首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The seismic response due to a travelling shear wave is investigated. The resulting input consists of a translational-and a torsional-acceleration time history, which depend on the ratio of the wavelength to the dimension of the footing. A nuclear reactor building is used for illustration. The combined result of the translational and torsional elastic response (the latter arises even in an axisymmetric structure) will not, in general, be larger than that encountered in the case of a spatially uniform earthquake. If the footing slips or becomes partially separated from the soil, a non-linear dynamic analysis has to be performed to determine the response. Substantial motions in all three directions will take place. The peak structural responses and the floor-response spectra are found to be highly non-linear for high acceleration input values.  相似文献   

2.
A simplified response spectrum superposition method has been generalized for the dynamic analysis of the multistoried building-soil response to earthquake ground motions via Fourier-transformed frequency domain. It involves the “scaling” of the Fourier amplitudes of the freefield translational and rocking motions to account for the soil-structure interaction effects, and then analyzing the building as fixed at the base. Envelopes of peak displacements, shear forces and overturning moments in the building are illustrated in terms of the order statistics of the response peaks.  相似文献   

3.
4.
Liu  Jingbo  Tan  Hui  Bao  Xin  Wang  Dongyang  Li  Shutao 《地震工程与工程振动(英文版)》2019,18(4):747-758
Earthquake Engineering and Engineering Vibration - The method of inputting the seismic wave determines the accuracy of the simulation of soil-structure dynamic interaction. The wave method is a...  相似文献   

5.
张昊  康帅  王自法    裴笑娟 《世界地震工程》2022,38(2):029-37
目前结构的抗震分析主要是采用刚性地基假定,忽略了土-结构相互作用,而在实际情况中结构的地震破坏与刚性地基假定的预期结果并不相同。为了对比差异,本文以一6层混凝土框架结构为例,分别进行了Pushover分析和非线性时程分析。结果表明:当考虑土-结构相互作用时,结构的基底剪力减小,周期增大,顶点位移增大且结构的破坏主要集中在首层,柱端出现了塑性铰,更符合实际的震害情况。并将Pushover分析与非线性时程分析的结果进行对比,验证了Pushover分析的可靠性。  相似文献   

6.
以土—结构动力相互作用理论为基础,对于不考虑核爆炸荷载作用下地铁车站的抗震问题进行了探讨,提出了抗震设计建议。  相似文献   

7.
Elastic response spectra that take into account the effects of soil-structure interaction on soft soils are developed. The response spectra are calculated utilizing a 3 DOF system including deformations of the superstructure and foundation. The equations of motion of the system are solved using direct integration under normalized earthquake records. Statistical processing of the results is implemented resulting in response spectra for "short and dense buildings with low interaction", "short and dense buildings with high interaction", "tall and light buildings with low interaction" and "tall and light buildings with high interaction". The resulting response spectra are smoothed and discussed.  相似文献   

8.
9.
This paper presents a statistical study of the kinematic soil-foundation-structure interaction effects on the maximum inelastic deformation demands of structures. Discussed here is the inelastic displacement ratio defined as the maximum inelastic displacement demands of structures subjected to foundation input motions divide by those of structures subjected to free-field ground motions. The displacement ratio is computed for a wide period range of elasto-plastic single-degree-of-freedom (SDOF) systems with various levels of lateral strength ratios and with different sizes of foundations. Seventy-two earthquake ground motions recorded on firm soil with average shear wave velocities between 180 m/s and 360 m/s are adopted. The effects of period of vibration, level of lateral yielding strength and dimension of foundations are investigated. The results show that kinematic interaction will reduce the maximum inelastic displacement demands of structures, especially for systems with short periods of vibration, and the larger the foundation size the smaller the maximum inelastic displacement becomes. In addition, the inelastic displacement ratio is nearly not affected by the strength ratio of structures for systems with periods of vibration greater than about 0.3 s and with strength ratios smaller than about 3.0. Expressions obtained from nonlinear regression analyses are also proposed for estimating the effects of kinematic soil-foundation-structure interaction from the maximum deformation demand of the inelastic system subjected to free-field ground motions.  相似文献   

