首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Analyzer of Space Plasma and Energetic Atoms (ASPERA) on-board the Mars Express spacecraft (MEX) measured penetrating solar wind plasma and escaping/accelerated ionospheric plasma at very low altitudes (250 km) in the dayside subsolar region. This implies a direct exposure of the martian topside atmosphere to solar wind plasma forcing leading to energization of ionospheric plasma. The ion and electron energization and the ion outflow from Mars is surprisingly similar to that over the magnetized Earth. Narrow “monoenergetic” cold ion beams, ion beams with broad energy distributions, sharply peaked electron energy spectra, and bidirectional streaming electrons are particle features also observed near Mars. Energized martian ionospheric ions (O+, O+2, CO+2, etc.) flow in essentially the same direction as the external sheath flow. This suggests that the planetary ion energization couples directly to processes in the magnetosheath/solar wind. On the other hand, the beam-like distribution of the energized plasma implies more indirect energization processes like those near the Earth, i.e., energization in a magnetized environment by waves and/or parallel (to B) electric fields. The general conditions for martian plasma energization are, however, different from those in the Earth's magnetosphere. Mars has a weak intrinsic magnetic field and solar wind plasma may therefore penetrate deep into the dense ionospheric plasma. Local crustal magnetization, discovered by Acuña et al. [Acuña, M.J., Connerey, J., Ness, N., Lin, R., Mitchell, D., Carlsson, C., McFadden, J., Anderson, K., Rème, H., Mazelle, C., Vignes, D., Wasilewski, P., Cloutier, P., 1999. Science 284, 790-793], provide some dayside shielding against the solar wind. On the other hand, multiple magnetic anomalies may also lead to “hot spots” facilitating ionospheric plasma energization. We discuss the ASPERA-3 findings of martian ionospheric ion energization and present evidences for two types of plasma energization processes responsible for the low- and mid-altitude plasma energization near Mars: magnetic field-aligned acceleration by parallel electric fields and plasma energization by low frequency waves.  相似文献   

2.
We have analysed ion escape at Mars by comparing ASPERA-3/Mars Express ion measurements and a 3-D quasi-neutral hybrid model. As Mars Express does not have a magnetometer onboard, the analysed IMA data are from an orbit when the IMF clock angle was possible to determine from the magnetic field measurements of Mars Global Surveyor. We found that fast escaping planetary ions were observed at the place which, according to the 3-D model, is anticipated to contain accelerated heavy ions originating from the martian ionosphere. The direction of the interplanetary magnetic field was found to affect noticeably which regions can be magnetically connected to Mars Express and to the overall 3-D Mars-solar wind interaction.  相似文献   

3.
S.A. Haider  S.P. Seth  V.R. Choksi 《Icarus》2006,185(1):102-112
The production rate, ion density and electron density are calculated between longitudes 0° and 360° E due to incident radiation of wavelength range 1-102.57 nm in the dayside atmosphere of Mars. These calculations are made by using global analytical yield spectrum (AYS) model at solar zenith angle 80° between latitudes 50° and 70° N for spring equinox and medium solar activity condition. These conditions are appropriate for Mars Global Surveyor (MGS) Phase 2 aerobraking period during which both the accelerometer and the radio occultation data are used. The calculated results are compared with MGS radio occultation measurements carried out at different latitudes (64.7°-67.3° N) and longitudes (0°-360° E) in December 1998 between solar zenith angle 78° and 81°. This measurement shows primary and secondary ionization peaks, which are varying with longitudes. Our calculation suggests that first peak is produced by photoionization and photoelectron impact ionization processes due to absorption of solar EUV radiation (9-102.57 nm). The second peak is produced by photoelectron impact ionization of soft X-ray photon (1-9 nm). There is a good agreement between our calculation and measurement as far as the maximum and the minimum values of primary peak altitude/peak density of electrons are concerned. However, the calculated values of secondary peak density and peak altitude are higher than the measured values by a factor of 1.5-2.0 and 1.1, respectively. The secondary peak is brought into agreement with the measurement using low X-ray flux by a factor of 2 to 3 below 9 nm. The longitudinal distribution of calculated and measured peak density and peak altitude are fitted by least-square method with 0.95 confidence limits.  相似文献   

