical reactions may result in a significant excitation of NO (v=1) in the lowest 20 km on Mars. However, quenching of NO (v=1) by CO2 is very effective below 40 km. Excitation of NO (v=1) in the collisions with atomic oxygen is weak because of the low temperature in the martian atmosphere, and we do not see any explanation of a possible emission of NO at 5.3 μm. Therefore the data are treated as the lack of absorption with a 2 sigma upper limit of 1.7 ppb to the NO abundance in the lower atmosphere of Mars. This limit is above the predictions of photochemical models by a factor of 3.  相似文献   

20.
W.-L. Tseng  W.-H. Ip  T.A. Cassidy 《Icarus》2010,206(2):382-389
The saturnian system is subject to constant bombardment by interplanetary meteoroids and irradiation by solar UV photons. Both effects release neutral molecules from the icy ring particles either in the form of impact water vapor or gas emission in the form of H2O, O2 and H2. The observations of the Cassini spacecraft during its orbit insertion have shown the existence of molecular and atomic oxygen ions. Subsequent modeling efforts have led to the picture that an exospheric population of neutral oxygen molecules is probably maintained in the vicinity of the rings via photolytic-decomposition of ice and surface reactions. At the same time, ionized products O+ and ions move along the magnetic field lines and, depending on the optical local thickness rings, can thread through the ring plane or impact a ring particle, the ion principal sink. In addition, collisional interactions between the ions and neutrals will change the scale height of the ions and produce a scattered component of O2 molecules and O atoms which can be injected into Saturn’s upper atmosphere or the inner magnetosphere. The ring atmosphere, therefore, serves as a source of ions throughout Saturn’s magnetosphere. If photolysis of ice is the dominant source of O2, then the complex structure of the ring atmosphere/ionosphere and the injection rate of neutral O2 will be subject to modulation by the seasonal variation of Saturn along its orbit. In this work, we show how the physical properties of the ring oxygen atmosphere, the scattered component, and the magnetospheric ion source rate vary as the ring system goes through the cycle of solar insolation. In particular, it is shown that the magnetopheric ions should be nearly depleted at Saturn’s equinox if O2 is produced mainly by photolysis of the ring material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号