10.
An engineering approach is proposed for representing both site effects and soil-structure interaction in extended alluvial valleys, by using the one-dimensional model of shear were propagation corrected empirically to account for lateral heterogeneities and generated surface waves. The peak structural response is expressed by means of spectral contours that are a function of the predominant period of the site and the fundamental period of the structure. Variations of the peak spectral ordinates with the prevailing site period can be deduced from these contours. A number of events of firm ground, representative of the most dangerous earthquakes expected in Mexico City, are assumed as design earthquakes. Making use of the resulting spectral contours, the provisions for site effects recommended in the Mexican seismic code are evaluated. Also, considering as control motion the 1985 Michoacan earthquake recorded at a representative firm site, spectral contours with soil-structure interaction are obtained which allow one to identify the significant interaction effects originating in the Valley of Mexico for medium- and long-period structures. The influence and relative importance of the critical parameters involved are examined within practical ranges of interest.  相似文献   

11.
Forced vibration tests designed to isolate the effects of soil-structure interaction are described and the results obtained for the nine-storey reinforced concrete Millikan Library Building are analysed. It is shown that it is possible to determine experimentally the fixed-base natural frequencies and modal damping ratios of the superstructure. These values may be significantly different from the resonant frequencies and damping ratios of the complete structure-foundation-soil system. It is also shown that forced vibration tests can be used to obtain estimates of the foundation impedance functions. In the case of the Millikan Library it is found that during forced vibration tests the rigid-body motion associated with translation and rocking of the base accounts for more than 30 per cent of the total response on the roof and that the deformation of the superstructure at the fundamental frequencies of the system is almost entirely due to the inertial forces generated by translation and rocking of the base.  相似文献   

12.
土-结构相互作用效应对结构基底地震动影响的试验研究   总被引:3,自引:0,他引:3  
利用土与结构动力相互作用振动台模型试验数据,通过各种试验工况下土层表面与基础表面加速度反应的比较,深入探讨了土与结构动力相互作用效应对高层建筑结构基底地震动的影响。从输入地震动频谱特性、输入地震动强度水平和上部结构动力特性3个方面详细分析了与SSI效应对高层建筑基底震动影响程度有关的一些因素。结果表明:SSI效应对高层建筑基底地震动的影响与输入地震波的动力特性有很大关系。在地震动的频谱成分方面,SSI效应对高层建筑基底地震动的影响主要体现为土层表面和基础表面在与输入地震动卓越频率相近处的频谱成分有较大差异;SSI效应对高层建筑基底地震动的影响程度随着输入加速度峰值水平的增加而减小;在某一特定地震波作用下,当上部结构的振动频率与地震地面运动的卓越频率相近时,SSI效应对高层建筑基底地震动的影响较为强烈。  相似文献   

13.
Non-linear seismic soil-structure interaction is studied through a hybrid procedure using the pseudo-dynamic testing (PDT) method which is modified to take into account frequency dependence and developed for foundation-soil systems. The numerical scheme used in conventional PDT is improved by introduction of a time-dependent pseudo-forcing function which is derived from frequency-dependent dynamic characteristics of the system by means of Hilbert transformation in the frequency domain. Surface, shallow and caisson foundation models that differed in size and depth of embedment were used. The mechanical characteristics of the systems were determined from static and forced vibration dynamic tests. An amplitude scaling technique was used for three recorded accelerograms.  相似文献   