4.
Using an electron transport model, we calculate the electron density of the electron impact-produced nighttime ionosphere of Mars and its spatial structure. As input we use Mars Global Surveyor electron measurements, including an interval when accelerated electrons were observed. Our calculations show that regions of enhanced ionization are localized and occur near magnetic cusps. Horizontal gradients in the calculated ionospheric electron density on the night side of Mars can exceed 104 cm−3 over a distance of a few tens of km; the largest gradients produced by the model are over 600 cm−3 km−1. Such large gradients in the plasma density have several important consequences. These large pressure gradients will lead to localized plasma transport perpendicular to the ambient magnetic field which will generate horizontal currents and electric fields. We calculate the magnitude of these currents to be up to 10 nA/m2. Additionally, transport of ionospheric plasma by neutral winds, which vary in strength and direction as a function of local time and season, can generate large (up to 1000 nA/m2) and spatially structured horizontal currents where the ions are collisionally coupled to the neutral atmosphere while electrons are not. These currents may contribute to localized Joule heating. In addition, closure of the horizontal currents and electric fields may require the presence of vertical, field-aligned currents and fields which may play a role in high altitude acceleration processes.  相似文献   

5.
F. Duru  D.A. Gurnett  R. Frahm 《Icarus》2010,206(1):74-82
The Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) on the Mars Express (MEX) spacecraft is capable of measuring ionospheric electron density by the use of two main methods: remote radar sounding and from the excitation of local plasma oscillations. The frequency of the locally excited electron plasma oscillations is used to measure the local electron density. However, plasma oscillations are not observed when the plasma flow velocity is higher than about 160 km/s, which occurs mainly in the solar wind and magnetosheath. As a consequence, in many passes, there is a sudden disappearance of the plasma oscillations as the spacecraft enters into the magnetosheath. This fact allows us to identify a flow velocity boundary on the dayside, between the ionosphere of Mars and the shocked solar wind. This paper summarizes the results of the measurement of 552 orbits mostly over a period from August 4, 2005 to August 17, 2007. The boundary points found using MARSIS have been verified by measurements from the Analyzer of Space Plasma and Energetic Atoms (ASPERA-3) Electron Spectrometer (ELS) instrument on Mars Express. The average position of the flow velocity boundary is compared to flow velocity simulations computed using hybrid model and other boundaries. The boundary altitude is slightly lower than the magnetic pile-up boundary determined using Phobos 2 and Mars Global Surveyor (MGS) crossings, but it is in good agreement with the induced magnetospheric boundary determined by ASPERA-3. Investigation of the effect of the crustal magnetic field revealed that the flow velocity boundary is raised at the locations with strong crustal magnetic fields.  相似文献   

6.
The non-thermal escape of neutral O atoms from Mars at the current epoch is largely due to dissociative recombination of :
  相似文献   

7.
The neutral particle detector (NPD) on board Mars Express has observed energetic neutral atoms (ENAs) from a broad region on the dayside of the martian upper atmosphere. We show one such example for which the observation was conducted at an altitude of 570 km, just above the induced magnetosphere boundary (IMB). The time of flight spectra of these ENAs show that they had energies of 0.2-2 keV/amu, with an average energy of ∼1.1 keV/amu. Both the spatial distribution and the energy of these ENAs are consistent with the backscattered ENAs, produced by an ENA albedo process. This is the first observation of backscattered ENAs from the martian upper atmosphere. The origin of these ENAs is considered to be the solar wind ENAs that are scattered back by collision processes in the martian upper atmosphere. The particle flux and energy flux of the backscattered ENAs are and , respectively.  相似文献   

8.
During the past 4 Mars years, Mars Orbiter Camera imaging capabilities have been used to document occurrence of seasonal patches of frost at latitudes as low as 33° S, and even 24° S. Monitoring reveals bright patches on pole-facing slopes; these appear in early southern winter and disappear in mid winter. The frost forms annually. Thermal Emission Spectrometer and daytime Thermal Emission Imaging System observations show surface temperatures on and near pole facing slopes reach the condensation temperature of CO2, indicating the patches consist of carbon dioxide rather than water frost. For several months, temperatures on pole-facing crater walls are so low that even carbon dioxide condenses on them, although the slopes are illuminated by the Sun every day. Thermal model calculations show slopes accumulate a several centimeter thick layer of CO2 frost. The frost becomes visible only months after it has begun to form, and has an orientational preference which is due to illumination bias at the time of observation. H2O condenses at higher temperatures and water frost must therefore also be present. Potential opportunities to observe seasonal water frost at low latitudes are also described.  相似文献   