14.
This paper deals with seismic wave propagation effects on buried segmented pipelines. A finite element model is developed for estimating the axial pipe strain and relative joint displacement of segmented pipelines. The model accounts for the effects of peak ground strain, shear transfer between soil and pipeline, axial stiffness of the pipeline, joint characteristics of the pipeline, and variability of the joint capacity and stiffness. For engineering applications, simplified analytical equations are developed for estimating the maximum pipe strain and relative joint displacement. The finite element and analytical solutions show that the segmented pipeline is relatively flexible with respect to ground deformation induced by seismic waves and deforms together with the ground. The ground strain within each pipe segmental length is shared by the joint displacement and pipe barrel strain. When the maximum ground strain is higher than 0.001, the pipe barrel strain is relatively small and can be ignored. The relative joint displacement of the segmented pipeline is mainly affected by the variability of the joint pullout capacity and accumulates at locally weak joints.  相似文献   

15.
The equations of motion of building systems with soil-structure interaction are formulated for foundations comprising a joint mat or a set of individual spread footings. The influence of soil-structure interaction and the possible effects of building and foundation rocking are examined by investigating the modal properties. Simplifications in the analysis are also suggested.  相似文献   

16.
The effect of the base mat flexibility on seismic soil-structure interaction is studied for an axisymmetric reactor building on a soft and a stiff soil. As a preliminary step, the dynamic response of a massless flexible circular plate with two rigid concentric walls, through which the plate is loaded, is analysed. The response of the plate is found to depend on the plate flexibility, the load distribution and the frequency of excitation. For practical, in-phase load distributions, the response of the flexible plate is close to that of a rigid plate at low frequencies, but deviates at high frequencies. Including the flexibility of the mat has hardly any effect on the frequencies and damping of the fundamental rocking and vertical modes of the reactor building. This is the case for soft and stiff soil conditions. However, the flexibility of the mat strongly affects the first and higher structural deformation modes. In both cases the amount of energy dissipated in the soil is a significant percentage of the total dissipation, and is essentially unaffected by the mat flexibility.  相似文献   

17.
目前对于网壳结构的地震反应研究大部分仍然采用一致输入,特别是没有考虑土-结构相互作用对网壳结构的影响。本文通过对大型有限元分析软件MSC.Nastran的二次开发,用等效线性化方法考虑土体的非线性,对土体采用三维实体单元建模,并对土体在基岩面上采用地震动的多点输入,计算分析了大跨度双层柱面网壳的动力反应,并且与一致地震动输入下网壳结构的地震反应进行了对比,考察了两者之间的差异,深入分析了考虑土-结构相互作用下,双层柱面网壳结构在多点输入和一致输入下的地震反应规律,并得出了一些重要结论。  相似文献   

18.
Damping of structures resting on flexible foundations is affected by soil-structure interaction in two ways: (1) the structure gains damping through energy dissipation in soil, and (2) the damping the structure would have on a rigid foundation is reduced. These effects are evaluated using two approaches: an energy consideration which is a simple but approximate approach, and the complex eigenvalue analysis which is mathematically accurate but uses damped, non-classical vibration modes. These two methods are compared and the accuracy of the more convenient energy approach is assessed. Examples of modal damping are given for rigid structures, buildings and towers.  相似文献   

19.
A plane strain model for dynamic soil-structure interaction problems under harmonic state is presented. The boundary element method is used to study the response of a homogeneous isotropic linear elastic soil. The far field displacement at the free surface is approximated by an outgoing Rayleigh wave. The finite element method is used to describe the response of the building, of the foundation and possibly of a finite part of the inhomogeneous non-linear soil. Two coupling procedures are described. The model is applied to a problem previously studied in the antiplane case. Incident P, SV and Rayleigh waves are considered. The results show an amplification and an attenuation of the structure motion with frequency when incident Rayleigh waves and P, SV body waves are respectively considered.  相似文献   

20.
土-结构动力相互作用研究综述   总被引:5,自引:0,他引:5  
土与结构动力相互作用是当代力学领域的前沿性研究课题,具有很强的实践性。对土与结构动力相互作用的研究历史与现状进行了介绍,简要综述了当前土与结构动力相互作用的研究方法,重点介绍了目前关于土与结构动力相互作用问题中从无限域转化成有限域的人工边界研究进展问题,并对该领域今后的研究工作提出了建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号