9.
Monte Carlo simulations were carried out to compute the escape flux of atomic nitrogen for the low and high solar activity martian thermospheres. The total escape of atomic nitrogen at low and high solar activities was found to be 3.03×105 and , respectively. The escape flux of atomic nitrogen at low and high solar activities from photodissociation of N2 was found to be 2.75×105 and , respectively. The remainder of the contribution is from dissociative recombination, which is only important at high solar activity were it comprises about 25% of the total escape. The relative contributions to the total N escape flux from thermal motion of the background atmosphere, winds and co-rotation, and photoionization and subsequent solar wind pickup are also considered here. We find that the total predicted escape fluxes are observed to increase by 20 and 25% at low and high solar activities owing to thermal motion of the background atmosphere. At low and high solar activities, we find that the co-rotation and wind velocities combined translate to a maximum transferable energy of ∼0.0103 and 0.0181 eV, respectively, and that the total escape flux contribution from winds and co-rotation is negligible. Photoionization was found to be a minor process only impacting those source atoms produced with energies close to the escape energy, between 1.5 and 2 eV. The contributions to the total escape fluxes at low and high solar activities from photoionization and subsequent solar wind pickup are found to be about 8 and 13%, respectively.  相似文献   

10.
The ELectron Spectrometer (ELS) from the Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) flown on the Mars Express spacecraft has an 8% energy resolution, combined with the capability to oversample the martian electron distribution. This makes possible the resolution and identification of electrons generated as a result of the He 304 Å ionization of CO2 at the martian exobase on the dayside of the planet. Ionospheric photoelectrons were observed during almost every pass into the ionosphere and CO2 photoelectron peaks were identified near the terminator. Atmospherically generated CO2 photoelectrons are also observed at 10,000 km altitude in the martian tail near the inner magnetospheric boundary. Observations over a wide range of spacecraft orbits showed a consistent presence of photoelectrons at locations along the inner magnetospheric boundary and in the ionosphere, from an altitude of 250 to 10,000 km.  相似文献   

11.
Jane L. Fox  Aleksander Ha? 《Icarus》2010,208(1):176-191
The production of energetic and escaping neutral O atoms at the current epoch in the martian thermosphere is thought to be dominated by the dissociative recombination process:
  相似文献   

12.
The Mars Reconnaissance Orbiter observes Mars from a nearly circular, polar orbit. From this vantage point, the Mars Color Imager extends the ∼5 Mars years record of Mars Global Surveyor global, visible-wavelength multi-color observations of meteorological events and adds measurements at three additional visible and two ultraviolet wavelengths. Observations of the global distribution of ozone (which anti-correlates with water vapor) and water ice and dust clouds allow tracking of atmospheric circulation. Regional and local observations emphasize smaller scale atmospheric dynamics, especially those related to dust lifting and subsequent motion. Polar observations detail variations related to the polar heat budget, including changes in polar frosts and ices, and storms generated at high thermal contrast boundaries.  相似文献   

13.
J.S. Halekas  D.A. Brain 《Icarus》2010,206(1):64-73
We present the results of the first systematic survey of current sheets encountered by Mars Global Surveyor in its ∼400 km mapping orbit. We utilize an automated procedure to identify over 10,000 current sheet crossings during the ∼8 year mapping mission. The majority of these lie on the nightside and in the polar regions, but we also observe over 1800 current sheets at solar zenith angle <60°. The distribution and orientation of current sheets and their dependence on solar wind drivers suggests that most magnetotail current sheets have a local induced magnetospheric origin caused by magnetic field draping. On the other hand, most current sheets observed on the day side likely result from solar wind discontinuities advected through the martian system. However, the clustering of low altitude dayside current sheet crossings around the perimeters of strongly magnetized crustal regions, and the smaller than expected rotations in the IMF draping direction, suggest that crustal magnetic fields may also play an indirect role in their formation. The apparent thicknesses of martian current sheets, and the characteristics of electrons observed in and around the current sheets, suggest one of two possibilities. Martian current sheets at low altitudes are either stationary, with thicknesses of a few hundred km and currents carried by low energy (<10 eV) electrons, or they move at tens of km/s, with thicknesses of a few thousand km and currents carried by ions.  相似文献   

14.
The residual south polar cap of Mars (RSPC) is distinct from the residual north polar cap both in composition and in morphology. CO2 frost in the RSPC is stabilized by its high albedo during southern spring and summer despite the relatively large insolation during that period. The morphology of the RSPC in summer displays a bewildering variety of depressions that are formed in relatively thin layers of CO2. The increase of the size of these depressions between each of the first three years of Mars Global Surveyor (MGS) observations may possibly signal some sort of climate change on the planet. For example, the erosion of the bright plateaus might reduce the RSPC albedo and affect the energy balance. The Mars Orbiter Cameras (MOC) on MGS observed Mars for four consecutive martian years before contact with the spacecraft was lost in late 2006. During this period coverage of the polar regions was particularly dense because MGS flew over them on every orbit. In this paper we report on the four-year behavior of the morphological features in the RSPC and on the large-scale variability in RSPC albedo over the period. The changes in the size of the surface features in the RSPC due to backwasting that were first observed between Mars years (MY) 24 and 25 and subsequently between MY25 and M26 was observed to continue at the same rate through MY 27. The results indicate that on average thicker layers in the RSPC retreat faster than thinner ones, roughly in proportion to their thickness. We argue that a simple difference in porosity between the A and B layers can explain this difference although other factors could be involved. The large-scale albedo of the RSPC decreases as the depressions are uncovered by sublimation of seasonal CO2. However, any interannual differences in albedo due to the backwasting process are masked by interannual differences in the summer dust opacity in the RSPC region.  相似文献   

15.
We report on PFS-MEX (Planetary Fourier Spectrometer on board Mars Express) limb observations of the non-Local Thermodynamic Equilibrium emission by CO and CO2 isotopic molecules. The CO emission is observed peaking at altitudes lower than the CO2 emission peak. Two orbits have been considered, which explore latitudes from 75 to 15° N, located in local time at 11:30 and 06:40, and with Ls=138° and 168°, respectively. In general in the season considered (northern summer) the emission intensity increases going to lower latitudes. The peak emission height is also decreasing with decreasing latitude. The CO2 isotopic molecules are emitting radiance out of proportion with respect to the normal isotopic abundance, which surely indicates a strong contribution from a large number of much weaker CO2 bands, a result that will demand careful theoretical modeling. By comparison with Hitran data base we can identify, among the emitting bands, the second hot band for the 626 and 636 molecule, while for the 628 and 627 emission from the third hot bands are very possible. Other minor bands or lines are also observed in emission for the first time in Mars. In one of the two orbits considered, the orbit 1234 of MEX, we also observe at altitudes 80-85 km scattered radiation, with indication of CO2 ice aerosols as scattering centers. At the same altitude the Pathfinder descending measurements show a temperature that allows CO2 condensation. Pathfinder measurements were at 03:00 local time, while our observations are for orbit 1234 showing CO2 ice signature at 11:30 local time. These non-LTE limb emissions, with their unprecedented spectral resolution in this portion of the near infrared and their sensitivity and geographical coverage, will represent in our opinion an excellent data set for testing current theoretical models of the martian upper atmosphere.  相似文献   

16.
Photoelectron peaks in the atmosphere of Mars caused by the ionization of carbon dioxide and atomic oxygen by solar 30.4 nm photons have been observed by the Electron Spectrometer (ELS), a component of the Mars Express (MEx) Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) experiment. Ionization mostly occurs at the Mars exobase with the majority of the photoionized electron flux trapped in the remanent and induced magnetic field, with a portion of that flux escaping the planet down its tail. Since Mars is overall charge neutral, the number of electrons must be identical to the number of ion charges which escape the planet. An estimate of the fraction of the total number of escaping electrons is obtained for the year 2004, specifically those produced by the ionization of carbon dioxide and atomic oxygen by solar 30.4 nm photons. In achieving this process, an illustrative example pass is used to show how the electron spectrum is adjusted for the potential on the spacecraft; then the region of the electron spectrum which shows photoelectron peaks is integrated over energy, yielding a flux of 5.74 × 106 electrons/(cm2 s sr). This technique is then applied to a subset of 22 sample averaged spectra from the 2004 data (5 January 2004 through 25 January 2005), yielding an average result of 4.15 × 106 electrons/(cm2 s sr) for the 22 cases. The observation cone of 33.75° is used to integrate over solid angle (assuming the flux is constant), giving 4.39 × 106 electrons/(cm2 s). This average value was taken as representative of the full data interval. Frequency of occurrence statistics showing about a 6.2% occurrence rate for the 2004 data is applied to give an average escape flux from Mars of 2.72 × 105 electrons/(cm2 s) during 2004. By estimating the outflow area as 1.16 × 1018 cm2 at X = −1.5 RMars the electron escape rate of 3.14 × 1023 electrons/s is obtained. Thus about 9.92 × 1030 electrons or 16.5 Mmole of electrons escaped Mars during 2004 due to the ionization of carbon dioxide and atomic oxygen by the He 30.4 nm line. Due to the caveats of the analysis, these derived escape rates should be considered lower limits on the total electron escape rate from Mars.  相似文献   

17.
J.L. Fox 《Icarus》2007,192(1):296-301
In recent articles published in Icarus, Bakalian [2006. Icarus 183, 69-78] discusses and computes the production rates of hot nitrogen atoms in the martian thermosphere due to N2 photodissociation and N+2 dissociative recombination, and Bakalian and Hartle [2006. Icarus 183, 55-68] use a Monte Carlo code to compute the escape rates of nitrogen atoms from Mars due to photodissociation of N2, dissociative recombination of N+2, and pickup ion escape due to photoionization of N atoms above the ionopause. Bakalian concludes that “photodissociation of N2 is the dominant escape mechanism in the martian atmosphere.” We will show that this conclusion is not supportable. In addition, both papers contain scientific errors, misrepresentations, inaccurate referencing, lack of proper attribution, and they fail to place these investigations into the existing extensive body of work on this subject.  相似文献   

18.
Three decades of slope streak activity on Mars   总被引:1,自引:0,他引:1  
Slope streaks are surficial mass movements that are abundant in the dust-covered regions of Mars. Targeting of slope streaks seen in Viking images with the Mars Orbiter Camera provides observations of slope streak dust activity over two to three decades. In all study areas, new and persisting dark slope streaks are observed. Slope streaks disappeared in one area, with persisting streaks nearby. New slope streaks are found to be systematically darker than persisting streaks, which indicates gradual fading. Far more slope streaks formed at the study sites than have faded from visibility. The rate of formation at the study sites was 0.03 new slope streaks per existing streak per Mars year. Bright slope streaks do not presently form in sudden events as dark slope streaks do. Instead, bright streaks might form from old dark slope streaks, perhaps transitioning through a partially faded stage.  相似文献   

19.
Yan Tang  Yujie Huang 《Icarus》2006,180(1):88-92
The detection of gray crystalline hematite deposits on Mars by Thermal Emission Spectrometer (TES) has been used to argue for the presence of liquid water on Mars in the distant past. By methanol-thermal treatment of anhydrous FeCl3 at low temperatures (70-160 °C), crystalline gray hematite with layered structure was synthesized, based on this result an alternative explanation for the origin of martian hematite deposits is suggested. Methane could be abundant in the early martian atmosphere; process such as photochemical oxidation of methane could result in the formation of ocean or pool of organic compounds such as methanol, which provides an environment for the formation of large-scale hematite deposits on Mars.  相似文献   

20.
High-resolution observations of atmospheric phenomena by the Mars Odyssey Thermal Emission Imaging System (THEMIS) during its first mapping year are presented. An atmospheric campaign was implemented on the basis of previous spacecraft imaging. This campaign, however, proved of limited success. This appears to be due to the late local time of the Odyssey orbit (the locations of activity at 4–6 p.m. appear to be different from those at 2 p.m.). Ironically, images targeting the surface were more useful for study of the atmosphere than those images specifically targeting atmospheric features. While many previously recognized features were found, novel THEMIS observations included persistent clouds in the southern polar layered deposits, dust or condensate plumes on the northern polar layered deposits, dust plumes as constituent parts of local dust storms, and mesospheric clouds. The former two features tend to be aligned parallel and normal to polar troughs, respectively, suggesting a wind system directed normal to troughs and radially outward from the center of the polar deposits. This is consistent with katabatic drainage of air off the polar deposits, analogous to flow off Antarctica. The observation of dust lifting plumes at unprecedented resolution associated with local dust storms not only demonstrates the importance of mean wind stresses (as opposed to dust devils) in initiation of dust storms, but is also seen to be morphologically identical to dust lifting in terrestrial dust storms. As Odyssey moves to earlier local times, we suggest that the atmospheric campaign from the first mapping year be repeated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号